
Exploiting Algebraic Laws to Improve Mechanized
Axiomatizations?

Luca Aceto1, Eugen-Ioan Goriac1, Anna Ingolfsdottir1, Mohammad Reza Mousavi2,
and Michel A. Reniers3

1 ICE-TCS, School of Computer Science, Reykjavik University, Menntavegur 1, IS-101,
Reykjavik, Iceland

2 Center for Research on Embedded Systems (CERES), Halmstad University, Sweden
3 Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513,

NL-5600 MB Eindhoven, The Netherlands

Abstract. In the field of structural operational semantics (SOS), there have been
several proposals both for syntactic rule formats guaranteeing the validity of al-
gebraic laws, and for algorithms for automatically generating ground-complete
axiomatizations. However, there has been no synergy between these two types of
results. This paper takes the first steps in marrying these two areas of research
in the meta-theory of SOS and shows that taking algebraic laws into account in
the mechanical generation of axiomatizations results in simpler axiomatizations.
The proposed theory is applied to a paradigmatic example from the literature,
showing that, in this case, the generated axiomatization coincides with a classic
hand-crafted one.

1 Introduction

Algebraic properties, such as commutativity, associativity and idempotence of binary
operators, specify some natural properties of programming and specification constructs.
These properties can either be validated using the semantics of the language with re-
spect to a suitable notion of program equivalence, or they can be guaranteed a priori
‘by design’. In particular, for languages equipped with a Structural Operational Se-
mantics (SOS) [19], there are two closely related lines of work to achieve this goal:
firstly, there is a rich body of syntactic rule formats that can guarantee the validity of
certain algebraic properties; see [5, 17] for recent surveys. Secondly, there are numer-
ous results regarding the mechanical generation of ground-complete axiomatizations of
various behavioral equivalences and preorders for SOS language specifications in cer-
tain formats—see, e.g., [1, 7, 20]. However, these two lines of research have evolved
separately and no link has been established between the two types of results so far. In
this paper, we take the first steps in marrying these two research areas and in using
rule formats for algebraic properties (specifically, for commutativity) to enhance the

? The first three authors have been partially supported by the project ‘Meta-theory of Algebraic
Process Theories’ (nr. 100014021) of the Icelandic Research Fund. Eugen-Ioan Goriac is also
funded by the project ‘Extending and Axiomatizing Structural Operational Semantics: Theory
and Tools’ (nr. 1102940061) of the Icelandic Research Fund.

process of automatic generation of axiomatizations for strong bisimilarity from GSOS
language specifications [10]. In particular, we show that linking these two areas results
in axiomatizations that look like hand-crafted ones.

Contribution and Related Work. Many ground-completeness results have been pre-
sented in the literature on process calculi. (See, for instance, the survey paper [3]
for pointers to the literature.) A common proof strategy for establishing such ground-
completeness results is to reduce the problem of axiomatizing the notion of behavioural
equivalence under consideration over arbitrary closed terms to that of axiomatizing it
over ‘synchronization-tree terms’. This approach is also at the heart of the algorithm
proposed in [1] for the automatic generation of finite, equational, ground-complete ax-
iomatizations for bisimilarity over language specifications in the GSOS format. A vari-
ation on that algorithm for GSOS language specifications with termination has been
presented in [7]. In [20], Ulidowski has instead offered algorithms for the automatic
generation of finite axiom systems for the testing preorder over de Simone process lan-
guages. In Section 4 of this paper, we present a refinement of the algorithm from [1] that
uses a rule format guaranteeing commutativity of certain operators to obtain ground-
complete axiomatizations of bisimilarity that are closer to the hand-crafted ones than
those produced by existing algorithms. (See Section 5, where we apply the algorithm to
axiomatize the classic parallel composition operator and compare the generated axiom-
atization to earlier ones.)

Our rule format for commutativity (presented in Section 3) is a generalization of the
rule format for commutativity from [16], which allows operators to have various sets
of commutative arguments. Apart from being natural, such a generalization is useful in
the automatic generation of ground-complete axiomatizations, as the developments in
this study show.

2 Preliminaries

In this section we review, for the sake of completeness, some standard definitions from
process theory and the meta-theory of SOS that will be used in the remainder of the
paper. We refer the interested reader to [4, 17] for further details.

Transition System Specifications in GSOS Format. We let V denote an infinite set of
variables with typical members x, x′, xi, y, y′, yi, A signatureΣ is a set of function
symbols, each with a fixed arity. We call these symbols operators and usually represent
them by f, g, An operator with arity zero is called a constant. We define the set
T(Σ) of terms over Σ (sometimes referred to as Σ-terms) as the smallest set satisfying
the following constraints: (1) A variable x ∈ V is a term. (2) If f ∈ Σ has arity
n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term. We use s, t, t′, ti, u, . . . to
range over terms. We write t1 ≡ t2 if t1 and t2 are syntactically equal. The function
vars : T(Σ)→ 2V gives the set of variables appearing in a term. The set C(Σ) is the set
of closed terms, i.e., the set of all terms t such that vars(t) = ∅. We use p, p′, pi, q, r . . .
to range over closed terms. A substitution σ is a function of type V → T(Σ). We extend
the domain of substitutions to terms homomorphically. If the range of a substitution lies
in C(Σ), we say that it is a closed substitution.

2

The GSOS format is a widely studied format of deduction rules in transition system
specifications proposed by Bloom, Istrail and Meyer [10]. Transition system specifica-
tions whose rules are in the GSOS format enjoy many desirable properties, and several
studies in the literature on the meta-theory of SOS have focused on them—see, e.g.,
the survey [4]. Following [1], in this study we shall also focus on transition system
specifications in the GSOS format, which we now proceed to define.

