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Abstract

With the emergence of autonomous vehicles comes the requirement of adequate
and rigorous testing, particularly in critical scenarios that are both challenging
and potentially hazardous. Generating synthetic critical scenarios in simulation
for testing autonomous vehicles has therefore received considerable interest; yet,
it is unclear how such scenarios relate to the actual crash or near-crash scenarios
involving autonomous vehicles. Consequently, their realism is unknown. In this
paper, we define realism as the degree of similarity of synthetic critical scenarios
to real-world critical scenarios. We propose a methodology to measure realism
using two metrics, namely attribute distribution and Euclidean distance. The
methodology extracts various attributes from synthetic and realistic critical sce-
nario datasets and performs a set of statistical tests to compare their distributions
and distances. As a proof of concept for our methodology, we compare synthetic
collision scenarios from DeepScenario against realistic autonomous vehicle colli-
sions collected by the Department of Motor Vehicles in California, to analyse how
well DeepScenario synthetic collision scenarios are aligned with real autonomous
vehicle collisions recorded scenarios in California. We focus on five key attributes
that are extractable from both datasets, and analyse the attribution distribution
and distance between scenarios in the two datasets. Further, we derive recommen-
dations to improve the realism of synthetic scenarios based on our analysis. Our
study of realism provides a framework that can be replicated and extended for
other dataset both concerning real-world and synthetically-generated scenarios.
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1 Introduction

Autonomous vehicles (AVs) are expected to improve road safety, traffic efficiency, and
mobility [1]. Before they can be deployed on public roads on a large scale, they need
to be tested adequately and rigorously [2–4]. As the SOTIF (Safety of the Intended
Functionality [5]) standard articulates, we need to test all relevant scenarios for AVs,
especially in those challenging conditions for the sensors and systems [6], which are
often known as critical scenarios [7–9]. In addition, the latest EU regulation for type
approval of AVs also requires manufacturers to test not only critical scenarios observed
from natural driving data, but also reasonably foreseeable ones [8, 10].

Although collecting critical scenarios from real-world traffic is valuable, simulation
is commonly employed for its accessibility and efficiency. Therefore, synthetic critical
scenario identification has received considerable attention, serving as a complement
to real-world data collection [7, 8]. The identification process typically involves sim-
ulating various driving scenarios and optimising the generation of critical scenarios
with respect to different performance metrics or criteria [2, 7, 8]. The resulting critical
scenarios are those that expose risks of harm to the AV within its operational design
domain (ODD), such as collisions with other road users or infrastructure. These risks
may stem from errors in the AV or challenging situations beyond the AV’s capability
to manage. Despite the extensive body of studies reported, the overwhelming major-
ity of them primarily focus on the approaches and tool chains for identifying critical
scenarios, leaving the evaluation of resulting scenarios unexplored. Consequently, the
realism of such scenarios and their relevance to testing AVs/ADS is unclear.

To remedy the gaps, our goals are to 1) devise a quantified methodology for measur-
ing the realism of synthetic critical scenarios, 2) apply this methodology to an existing
dateset, as a proof of concept, in order to show its applicability, and 3) derive guide-
lines to improve the realism of the scenarios considered in our proof of concept for
testing AVs/ADS. To enable evaluation from both macroscopic and microscopic per-
spectives, we define realism as the degree of similarity of a set of synthetic critical
scenarios to realistic critical scenarios; to quantify realism, we use two metrics: 1)
attribute distribution – distribution of scenario attributes in the two datasets and 2)
Euclidean distance – the straight-line distance between scenarios in a vectorised space.
In line with the goals, we formulate two research questions for this study:
RQ1: How can we quantify the realism of a synthetic (simulation-based) dataset
for critical scenarios?
– RQ1.1: How can we quantify realism using a comparison of the distribution of
attributes and Euclidean distance in a vectorised space?

– RQ1.2: What are the attributes that are causal for realistic AV collisions?
– RQ1.3: Are causal parameters identified in RQ1.2 included proportionately in
synthetically generated scenarios?

RQ2: What can be improved to generate more realistic synthetic critical scenarios?
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– RQ2.1: What are the guidelines for closing the reality gaps in synthetic
scenarios?

– RQ2.2: What are the guidelines for field testing with synthetically generated
scenarios?