Definition 1 (GSOS Format [10]). A deduction rule for an operator f of arity n is in
the GSOS format if and only if it has the following form:

{xi
lij−→ yij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {xi

lik9 | 1 ≤ i ≤ n, 1 ≤ k ≤ ni}

f(−→x) l−→C[−→x ,−→y]

where the xi’s and the yij’s (1 ≤ i ≤ n and 1 ≤ j ≤ mi) are all distinct variables, mi

and ni are natural numbers, C[−→x ,−→y] is a Σ-term with variables including at most the
xi’s and the yij’s, and the lij’s and l are labels. If mi > 0, for some i, then we say that
the rule tests its i-th argument positively. The above rule is said to be f -defining and
l-emitting.

A transition system specification (TSS) in the GSOS format T is a triple (Σ,L,D)
where Σ is a finite signature, L is a finite set of labels, and D is a finite set of deduction
rules in the GSOS format. We shall sometimes refer to a TSS in the GSOS format as a
GSOS system.

In addition to the syntactic restrictions on deduction rules, the GSOS format, as pre-
sented in [10], requires the signature to include a constant 0, a collection of unary
operators a. (a ∈ L) and a binary operator + . Intuitively, 0 represents a process
that does not exhibit any behaviour, s + t is the nondeterministic choice between the
behaviours of s and t, while a.t is a process that first performs action a and behaves like
t afterwards. The standard deduction rules for these operations are given below:

a.x1
a−→x1

x1
a−→x′1

x1 + x2
a−→x′1

x2
a−→x′2

x1 + x2
a−→x′2

.

In the remainder of this paper, following [10], we shall tacitly assume that each TSS in
the GSOS format contains these operators with the rules given above. The import of this
assumption is that, as is well known, within each TSS in the GSOS format it is possible
to express each finite synchronization tree over L. Following [12], the TSS containing
the operators 0, a. (a ∈ L) and + , with the above-given rules, is denoted by BCCSP.

The transition relation associated with a TSS in the GSOS format is the one defined
by structural induction over closed terms using the rules. We refer the interested reader
to [10] for the precise definition and much more information on GSOS languages.

Definition 2 ([1]). A GSOS system T ′ is a disjoint extension of a GSOS system T , de-
noted by T v T ′, if the signature and rules of T ′ include those of T , and T ′ introduces
no new rules for operators in the signature of T .

3

Bisimilarity and Axiom Systems. The notion of behavioural equivalence that we will
use in this paper is the following, classic notion of bisimilarity [15, 18].

Definition 3. Let T be a GSOS system with signatureΣ. A relationR ⊆ C(Σ)×C(Σ)
is a bisimulation if and only if R is symmetric and, for all p0, p1, p

′
0 ∈ C(Σ) and l ∈ L,

(p0 R p1 ∧ p0
l−→ p′0)⇒ ∃p′1 ∈ C(Σ). (p1

l−→ p′1 ∧ p′0 R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by T ` p0 ↔ p1 (or simply by
p0 ↔ p1 when T is clear from the context), when there exists a bisimulation R such
that p0 R p1.

It is well known that↔ is an equivalence relation over C(Σ). Any equivalence relation
∼ over closed terms in a TSS T is extended to open terms in the standard fashion, i.e.,
for all t, u ∈ T(Σ), the equation t = u holds over T modulo∼ (sometimes abbreviated
to t ∼ u) if, and only if, T ` σ(t) ∼ σ(u) for each closed substitution σ.

Remark 1. If T ′ is a disjoint extension of T , then two closed terms over the signature
of T are bisimilar in T if and only if they are bisimilar in T ′.
Proposition 1 ([10]).↔ is a congruence for any TSS in GSOS format—that is, for all
f ∈ Σ and terms t1, . . . , tn, u1, . . . , un, where n is the arity of f , if ti ↔ ui for each
i ∈ {1, . . . , n} then f(t1, . . . , tn)↔ f(u1, . . . , un).

Definition 4 (Axiom System). An axiom systemE over a signatureΣ is a set of equal-
ities of the form t = t′, where t, t′ ∈ T(Σ). An equality t = t′, for some t, t′ ∈ T(Σ), is
derivable from E, denoted by E ` t = t′, if and only if it is in the smallest congruence
relation over Σ-terms induced by the equalities in E.

In the context of a fixed TSS T , an axiom system E (over the same signature) is
sound with respect to a congruence relation ∼ if and only if for all t, t′ ∈ T(Σ), if
E ` t = t′, then it holds that T ` t ∼ t′. The axiom system E is ground complete if the
implication holds in the opposite direction whenever t and t′ are closed terms.

3 Commutativity Format

Commutativity is an essential property specifying that the order of arguments of an op-
erator is immaterial. In the setting of process algebras, commutativity is defined with re-
spect to a notion of behavioural equivalence over terms. In this section, we first present
a generalized notion of commutativity that allows n-ary operators to have various sets
of commutative arguments and then slightly adapt the commutativity rule format pro-
posed in [16] to the extended setting. Moreover, we give some auxiliary definitions that
will be used in the axiomatization procedure proposed in the next section.