We select two AV collision scenario sets for our proof of concept, including a realis-
tic set from DMV (Department of Motor Vehicles) California [11], and a synthetic set
from DeepScenario [12, 13]. DMV California provides collision reports from manufac-
turers during test drives in California [11]. DeepScenario generates synthetic collision
scenarios on a San Francisco map using Apollo ADS and SVL simulator [12, 13]. The
two datasets are selected primarily based on the facts that they are 1) the most exten-
sive ones to the best of our knowledge, 2) documented in a standard and structured
specification, 3) publicly available, and 4) both based in the same state. The purpose
is to analyse how well the synthetic collision scenarios generated by DeepScenario
are aligned with real autonomous vehicle collisions recorded in California, and derive
general recommendations to improve the realism of synthetic critical scenarios.

We extract five relevant attributes that are available for both datasets, including
weather, lighting, roadway surface, roadway conditions, and collision type. Then, we
compare the attribute distribution and Euclidean distance between DeepScenario and
DMV California data to reveal their similarities. Lastly, we interview the author of
DeepScenario to assess our evaluation results and analysis. Although the attribute
distribution differs significantly, we observe DeepScenario generates similar collision
scenarios as in DMV California from a distance perspective. To improve the realism
and future evaluation of synthetic scenarios, we recommend 1) incorporating more
realistic attributes and values in synthetic critical scenario identification, 2) validating
and improving the quality of simulators to ensure a faithful representation, and 3)
developing comprehensive guidelines for scenario collection and specification.

Our proof of concept evaluates the applicability of our method and serves the first
step towards measuring the realism of synthetic critical scenarios. Currently, the proof
of concept is subject to several limitations: 1) the selected datasets are still too small
(however, they are steadily growing in size); 2) the attributes extracted are limited ;
and 3) contextual information such as test arrangement are unavailable. Thus, we
come up with guidelines on how to extend the available datasets and improve the data
gathering methods to enable more precise analysis. We would also like to include other
datasets and additional attributes to perform more sophisticated evaluations in future
work. Considering realism is an essential quality for AVs/ADS test scenarios [8], and
very limited studies have reported any relevant definitions, metrics, approaches, and
insights in this topic, our proof of concept provides insights of and recommendations
for the realism of synthetic critical scenarios and a basis for future studies.

In summary, our study makes four major contributions:
1. We propose two metrics to evaluate the realism of synthetic critical scenarios,

namely attribute distribution and Euclidean distance. The metrics provide both
macroscopic and microscopic views of the realism of a synthetic critical scenario
set.
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2. As a proof of concept, we apply our metrics to measure how synthetic colli-
sion scenarios by DeepScenario are aligned with realistic AV collisions in DMV
California, revealing insights from practical perspectives.

3. We observe existing shortcomings and possible future improvements, serving as
guidelines for recording realistic scenarios, and generating and evaluating syn-
thetic critical scenarios. The guidelines are general and not specific to the datasets
in this study.

4. We include human assessment in the loop to provide further insights and guide-
lines for evaluating the realism of synthetic critical scenarios on top of the
empirical evaluation.

The rest of the article is organised as follows: in Section 2, we review the relevant
literature to this study. We formulate the research approach in Section 3, and present
the results and analysis in Section 4. In Section 5, we discuss our findings and the
validity of the study. Lastly, we conclude the article in Section 6.

2 Related Work

In general, there are few pieces of research providing a rigorous and quantified method-
ology for establishing the realism of a critical scenario dataset. In the remainder of
this section, we review the only exceptions we are aware of. Subsequently, we review
the available datasets that could be the subject of such a realism study.

2.1 Scenario Realism Evaluation

To the best of our knowledge, very limited studies have been dedicated to evaluating
the realism of synthetically generated scenarios for testing AVs/ADS, although real-
ism has been considered an essential quality for test scenarios [8]. Consequently, no
standard definition or metrics for evaluating realism are established. Below we present
several studies that are reported on validating the simulation model and test adequacy
metrics for AVs, and contrast to our study.

Stocco et al. [14] compared the performance of AV in simulated and real-world
environments and revealed gaps and transferability of testing in those two different
environments. Riedmaier et al. [15, 16] conducted a literature survey on verification,
validation, and uncertainty quantification methods for simulation models across vari-
ous application domains, including autonomous driving, and have developed a unified
framework to assess the errors and uncertainties of these models. In a similar study,
Reisgys et al. [17] present a method to compute the simulation errors by comparing
the system response quantities in simulation and proving ground tests. The authors
consider a simulation model valid if the simulation error is still within the tolerance
boundary based on the proving ground tests. Neurohr et al. [18] also designed a method
to compare the similarity between natural driving data recorded in the real world and
its simulation counterparts to validate the simulation model. Besides, Sargent [19] dis-
cussed, more broadly, different approaches (paradigms and techniques) to assess model
validity and recommended a procedure for it. While those studies commonly involve
real-world driving data and their simulation counterparts to analyse the errors in the
simulation model, we specifically focus on (system-level) critical driving scenarios and
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evaluate the similarities between synthetic and realistic AV critical scenarios based on
selected features, such as weather, lighting, and roadway conditions.