In order to motivate the generalized notion of commutativity we present below,
consider, by way of example, the ternary operator f defined by the rules below, where
a ranges over the collection of action labels L.

x
a−→x′

f(x, y, z) a−→ f(x′, y, z)
y

a−→ y′

f(x, y, z) a−→ f(x, y′, z)

x
a−→x′ z

a−→ z′

f(x, y, z) a−→ f(x′, y, z′)
y

a−→ y′ z
a−→ z′

f(x, y, z) a−→ f(x, y′, z′)
.

4

It is not hard to show that the operator f is commutative in its first two arguments mod-
ulo bisimilarity, irrespective of the other operators in the TSS under consideration—that
is, f(p, q, r) ↔ f(q, p, r), for all closed terms p, q, r. On the other hand, the third ar-
gument does not commute with respect to the other two. For example, we have that
f(a.0,0,0) = f(0,0, a.0) because f(a.0,0,0) a−→ f(0,0,0), but f(0,0, a.0) has
no outgoing transitions.

The commutativity format presented in [16] can only deal with operators that are
commutative for each pair of arguments and, unlike the format that we present below,
is therefore unable to detect that f is commutative in its first two arguments.

In what follows, we shall often use [n], n ≥ 0, to stand for the set {1, . . . , n}. Note
that [0] is just the empty set.

Definition 5 (Generalized Commutativity). Given a set I , a family
∏
I of non-empty,

pairwise disjoint subsets of I is called a partition of I when
⋃ ∏

I = I .
Let Σ be a signature. Assume that f ∈ Σ is an n-ary operator,

∏
[n] is a partition

of [n] and ∼ is an equivalence relation over C(Σ). The operator f is called
∏

[n]-
commutative with respect to ∼ when, for each K ∈

∏
[n] and each two j, k ∈ K such

that j < k, the following equation is sound with respect to ∼:

f(x1, . . . , xn) = f(x1, . . . , xj−1, xk, xj+1, . . . , xk−1, xj , xk+1, . . . , xn).

Note that the traditional notion of commutativity for binary operators can be recov-
ered using Definition 5 in terms of {{1, 2}}-commutativity. Moreover, the notion of
commutativity for n-ary operators from [16] corresponds to {[n]}-commutativity. Any
n-ary operator is 1[n]-commutative with respect to any equivalence relation ∼, where
1[n] = {{1}, . . . , {n}} is the discrete partition of [n].

From this point onward, whenever a signature Σ is provided, we also assume that
every function symbol f ∈ Σ of arity n has an associated fixed partition of its set
of arguments [n] denoted by

∏
f . We denote the indexed set of all these partitions by∏Σ = {

∏
f}f∈Σ .

Definition 6. Assume Σ1 ⊆ Σ2. Let
∏Σ1 be a family of partitions. The extension of∏Σ1 to Σ2 is obtained by taking

∏
f to be the discrete partition over [n] for each

f ∈ Σ2 \Σ1, where n is the arity of f .

Our aim is to define a restriction of the GSOS rule format that guarantees the notion of
generalized commutativity defined above for any behavioural equivalence that is coarser
than bisimilarity. To this end, we begin by extending the notion of commutative con-
gruence introduced in [16] to the context of this generalized notion of commutativity.

Definition 7 (Commutative Congruence). Consider a signature Σ and a set of parti-
tions

∏Σ . The commutative congruence relation ∼cc (with respect to
∏Σ) is the least

congruence relation over T(Σ) satisfying the following requirement: for all f ∈ Σ (of
arity n), K ∈

∏
f , j, k ∈ K with j < k, and t1, . . . , tn ∈ T(Σ), it holds that

f(t1, . . . , tn) ∼cc f(t1, . . . , tj−1, tk, tj+1, . . . , tk−1, tj , tk+1, . . . , tn).

5

We are now ready to present a syntactic restriction on the GSOS format that guarantees
commutativity with respect to a set of partitions

∏Σ modulo any notion of behavioural
equivalence that includes strong bisimilarity. Unlike the format for {[n]}-commutativity
given in [16], the format offered below applies to generalized commutativity, in the
sense of Definition 5, and is defined for TSSs whose rules can have negative premises.
On the other hand, unlike ours, the format introduced in [16] applies to rules whose pos-
itive premises need not have variables as their sources and targets. Extending our format
in order to accommodate this kind of premises in deduction rules is straightforward, but
is not relevant for the purpose of this paper.

Definition 8 (Comm-GSOS). A transition system specification over signature Σ is in
the comm-GSOS format with respect to a set of partitions

∏Σ if it is in the GSOS format

and for each f -defining deduction rule d =
H

f(x1, . . . , xn)
l−→ t

, each K ∈
∏
f and

for all j, k ∈ K with j < k, there exist a deduction rule d′ =
H ′

f(x′1, . . . , x
′
n)

l−→ t′
and

a bijective mapping ~ over variables such that

– ~(x′i) = xi for each i ∈ [n] such that i 6= j and i 6= k,
– ~(x′j) = xk and ~(x′k) = xj ,
– ~(t′) ∼cc t, and
– ~(H ′) = H .

Deduction rule d′ is called a commutative mirror of d (with respect to j, k and
∏Σ).

The above format requires that, when f ∈ Σ, for each f -defining rule and for each pair
(j, k) of arguments for which f is supposed to be commutative, as specified by

∏
f ,

there exists a commutative mirror that enables the ‘same transitions up to the commu-
tative congruence ∼cc associated with

∏Σ’ when the jth and kth arguments of f are
swapped. This is the essence of the proof of the following theorem, which states the
correctness of the syntactic comm-GSOS format.

Theorem 1. If a transition system specification is in the comm-GSOS format with re-
spect to a set of partitions

∏Σ , then each operator f ∈ Σ is
∏
f -commutative with

respect to any notion of behavioural equivalence that includes bisimilarity.

Example 1. Consider the ternary operator f we used earlier to motivate the notion of
generalized commutativity. Any transition system specification including the operator
f is in the comm-GSOS format with respect to any set of partitions

∏Σ such that∏
f = {{1, 2}, {3}}. Indeed, the a-emitting rules in the first row are one the commu-

tative mirror of the other with respect to
∏Σ , and so are those in the second row. The

constraints in Definition 8 are vacuously satisfied when we take K = {3}. Therefore,
by Theorem 1, we recover the fact that f is commutative in its first two arguments.

Example 2 (Parallel Composition). A frequently occurring commutative operator is
parallel composition. It appears in, amongst others, ACP [9], CCS [15], and CSP [14].
Here we discuss parallel composition with communication in the style of ACP [9], of

6

which the others are special cases. The rules for this operator are listed below. In those
rules, a, b, c range over L and γ : L× L ↪→ L is a partial communication function.

(p1)
x

a−→x′

x || y a−→x′ || y
(p2)

y
a−→ y′

x || y a−→x || y′
(p3)

x
a−→x′ y

b−→ y′

x || y c−→x′ || y′
γ(a, b) = c

If the partial communication function γ is commutative, then any GSOS system includ-
ing the operator || given by the above rules is in the comm-GSOS format with respect
to any set of partitions

∏Σ such that
∏
‖ = {{1, 2}}. Hence it follows from Theorem 1

that || is {{1, 2}}-commutative.

4 Mechanized Axiomatization

In this section, we present a technique for the automatic generation of ground-complete
axiomatizations of bisimilarity over TSSs in the comm-GSOS format, which is derived
from the one introduced in [1]. Our approach improves upon the one in [1] by making
use of the rule format for generalized commutativity we introduced in the previous sec-
tion. Our goal is to generate a disjoint extension of the original TSS and a finite axiom
system that is sound and ground complete for bisimilarity over it. This finite axiom sys-
tem may then also be used for equationally establishing bisimilarity over closed terms
from the original TSS. We start by axiomatizing a rather restrictive subset of ‘good’
operators in Section 4.1. Then we turn ‘bad’ operators into good ones by means of aux-
iliary operators. In both of these steps, we exploit commutativity information, where
possible, in order to reduce the number of generated axioms, as well as the number of
generated auxiliary operators.

4.1 Axiomatizing Good Operators

The approach offered in [1] relies on the fact that the signature includes the operators
from BCCSP. (Recall that, in keeping with [10], we assume that these operators are
present in any TSS in the GSOS format.) The aim of the axiomatization procedure is
then to generate an axiom system that can rewrite any closed term p into a term p′ in
head normal form such that p ↔ p′. (We call an axiom system with this property head
normalizing.) Recall that a term t is in head normal form if it has the form a1.t1 + · · ·+
an.tn for some n ≥ 0, some set of actions {ai | i ∈ [n]} and set of terms {ti | i ∈ [n]}.
If n = 0 then a1.t1 + · · ·+ an.tn stands for 0.

For ‘semantically well founded’ terms (see [1, Definition 5.1 on page 28]), rewrit-
ing into head normal form can be used to prove that each closed term is equal to a
closed term over the signature for BCCSP. This leads to a ground-complete axiomati-
zation of bisimilarity, since BCCSP is finitely axiomatized modulo bisimilarity by the
axiom system EBCCSP from [13] consisting of the axioms stating that ‘+’ is associative,
commutative, idempotent and has 0 as unit element.

To start with, we focus on the case of closed terms built using only good operators,
which we now proceed to define.

Definition 9 (Smooth and distinctive operator). Consider an n-ary operator f .

7

1. A smooth GSOS deduction rule is of the form

{xi
ai−→ yi | i ∈ I} ∪ {xi

bij9 | i ∈ J, 1 ≤ j ≤ ni}

f(x1, . . . , xn)
c−→C[−→x ,−→y]

where I and J are disjoint subsets of [n] such that I ∪ J = [n], and C[−→x ,−→y] can
only include the variables xi (i ∈ [n] \ I) and yi (i ∈ I).
An operator f of a TSS in the GSOS format is smooth if all its rules are smooth.

2. An n-ary operator f of a TSS in the GSOS format is distinctive if it is smooth,
each f -defining rule tests the same set of arguments I positively, and for every two
distinct f -defining rules there is some argument tested positively by both rules, but
with a different action.

We refer the interested reader to [1, Section 4.1] for an in-depth discussion of the con-
straints for smooth and distinctive operators.

Remark 2. The ternary operator f from Example 1 and the parallel composition opera-
tor from Example 2 are smooth but not distinctive. On the other hand, the classic com-

munication merge operator [6, 8], given by the rules
x

a−→x′ y
b−→ y′

x | y c−→x′ || y′
(γ(a, b) = c),

is smooth and distinctive. Moreover, assuming that γ is commutative, any TSS whose
signature Σ includes || and | with the previously given rules is in the comm-GSOS
format with respect to any set of partitions

∏Σ such that
∏
| =

∏
|| = {{1, 2}}.

Definition 10 (Discarding and Good Operators). A smooth GSOS rule of the form
given in Definition 9 is discarding if none of the variables xi with i ∈ J and ni > 0
occurs in C[−→x ,−→y]. A smooth operator is discarding if so are all the rules for it. A
smooth operator is good [11] if it is both distinctive and discarding.