Braun et al. [20] reviewed and presented several proximity measures for scenario
similarity. For example, comparing the similarity of time series data such as trajectory
of two scenarios, or the sequence of maneuvers involved. Other than that, distance is
used to quantify the similarity of two scenarios based on selected features, which is
an important measure we use in this study, as presented in Section 3.1.2. In general,
a low distance means a high similarity and vice versa. Two identical scenarios should
have a distance of zero [20]. Neelofar et al. [21] presented several adequacy metrics to
analyse the coverage and diversity of test scenarios for AI-powered systems. Among
those metrics, Euclidean distance is used to measure the distance between two scenar-
ios and the diversity of test scenarios for testing AVs. In another study, Yan et al. [22]
designed NeuralNDE, a deep learning-based framework that produces real-world driv-
ing environments in simulation with statistical realism, which means the road events
and driving behaviours follow a real-world distribution. The inconsistency in statisti-
cal difference in, e.g., relative distance and speed between vehicles, or how and when
vehicles yield to the others in roundabouts, between simulation and the real world,
will result in simulation gaps and unreliability for testing. Therefore, real-world distri-
bution of road events and conditions are significant to incorporate, which is another
important metric that we use in this study, as described in Section 3.1.1.

Several studies discussed realism, yet they were mostly articulating the need to
evaluating the realism of test scenarios. To exemplify, Sun et al. in their study for
scenario-based testing of AVs, eliminated scenarios with unavoidable collisions in the
initial state as they consider such scenarios meaningless for testing [23]. Although
unavoidable collisions can still be relevant for testing AVs/ADS, the study does pro-
vide a potential dimension to consider for assessing the realism of scenarios. In order to
explore and identify realistic test scenarios for AVs, Abbas et al. proposed to analyse
the dynamic feasibility of given maneuvers and the composition of different maneu-
vers [24], Tenbrock et al. incorporated the probability of a scenario [25], and Neurohr
et al. articulated the need for validating simulation environments [1].

2.2 Realistic Critical Scenarios

There are a number of public reports on various types of incidents involving
autonomous vehicles, both at the national (federal) level [26, 27] and the state
level [11, 28]. To date, the disengagement and collision reports produced by the Cali-
fornia Department of Motor Vehicles (CA-DMV) are the most comprehensive available
reports that were subject to extensive research. Several studies have used CA-DMV
collision reports [29–31] to analyse the distribution of attributes such as vehicle maneu-
vers and collision types. In contrast, we compare such distribution with a synthetic
collision set to evaluate its realism. The CA-DMV reports have also been compiled into
public datasets after augmentation with public data, such as open street maps [32].
The CA-DMV Collision Reports [11] served as one of the two main sources of data
for our research. We use the raw reports rather than the compiled dataset to care-
fully scrutinise the raw data and prepare it in a suitable format that matches the
information provided by the synthetic scenarios.
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2.3 Synthetic Critical Scenarios

Although real-world critical scenarios are significant sources for realistic testing of
ADS, collecting such scenarios requires deploying AVs or sensors on real-world traffic,
which is risky and expensive [8]. Therefore, simulation environment is commonly used
for its accessibility and efficiency. In addition, regular road traffic is non-critical most
of the time [33], collecting a fair amount of critical scenarios, such as AV collisions,
in real world is time-consuming. Thus, such scenarios are not available on a large
scale yet. In comparison, synthetic critical scenario identification is more efficient by
constructing various weather, road conditions, and interactions between AV and other
road users in simulation. In general, we should find structured methods for these two
techniques to be combined and complemented in an iterative manner [8, 34].

Identifying critical scenarios and automating scenario generation are among the
two most prominent challenges in the domain of testing AVs [2]. Often, road accident
reports have been a source for designing critical scenarios, as evidenced by recent inter-
views with domain experts [2]. Also, there has been sizeable research using search and
optimisation algorithms to explore synthetic critical scenarios in simulation. Below,
we review some relevant studies to give an overview of them.

Several studies have used accident reports to reproduce synthetic scenarios for
testing AVs/ADS [35–38]. Gambi et al. [35, 37] reproduced synthetic scenarios from
police crash reports using natural language processing. In another study, Gambi et
al. [36] used accident sketches to extract road information, collision type, and vehicle
dynamics to reconstruct the scenario for simulation. Zhang et al. [38] developed a
toolkit to extract scenarios from accident videos and store them in a scenario library
for testing AVs. Although using real traffic accident data can improve realism, such
data do not usually involve AVs and need to be extracted with appropriate techniques.

Several studies have used search-based approaches [3] to optimise the generation
of critical scenarios in simulation [39–47]. Abdessalem et al. [45] and Calo et al. [44]
used multi-objective search algorithms, such as NSGA-II, to generate critical scenarios
for testing ADS. In a similar study, Abdessalem et al. [39] developed a novel algo-
rithm, FITEST, extending MOSA, and evaluated it on generating unsafe scenarios for
industrial ADS. Li et al. [42] designed a framework for finding safety violations using
a genetic algorithm. Luo et al. developed an approach for generating critical scenarios
with requirement violations using NSGA-III. The requirement violations cover both
safety and comfort perspectives [43]. While most studies focused on approaches and
tool chains for identifying synthetic critical scenarios, DeepScenario [12, 13] used dif-
ferent optimisation strategies to identify critical scenarios for Apollo ADS in the SVL
simulator. DeepScenario opened the resulting dataset (i.e., 1 050 collision scenarios
and a total of 33 530 scenarios) in structured specifications.

3 Research Approach

Our approach to measuring realism comprises four steps (S1–S4), as illustrated in
Figure 1. S1 selects appropriate metrics to evaluate the realism of critical scenarios.
S2 prepares the datasets for subsequent evaluation. S3 evaluates the datasets from S2
using three analyses based on the metrics from S1, two use attribute distribution and
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M1: Attribute Distribution

M2: Euclidean Distance

D1: DMV California

D2: DeepScenario

E1: Single-M1

E2: Multi-M1

E3: M2

S4: Results AssessmentS1: Metric Selection S2: Data Preparation S3: Data Evaluation

Human Evaluation

Fig. 1: An overview of our research approach with four steps (S1–S4) performed in the
given order. S1 selects two evaluation metrics (M1 and M2) for realism. S2 prepares
two datasets (D1 and D2) for evaluation. S3 evaluates the datasets from S2 using three
analysis (E1, E2, and E3) based on the metrics from S1. Lastly, in S4, we interview
the stakeholders of DeepScenario (D2) to assess our evaluation results from S3.

one uses Euclidean distance. Lastly, in S4, we close the loop by involving the stake-
holders involved in dataset collection (including scenario generation and selection) to
assess our evaluation results and provide feedback. Below we explain each and every
step, using our proof of concept example to illustrate them.

3.1 Evaluation Metric Selection

As we discuss earlier in Section 2, there has been no specific metrics defined to evaluate
the realism of critical scenarios. Thus, we need to select appropriate metrics that can
give us some insights or perspectives to understand the realism of a synthetic critical
scenario set. As a first proposal, we select two evaluation metrics for realism, namely
attribute distribution and Euclidean distance. The metrics are not necessarily the most
comprehensive ones, but they provide different lenses to measure realism.

3.1.1 Attribute Distribution

To evaluate the realism from a macroscopic view, attribute distribution represents the
distribution of an attribute or combination of attributes of a critical scenario set.
Further, it enables causal analysis of critical attributes for collisions by comparing
the prior and posterior distributions, when available and eliminating confounders [48].
When a causal relation is established (e.g., for crashes or near-crash scenarios), then
the comparison of distribution of causal attributes will precisely measure how effective
synthetic scenarios cover what is causal for a critical situation. Any discrepancies give
a potential indication of lack of sufficient coverage in such cases. Although statistical
analysis on attribute distribution often requires a fair and sufficiently large dataset,
we apply this to our two proof of concept datasets and explore what we can learn from
such analysis, and what needs to be improved if we fail to perform such analysis.

3.1.2 Euclidean Distance

To evaluate the realism from a microscopic view, Euclidean distance [49] refers to the
distance between two critical scenarios measured in a vectorised space. In general,
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the larger the distance between two scenarios is, the bigger differences they possess in
their attributes [20]. The distance measures how close, or similar, a synthetic critical
scenario is to the real-world critical scenarios, further indicating the realism of it.
Further, the distance needs to be associated with a specific evaluation criteria, be it a
reasonably set threshold for the distance from a synthetic critical scenario to its closest
real-world critical scenario, or comparing the same distance to the mean or maximum
distance between all real-world critical scenarios, depending on the actual analysis.