In the remainder of this subsection, we assume that the GSOS system T has signatureΣ
and is in the comm-GSOS format with respect to a set of partitions

∏Σ . Let f ∈ Σ be
a good operator that is not in the signature for BCCSP, and let n be its arity. Our goal is
to generate an axiom system that can be used to turn any term of the form f(t1, . . . , tn),
where the ti’s are in head normal form, into a head normal form. In the generation of
the axiom system, we will exploit the commutativity information that is provided by the
partition

∏
f and therefore we assume that n ≥ 2. (If f is either a constant or a unary

operator, then it will be axiomatized exactly as in [1], since commutativity information
is immaterial.) Let If ⊆ [n] be the set of arguments that are tested positively by f
and let Jf be the complement of If . Assume that

∏
f = {K1, . . . ,K`}. Since T is

in the comm-GSOS format with respect to
∏Σ , and f is smooth and distinctive, it is

not hard to see that Kh ⊆ If or Kh ⊆ Jf , for each h ∈ [`]. Indeed exactly one of
the above inclusions holds. Let

∏+
f = {K | K ∈

∏
f and K ⊆ If} and

∏−
f =

{K | K ∈
∏
f and K ⊆ Jf}. We use K+

f (respectively, K−f) to denote a subset of If
(respectively, Jf) that results by choosing exactly one representative element for each
K ∈

∏+
f (respectively, K ∈

∏−
f).

8

Example 3. Consider the communication merge operator | from Remark 2. We already
remarked that, when the communication function γ is commutative, the rules for | are
in the comm-GSOS format with respect to any set of partitions

∏Σ such that
∏
| =∏

|| = {{1, 2}}. For the operator |, we may take K+
| = {1}. Since the rules for | have

no negative premises, K−| is empty.

Definition 11. Let f be a good n-ary operator, and let K+
f and K−f be defined as

above. We associate with f the finite axiom system Ef consisting of the following equa-
tions.

1. Distributivity laws: For each i ∈ K+
f , we have the equation:

f(x1, . . . , xi + x′i, . . . , xn) = f(x1, . . . , xi, . . . , xn) + f(x1, . . . , x
′
i, . . . , xn).

2. Peeling laws: For each rule for f of the form given in Definition 9, each k ∈ K−f
with nk > 0 and each a 6∈ {bkj | 1 ≤ j ≤ nk}, we have the equation:

f(P1, . . . , Pn) = f(Q1, . . . , Qn),

where Pi ≡

 ai.yi i ∈ I
a.x′k + x′′k i = k

xi otherwise
and Qi ≡

ai.yi i ∈ I
x′′k i = k
xi otherwise.

3. Action laws: For each rule for f of the form given in Definition 9, we have the equa-

tion: f(P1, . . . , Pn) = c.C[
−→
P ,−→y], where Pi ≡

ai.yi i ∈ I
0 i ∈ J and ni > 0
xi otherwise.

4. Inaction laws: For each i ∈ K+
f , we have the equation

f(x1, . . . , xi−1,0, xi+1, . . . , xn) = 0.

Suppose that, for each i ∈ [n], term Pi is of the form a.zi when i ∈ If , and of the
form a.zi + z′i or zi when i ∈ Jf . Suppose further that, for each rule for f of the
form given in Definition 9, there exists some i ∈ [n] such that one of the following
holds:

– i ∈ If and (Pi ≡ a.zi, for some a 6= ai),
– i ∈ Jf and (Pi ≡ bij .zi + z′i, for some 1 ≤ j ≤ ni).

Then we have the equation f(P1, . . . , Pn) = 0.
5. Commutativity laws: For each equivalence class K ∈

∏
f and each two i, j ∈ K

such that i < j, we have the equation:

f(x1, . . . , xi, . . . , xj , . . . , xn) = f(x1, . . . , xj , . . . , xi, . . . , xn).

Theorem 2. Consider a TSS T in GSOS format. Let Σg be a collection of good oper-
ators of T . Let EΣg be the finite axiom system that consists of the axioms in EBCCSP
and the axioms in Ef , for each f ∈ Σg . Then, for any GSOS system T ′ such that
T v T ′, the axiom system EΣg

is sound and is ground complete for terms built using
the operations in the signature Σg and those in the signature of BCCSP.

9

Example 4. For the communication merge operator |, taking K+
| = {1} as in Exam-

ple 3, Definition 11 yields the following axiom system E|:

distributivity: (x+ y) | z = (x | z) + (y | z),
action: a.x | b.y = c.(x || y) if γ(a, b) = c,
inaction: 0 | y = 0,
inaction: a.x | b.y = 0 if γ(a, b) is undefined,
commutativity: x | y = y | x.

These are exactly the equations describing the interplay between the operator | and the
BCCSP operators given in Table 7.1 on page 204 of [6].

4.2 Turning Bad into Good

In order to handle arbitrary GSOS operators, one needs two additional procedures: one
for transforming non-smooth operators into smooth and discarding (but not necessarily
distinctive) operators, and one for expressing smooth, discarding and non-distinctive
operators in terms of good operators. We adopt the same approach for the first procedure
as the one presented in Lemma 4.13 in [1]. On the other hand, for the second procedure,
we improve on the algorithm derived from Lemma 4.10 in [1].

The step from smooth, discarding and non-distinctive operators to good ones in-
volves the synthesis of several new operators. We now show how to improve this trans-
formation, as presented in the aforementioned reference, by reducing the number of
the generated auxiliary operators, making use of the ideas underlying the generalized
commutativity format presented in Section 3.

Making Smooth and Discarding Operators Distinctive. Consider a TSS T with signa-
ture Σ in the comm-GSOS format with respect to a set of partitions

∏Σ . Let f ∈ Σ be
a smooth and discarding, but not distinctive operator, and let n be its arity. We will now
show how to express f in terms of good operators. We start with partitioning the set of
f -defining rules into sets R1, . . . , Rm, m > 1, such that f is distinctive when its rules
are restricted to those in Ri for each i ∈ [m]. Note that all the rules in each Ri test the
same arguments positively. If

∏
f is the discrete partition over [n] then one proceeds

by axiomatizing f as in the version of the original algorithm based on the so-called
peeling laws presented in [1]. Indeed, in that case, f has no pair of commutative argu-
ments. Suppose therefore that

∏
f is not the discrete partition, and take some K ∈

∏
f

of maximum cardinality. (Any non-singleton K would do in what follows. However,
picking a set K of maximum cardinality will reduce the number of auxiliary operators
that is generated by the procedure outlined below.) Our aim now is to define when two
sets of rules for f are ‘essentially the same up to the commutative arguments in K’ and
to use this information in order to synthesize enough good operators for expressing f
up to bisimilarity.

Definition 12.

– Let d and d′ be two f -defining and l-emitting rules. We say that d′ is a commutative
mirror of d with respect to K and

∏Σ if the constraints in Definition 8 are met for

10

some j, k ∈ K with j < k. We use K
^ to denote the reflexive and transitive closure

of the relation ‘is a commutative mirror with respect to K’.
– Let R and R′ be two sets of f -defining rules. We write R K

^ R′ if, and only if, (1)
for each d ∈ R there is some d′ ∈ R′ such that d K

^ d′, and (2) for each d′ ∈ R′

there is some d ∈ R such that d K
^ d′.

Example 5. Consider the ternary operator f defined by the rules on page 4. That oper-
ator is smooth and discarding, but not distinctive. Collecting all the rules that test the
same arguments positively in the same set, we obtain the following four sets of rules:

– R1 contains all the rules of the form
x

a−→x′

f(x, y, z) a−→ f(x′, y, z)
(a ∈ L).

– R2 contains all the rules of the form
y

a−→ y′

f(x, y, z) a−→ f(x, y′, z)
(a ∈ L).

– R3 contains all the rules of the form
x

a−→x′, z
a−→ z′

f(x, y, z) a−→ f(x′, y, z′)
(a ∈ L).

– R4 contains all the rules of the form
y

a−→ y′, z
a−→ z′

f(x, y, z) a−→ f(x, y′, z′)
(a ∈ L).

We have already seen in Example 1 that any GSOS system including the operator f is
in the comm-GSOS format with respect to any set of partitions

∏Σ such that
∏
f =

{{1, 2}, {3}}. TakeK = {1, 2}. It is not hard to see thatR1
K
^ R2 andR3

K
^ R4 hold.

Indeed, as we observed in Example 1, each a-emitting rule in R1 (respectively, R3) is
the commutative mirror of the a-emitting rule in R2 (respectively, R4) with respect to
K, and vice versa.

Lemma 1. K
^ is an equivalence relation over f -defining rules and over sets of f -

defining rules.

Recall that {R1, . . . , Rm}, m > 1, is a partition of the set of f -defining rules such that
f is distinctive when its rules are restricted to those in Ri for each i ∈ [m]. Consider
{R1, . . . , Rm}/

K
^, the quotient of the set {R1, . . . , Rm} with respect to the equiva-

lence relation K
^. Let ρ1, . . . , ρ` be representatives of its equivalence classes. For ex-

ample, in the case of the operator considered in Example 5 above, one could pick R1

and R4, say, as representatives of the two equivalence classes with respect to
{1,2}
^ . We

proceed by adding to the signatureΣ fresh n-ary operator symbols f1, . . . , f`. The rules
for the operator fi are obtained by simply turning those in ρi into fi-defining ones. Let
T ′ be the resulting disjoint extension of T . Following [1], we now need to generate an
axiom that expresses f in terms of f1, . . . , f`.

Definition 13. Let n > 0 and letK ⊆ [n]. A bijection π : [n]→ [n] is aK-permutation
if it is the identity function over [n] \K.

The equation relating f to the fi’s, i ∈ [`], can now be stated as follows:

f(x1, . . . , xn) =
∑̀
i=1

∑
{fi(xπ(1), . . . , xπ(n)) | π is a K-permutation}. (1)

11

For our running example, namely the ternary operator f defined by the rules on page 4
and considered in Examples 1 and 5, with the choice of representatives mentioned

above, there are two auxiliary operators f1 and f2 with rules
x

a−→x′

f1(x, y, z)
a−→ f(x′, y, z)

y
a−→ y′, z

a−→ z′

f2(x, y, z)
a−→ f(x, y′, z′)

, where a ranges over L. Apart from the identity function

over [3], the only {1, 2}-permutation is the one that swaps 1 and 2. Therefore, instanti-
ating equation (1), we obtain that

f(x1, x2, x3) = f1(x1, x2, x3) + f1(x2, x1, x3) + f2(x1, x2, x3) + f2(x2, x1, x3).

Using Definition 6, the family of partitions
∏Σ can be extended to any signature that

includes the signature Σ ∪{fi | i ∈ [`]}. Note that any disjoint extension of T ′ is in the
comm-GSOS format with respect to this extension of

∏Σ .