Different from the attribute distribution, which measures the distribution of an
attribute or combination of attributes in a scenario set, Euclidean distance measures
the distance between two scenarios. In other words, attribute distribution reveals the
similarity between two scenario sets in terms of scenario distribution for a specific
attribute, e.g., weather, while Euclidean distance indicates the similarity of two con-
crete scenarios based on their distance in a vectorizied space. Given that, two similar or
identical scenarios (with zero or low Euclidean distance) may still have very different
distributions in two datasets, leading to discrepancies in attribute distribution.

3.2 Data Preparation

This step involves processing the datasets to identify the scenarios of interest, e.g.,
by defining what level of automation is needed and what kind of incidents need to be
represented. The level of automation is selected by the manufacturers when reporting
a collision, which could be either autonomous driving or conventional driving (non-
autonomous driving). We filter out scenarios in conventional driving mode where AV
was deactivated from the autonomous driving mode. In other words, the vehicle was
manually driven by a human driver and the collision was not related to the ADS.
Subsequently, we map the scenarios into the attributes of interest, i.e., by defining the
attributes and coding the dataset or using learning techniques to decide on the features
and the corresponding labels of the scenarios. We select five attributes in this study,
which are all categorical, describing environmental characteristics of the scenarios. We
then map the scenarios into a vector space to calculate the Euclidean distances among
them. Below we illustrate this step and its ingredients on our datasets.

For our proof of concept, we use the AV collision set from DMV California, and a
synthetic AV collision set from DeepScenario. Ideally, for a fair comparison, we would
like the compared datasets to be collected under similar conditions, i.e., using the same
ADS, and considering the same weather and road conditions. Due to the unavailability
of two perfectly matching datasets, we selected two public datasets collected in the
same state for our proof of concept. For each set, we filter the data, extract relevant
attributes, and vectorise them to prepare for the subsequent evaluation.

3.2.1 DMV California

AV manufacturers in California are required to submit a collision report to DMV
California within 10 days of an incident [11]. Until the start of the current study (i.e.,
June 2, 2023), there have been 603 AV collision reports submitted to DMV California.
We download this dataset and Figure 2 provides a visualised representation of the
preparation on this dataset.
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C1: Limited readability (67)

C2: Non-AD mode (254)

Data VectorizationDMV California (603) Data Filtering (282) Attribute Extraction

PyPDF2 One-hot Encoding

A1: Weather

A2: Lighting

A3: Roadway surface

A4: Roadway condition

A5: Collison type

Fig. 2: An overview of preparation of DMV California data. Initially, we access 603
collision reports from DMV California. We filter the data with two criteria (67 for C1
and 254 for C2) and obtain 282 collision reports. Non-AD mode in C2 refers to the
non-autonomous driving mode in a collision. After that, five relevant attributes (A1–
A5) are extracted from the remaining data using the PyPDF2 Python library, and are
vectorised using the One-hot encoding approach.

1. Data Filtering. We exclude 67 collision reports before April 2018 due to their
limited readability and information. Although AV collision reports existed since
2014, they are scanned photocopies where quality is low, and readability of the
text in the reports is limited. For reports after 2016 and before April 2018, the
scanning quality is improved, but the collision still heavily relies on a qualitative
description, where quality of the description and information contained is entirely
dependent on the manufacturers.
Further, we exclude 254 collision reports after April 2018 due to the use of con-

ventional (non-autonomous driving) mode at the time of the collision. Since we
specifically focus on AV collisions in this study, we exclude reports with the con-
ventional mode selected where AV was deactivated from the autonomous driving
mode. As a result, we retain 282 collision reports for subsequent evaluation.

2. Attribute Extraction. We use PyPDF2 library [50] to extract relevant attributes
for collision reports since 2019 as they are standard PDF files. For reports before
2019, we manually extract the attributes as they are scanned photocopies and
auto-extraction is significantly more complicated. As provided in the supple-
mentary material [51], a report contains three main sections, i.e., manufacturer
information, accident information, and accident details. Specifically, accident
details contain a qualitative summary of the collision and a structured table.
We focus on the table and extract five attributes that are available and can be
extracted from both datasets, i.e., weather, lighting, roadway surface, roadway
conditions, and collision type.
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After that, we manually compensate 30 collision reports with a missing field.
Among them, 13 collision reports have no value for the roadway surface attribute.
We carefully inspect each collision report, and use Dry for clear and Wet for
raining weather. There are another 17 collision reports with empty roadway con-
ditions, we use No unusual conditions for them after inspecting the accident
details description in the reports, where no specific roadway condition or related
information is identified. Instead of eliminating those collisions for missing one
attribute, we want to keep more data in our analysis to get a better view of the
collisions and subsequent evaluation and analysis of realism with DeepScenario.
Additionally, we manually update six collision reports with multi-value fields