Proposition 2. Equation (1) is sound in any disjoint extension of T ′.

Equation (1) can be simplified in case any of the auxiliary operators f1, . . . , f` is com-
mutative in the set of arguments K. Indeed, let N ⊆ [`], and assume that T ′ is in
the comm-GSOS format with respect to the family of partitions that associates with
each operator g the partition

∏Σ
g when g ∈ Σ, the partition {K} ∪ 1[n]\K when

g ∈ {fi | i ∈ N}, and the partition 1[n] otherwise. Then we have the following re-
sult.

Proposition 3. The following equation is sound in any disjoint extension of T ′.

f(x1, . . . , xn) =
∑

i∈[`]\N

∑
{fi(xπ(1), . . . , xπ(n)) | π is a K-permutation} +

∑
i∈N

fi(x1, . . . , xn)
(2)

In the following section, we will see that the above simplification leads to an axiom-
atization of the classic parallel composition operator that is equal to an existing hand-
crafted one. Of course, if either N or [`] \N are empty, the corresponding 0 summand
can be omitted in equation (2).

Turning Non-Smooth Operators into Smooth Ones. The methods we have presented so
far yield an algorithm that, given a TSS T with signature Σ in the comm-GSOS format
with respect to a set of partitions

∏Σ , can be used to generate a disjoint extension T ′
of T over some signature Σ′ that includes Σ and a finite axiom system E such that E
is sound modulo bisimilarity over any disjoint extension of T ′ and is head normalizing
for all closed Σ′-terms. Ground-completeness of E with respect to bisimilarity over T ′
(and therefore over T) follows using standard reasoning, by possibly using the well-
known Approximation Induction Principle [8] if T ′ is not semantically well founded.
See [1] for details.

The algorithm has the following steps:

12

1. Start with the axiom system EBCCSP and consider next the operators that are not in
the signature for BCCSP.

2. For each non-smooth operator f ∈ Σ, generate a fresh smooth and discarding
operator f ′, and add to the axiom system the equation expressing f in terms of f ′

as in Lemma 4.13 in [1].
3. For each smooth and discarding, but not distinctive, operator f in the resulting

signature, generate a family of fresh good operators f1, . . . f`, as indicated in this
section, and add to the axiom system the instance of equation (1) or of equation (2),
as appropriate, expressing f in terms of f1, . . . f`.

4. For each good operator in the resulting signature, add to the axiom system the
equations mentioned in the statement of Theorem 2.

5 Axiomatizing Parallel Composition

Let us concretely analyze the axiomatization derived using the procedure described
above for the classic parallel composition operator || from Example 2. We assume
henceforth that the partial synchronization function γ is commutative, so that || is
{{1, 2}}-commutative. As we observed in Remark 2, the parallel composition oper-
ator is smooth but not distinctive. When we partition the set of rules for || into subsets
of rules that test the same arguments positively, we obtain three sets R1, R2 and R3,
where each Ri consists of all the instances of rule (pi) from Example 2. It is easy to see

that R1
{1,2}
^ R2. Therefore, following the procedure described in Section 4.2, we can

generate two auxiliary binary operators, which are the classic left merge and communi-
cation operators, denoted by‖ and |, respectively. The rules for | are those in Remark 2

and those for the left merge operator are
x

a−→x′

x‖ y a−→x′ || y
(a ∈ L). Since we know that

| is {{1, 2}}-commutative, the relationship between || and the two auxiliary operators
can be expressed using equation (2), whose relevant instance becomes

x || y = (x‖ y) + (y‖ x) + (x | y).

This is exactly equation M in Table 7.1 on page 204 of [6]. The axioms for | produced
by our methods are those given in Example 4. On the other hand, the left merge operator
is axiomatized as in [1] since commutativity information is immaterial for it.

In Figure 1 we compare the axiomatization for the parallel composition operator ||
derived using the algorithm from [1] and the ‘optimized axiomatization’ one obtains
using the algorithm mentioned above. (We omit the four equations in the axiom system
EBCCSP recalled in Section 4.) The axioms generated by the algorithm from [1] do
resemble the original axioms of [9] to a large extent. The auxiliary operator U is called
right merge in the literature.

6 Conclusions and Future Work

In this paper, we have taken a first step towards marrying two lines of development
within the field of the meta-theory of SOS, viz. the study of algorithms for the auto-

13

Standard
x || y = (x‖ y) + (x U y) + (x | y)

(a.x)‖ y = a.(x || y)
x U (a.y) = a.(x || y)

(a.x) | (b.y) = c.(x || y) if γ(a, b) = c
(x+ y)‖ z = (x‖ z) + (y‖ z)
x U (y + z) = (x U y) + (x U z)
(x+ y) | z = (x | z) + (y | z)
x | (y + z) = (x | y) + (x | z)
0‖ x = 0 x U 0 = 0
0 | x = 0 x | 0 = 0

(a.x) | (b.y) = 0 if γ(a, b) is undefined

Optimized

x || y = (x‖ y) + (y‖ x) + (x | y)
(a.x)‖ y = a.(x || y)

(a.x) | (b.y) = c.(x || y) if γ(a, b) = c
(x+ y)‖ z = (x‖ z) + (y‖ z)
(x+ y) | z = (x | z) + (y | z)

0‖ x = 0
0 | x = 0

(a.x) | (b.y) = 0 if γ(a, b) is undefined
x | y = y | x

Fig. 1. Axiomatizing ||

matic generation of ground-complete axiomatizations for bisimilarity from SOS speci-
fications (see, for instance, [1, 7, 20]) and the development of rule formats guaranteeing
the validity of algebraic laws, such as those surveyed in [5]. More specifically, we have
presented a rule format for commutativity that refines the one offered in [16] in that
it allows one to consider various sets of commutative arguments, and we have used
the information provided by that rule format to refine the algorithm for the automatic
generation of ground-complete axiomatizations for bisimilarity from [1]. The resulting
procedure yields axiom systems that use fewer auxiliary operators to axiomatize com-
mutative operators than the one from [1]. Moreover, in some important cases, the me-
chanically produced axiomatizations of some operators are identical to the hand-crafted
ones from the literature.