and 46 with two collision types. Two reports have both Cloudy and Raining
for weather and are revised to Raining. Four reports have two roadway condi-
tions selected. An example is cruise 032123.pdf with Obstruction on roadway
and Other. In that case, Other is removed as it does not provide useful infor-
mation. 46 reports have two collision types, one for each vehicle involved. We
carefully inspect the accident details description and select the type that fits most
appropriately. Among them, 32 reports are clearly Rear end where one vehicle’s
front hit the other vehicle’s rear end, but have Head on for one and Rear end
for the other vehicle. Similarly, nine reports have Broadside where one vehicle’s
front hit the other’s side, but was selected as Head on and Broadside. We use
the same principle to revise the remaining five reports where the manufacturer
selected a different collision type for each vehicle involved. Although having mul-
tiple values for one field might be justified in certain situations, this is rarely
used (18.44%) and it adds substantial complexity to the analysis. For example,
it is not straightforward to determine the similarity between multi-valued and
single-valued fields.

3. Data Vectorisation. Finally, we use the one-hot encoding approach [52] to vec-
torise the selected data for subsequent comparison and analysis. Specifically, we
create a binary vector with the length of the number of options for each attribute
in the collision reports. Then, we mapped 1 into the corresponding bit of the
vector for each selected option in the report, and 0 for the remaining bits. As a
result, each data (scenario) contains five binary vectors for five attributes, and in
total 32 bits in length.

3.2.2 DeepScenario

DeepScenario is an open driving scenario dataset for testing ADS and contains 33 530
synthetic driving scenarios [12, 13]. DeepScenario used the Apollo ADS to navigate
the autonomous vehicle in the SVL simulator [12, 53]. Further, it used three strategies
(i.e., random, greedy search, and reinforcement learning) to optimise critical scenarios
with respect to different reward functions (i.e., time to collision, distance to obstacles,
and jerk) on various roads, weather, and behaviours on the map of San Francisco. In
other words, DeepScenario explores different roads, weather, and vehicle behaviours
in simulation, and searches for driving scenarios where the AV collide with other
vehicles, pedestrians, or road infrastructures. Among the scenarios, there are 1,050
collision scenarios where the AV collides with other vehicles, pedestrians, or objects.
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C1: Uncertain collisions (1)

Data VectorizationDeepScenario (1050) Attribute Extraction Data Filtering (1049)

One-hot Encoding
2D Reconstruction

matplotlib shapely

A1: Weather

A2: Lighting

A3: Roadway surface

A4: Roadway condition

A5: Collison type

Fig. 3: An overview of preparation of DeepScenario data. Initially, we access 1050
collision scenarios from DeepScenario. We extract five relevant attributes (A1–A5)
as for DMV California using scenario specification and a 2D reconstruction (devel-
oped using matplotlib and shapely Python libraries). One scenario is filtered due to
uncertainties (C1) identified in the 2D reconstruction, and we obtain 1049 collision
scenarios. Finally, selected scenarios and their extracted attributes are vectorised using
the One-hot encoding approach.

As presented in Figure 3, we employ the same preparation as for DMV California data,
with an additional step of 2D reconstruction to automatically extract the collision
type for DeepScenario.
1. Attribute Extraction. We extract weather and lighting conditions from the direc-

tory name of the scenario. DeepScenario organises scenario description files in
a multi-level directory as the summary box below. The directory contains the
generation strategy, reward function, road, weather, time of the day, and name
of the scenario description file. DeepScenario used two weather conditions (i.e.,
sunny and rainy), which correspond to Clear and Raining in the DMV California
dataset. Lighting is derived from the time of day (i.e., 8:00 for day and 20:00 for
night) and is mapped to Daylight and Dark – Street lights respectively.

../rl based-strategy/reward-dto/road1-sunny day-scenarios/0 scenario 0

.deepscenario

We then derive roadway surface and condition based on the weather and gen-
eration configurations. As DeepScenario set the roadway surface according to the
weather, we use Dry for sunny and Wet for rainy weather to align with the DMV
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California data. Besides, since DeepScenario did not employ any unusual road-
way conditions such as construction or holes on the roadway, we use No unusual
conditions for roadway condition in DeepScenario.