The ideas we have presented in this paper have never been explored before, and
they enrich the toolbox one can use when reasoning about bisimilarity by means of ax-
iomatizations. Moreover, the combination of two closely related strands of research on
the meta-theory of SOS we have begun in this paper is of theoretical interest and may
lead to further improvements on algorithms for the automatic generation of axiomatic
characterizations of bisimilarity. As future work, we will implement the axiomatization
procedure presented in this paper in the PREG Axiomatizer tool [2]. We also intend
to explore the use of other rule formats for algebraic properties in improving mecha-
nized axiomatizations for bisimilarity. The ultimate goals of this research are to make
automatically generated axiomatizations comparable to the known ones from the liter-
ature and to make the first steps towards the automatic generation of axiomatizations
that are complete for open terms. The latter goal is a very ambitious one since obtain-
ing complete axiomatizations of bisimilarity is a very hard research problem even for
sufficiently rich fragments of specific process calculi; see, for instance, [3].

References

1. L. Aceto, B. Bloom, and F. W. Vaandrager. Turning SOS rules into equations. Information
and Computation, 111:1–52, 1994.

14

2. L. Aceto, G. Caltais, E.-I. Goriac, and A. Ingólfsdóttir. PREG Axiomatizer - a ground bisim-
ilarity checker for GSOS with predicates. In A. Corradini, B. Klin, and C. Cı̂rstea, eds.:
Algebra and Coalgebra in Computer Science - 4th International Conference, CALCO 2011,
Winchester, UK, August 30-September 2, 2011. Proceedings, volume 6859 of Lecture Notes
in Computer Science, pages 378–385. Springer, 2011.

3. L. Aceto, W. Fokkink, A. Ingólfsdóttir, and B. Luttik. Finite equational bases in process
algebra: Results and open questions. In A. Middeldorp, V. van Oostrom, F. van Raamsdonk,
and R. C. de Vrijer, eds.: Processes, Terms and Cycles: Steps on the Road to Infinity, Essays
Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday, volume 3838 of Lecture
Notes in Computer Science, pages 338–367. Springer, 2005.

4. L. Aceto, W. J. W. Fokkink, and C. Verhoef. Structural operational semantics. In J. A.
Bergstra, A. Ponse, and S. A. Smolka, eds.: Handbook of Process Algebra, Chapter 3, pages
197–292. Elsevier Science, Dordrecht, The Netherlands, 2001.

5. L. Aceto, A. Ingolfsdottir, M. Mousavi, and M. A. Reniers. Algebraic properties for free!
Bulletin of the European Association for Theoretical Computer Science, 99:81–104, 2009.

6. J. Baeten, T. Basten, and M. Reniers. Process Algebra: Equational Theories of Communicat-
ing Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2009.

7. J. J. Baeten and E. P. de Vink. Axiomatizing GSOS with termination. Journal of Logic and
Algebraic Programming, 60-61:323–351, 2004.

8. J. A. Bergstra and J. W. Klop. Fixedpoint semantics in process algebra. Technical Report
IW 206/82, Center for Mathematics, Amsterdam, The Netherlands, 1982.

9. J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Information
and Control, 60(1-3):109–137, 1984.

10. B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. Journal of the ACM,
42(1):232–268, Jan. 1995.

11. D. Bosscher. Term rewriting properties of SOS axiomatisations. In M. Hagiya and J. C.
Mitchell, eds.: Theoretical Aspects of Computer Software, International Conference TACS
’94, Sendai, Japan, April 19–22, 1994, Proceedings, volume 789 of Lecture Notes in Com-
puter Science, pages 425–439. Springer, 1994.

12. R. J. van Glabbeek. The linear time - branching time spectrum I. In Bergstra, J.A., Ponse,
A., Smolka, S.A., eds.: Handbook of Process Algebra, Chapter 1, pages 3–100. Elsevier
Science, Dordrecht, The Netherlands, 2001.

13. M. Hennessy and A. R. Milner. Algebraic laws for non-determinism and concurrency. Jour-
nal of the ACM, 32(1):137–161, 1985.

14. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
15. A. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
16. M. Mousavi, M. Reniers, and J. F. Groote. A syntactic commutativity format for SOS.

Information Processing Letters, 93:217–223, Mar. 2005.
17. M. Mousavi, M. A. Reniers, and J. F. Groote. SOS formats and meta-theory: 20 years after.

Theoretical Computer Science, 373:238–272, 2007.
18. D. M. Park. Concurrency and automata on infinite sequences. In Duessen, P., ed.: Pro-

ceedings of the 5th GI Conference. Volume 104 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany (2001) 167–183

19. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic and Alge-
braic Progamming, 60:17–139, 2004.

20. I. Ulidowski. Finite axiom systems for testing preorder and De Simone process languages.
Theoretical Computer Science, 239(1):97–139, 2000.

15