2. 2D Reconstruction. We extract collision type from the 2D reconstruction of the
scenarios. Since LG has stopped its server cloud and development for SVL sim-
ulator in 2022 [54], extraction of collision type for DeepScenario scenarios relies
on the scenario description files. Although open-source projects such as SORA-
SVL [55] are developed as a local cloud built for the SVL simulator, they do not
support the SVL version used by DeepScenario (i.e., 2021.1).
A scenario description file in DeepScenario is an XML-based specification

including the environment (e.g., city, date and time, and weather), entities (e.g.,
vehicles, pedestrians), and a storyboard (dynamic parameters of the entities) for a
period of three seconds. The storyboard contains six timestamps collected per 0.5
seconds and each timestamp contains the position, velocity, angular velocity, GPS,
and orientation of each entity. We use matplotlib and shapely libraries to recon-
struct a 2D plot of each timestamp and visualise the bounding box, orientation,
and speed of each entity, see Figure 4, to extract collision type.
We automatically extract collision type for 816 scenarios using 2D reconstruc-

tion and Python scripts we develop. Specifically, DeepScenario already labeled
collision scenarios with a collision type of Pedestrian, Obstacle, and npc vehicle.
While Pedestrian and Obstacle can be easily mapped to Vehicle/pedestrian and
Hit object from DMV California, npc vehicle refers to colliding with other vehi-
cles and needs to be further categorised to align with DMV California. We use
bounding boxes of the entities to identify the intersection between the AV and
the colliding vehicle, and determine the collision type based on which side of the
vehicles involved most in the intersection area. We adopt the taxonomy from the
California Collision Manual [56] and NHTSA terms [57], e.g., a vehicle’s front
side colliding with another vehicle’s rear side is a Rear end collision type.
We manually extract collision type for 234 remaining scenarios by visually

examining the 2D reconstruction. Since DeepScenario only collected vehicle
dynamic parameters at 6 timestamps (starting at time 0) and for every 0.5 sec-
onds, there are scenarios where a collision occurs between two timestamps or
after the last timestamp. Thus, we identify 122 scenarios with no intersection
between the AV and surrounding vehicles, such as in Figure 4. Further, we iden-
tify 112 scenarios where two sides of a vehicle are affected equally or similarly (i.e.,
less than or equal to 30% of differences) in the intersection area; thus, requiring
further analysis to identify collision type precisely. We inspect the 2D reconstruc-
tion of those scenarios and use the same taxonomies from California [56] and
NHTSA [57] to extract collision type. To the best of our knowledge, there is no
boundary value to separate collision types based on vehicle’s collision area, thus;
we examine the data and employ an approximation of 30%.
As our automated approach works for the overwhelming majority (77.71%) of

the scenarios, we could leave out the remaining scenarios without threatening the
validity of our study. Still, we opt for an additional manual round to maximise
the use of the data for further evaluation and analysis.
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3. Data Filtering. We exclude one collision scenario as we find no clear collision
from the 2D reconstruction. During the manual extraction as presented in the
previous step, i.e., step 2, we identify one scenario where a collision is unlikely to
happen, given the relative orientation, speed, and position between the AV and
other entities, thus; is filtered due to the uncertainties. As a result, we select 1049
scenarios for subsequent evaluation and analysis.

4. Data Vectorisation.We vectorise selected data and their attributes using the same
principle (i.e., one-hot encoding [52]) for DMV California dataset as described in
Section 3.2.1.

Fig. 4: An example of 2D reconstruction of a scenario description file. Each timestamp
is a subplot in the figure, and we only plot entities (in blue) that are within the ego
vehicle’s (in red) field of interest – 20 meters from the ego vehicle – for collision type
extraction. Each entity is represented as a rectangle (bounding box) with a green
arrow (orientation), and a text of its name and speed in km/h separated by a comma
sign. In this example, the collision is avoided in timestamp 6, but the space between
Ego0 and NPC2 vehicles is not evidently visible due to the scaling issue.

3.3 Data Evaluation

The outcome of the previous steps sets the scene for applying the evaluation met-
rics to measure the similarity between the two datasets. This can be done at different
levels: the distribution metrics can be measured at the level of individual attributes,
or the combination of attributes. Subsequently, significant differences can be fur-
ther scrutinised to find out whether they concern attributes that are causal for the
criticality of the real scenarios. Causal analysis [48] is both computation- and data-
intensive and among others, requires information about the prior distribution of the
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attributes. When there is insufficient resources for causal analysis, we can only report
discrepancies which are only established at the correlation level, i.e., under- or over-
representation of certain attribute values with respect to the real critical scenarios.
Moreover, since the data and the extracted attributes may be highly-dimensional,
dimensionality reduction techniques can be used to focus the analysis of distance
metrics. We instantiate these sub-steps below with respect to our two datasets.

As we described in Section 3.1, we define two metrics, namely, attribute distribution
and Euclidean distance, to evaluate the realism of synthetic critical scenarios. In the
empirical evaluation, we use those metrics to analyse how well DeepScenario generates
similar collision scenarios as recorded by DMV California. In our evaluation, we focus
on the five attributes that we extract from the two datasets, including weather, lighting,
roadway surface, roadway condition, and collision type. As explained in Section 3.2,
those attributes are used as they are extractable from both datasets.

3.3.1 Single-attribute Distribution

We first evaluate the distribution of each attribute independently to observe and
analyse the differences between DeepScenario and DMV California data, as shown in
Figure 5. Specifically for weather and lighting, we access their prior (actual) distribu-
tion in California to perform a causal analysis on those attributes for AV collisions.
As the prior distributions for other selected attributes are not available, performing
causal analysis on them is infeasible. Lastly, based on the results and analysis, we for-
mulate our observations and propose our recommendations to improve the realism or
future evaluation of realism for critical scenarios for testing AVs and ADS.

3.3.2 Multi-attribute Distribution

We then evaluate the distribution of multiple attributes together, which compares
the distributions of combinations of multiple attributes between the two datasets to
get further insights. Through previous analysis in Section 3.3.1, we observe roadway
surface is strongly correlated to weather, and a large number of scenarios in DMV
California and all in DeepScenario have no unusual roadway conditions. Thus, those
two attributes are excluded from the analysis, and we focus on the combinations of the
remaining attributes in this evaluation, including 1) weather and collision type, 2) light-
ing and collision type, and 3) weather, lighting, and collision type. The combinations
reveal differences between the two datasets when considering several attributes collec-
tively. Similar to the single-attribute distribution, we formulate our observations and
propose our recommendations to improve the realism or future evaluation of realism
for critical scenarios for testing AVs and ADS, based on the results and analysis.

3.3.3 Euclidean Distance

Lastly, we evaluate the Euclidean distance from DeepScenario data to DMV California
data to analyse their similarity. Unlike the distribution analysis in Section 3.3.1 and
3.3.2, we focus on unique scenarios since repetitive scenarios do not contribute to the
distance analysis. We start with Principal Component Analysis (PCA) [58] to reduce
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the dimensions of the two datasets. After that, we perform two iterations of distance-
based analysis on the data. Finally, we formulate our observations and propose our
recommendations based on the results and analysis.
1. Dimension Reduction. In general, PCA is a statistical procedure to extract and

project information from high-dimensional data into a lower-dimensional space
to ease visualisation and analysis [58]. While PCA is not strictly needed for pro-
cessing relatively low-dimensional data, it improves the computational efficiency
and applicability of our methodology for future studies (with high-dimensional
data). We perform a Scree test [59] to analyse the amount of variance in the orig-
inal data that is captured by each target dimension. The number, until which the
captured variance descends precipitously, but afterward levels out, is the optimal
number of target dimensions for PCA [59, 60]. Then, we use PCA from sklearn
library to transform the original data into the target number of dimensions.

2. Distance-based Analysis. We anchor our analysis on the concept of Euclidean
distance. In the first iteration, we compare the distance from DeepScenario data
to DMV California data with distance between DMV California data. In the
second iteration, we cluster DeepScenario and DMV California data to analyse
their categorisation.
(a) In the first iteration, we compute the maximum distance for a DeepScenario

data to find its nearest DMV California neighbour, and consider the scenario
similar to DMV California data if the distance is smaller than the maximum
distance for a DMV California data to find the nearest neighbour of its own
kind. Alternatively, we compute the mean distance for a DeepScenario data to
all DMV California data, and consider the scenario similar to DMV California
data if the distance is smaller than the maximum mean distance for a DMV
California data to the rest data of its own kind.

(b) In the second iteration, we use K-means [61, 62] to cluster the two datasets,
which is still based on the measurement of the distances between the data. To
begin with, we employ the Elbow method [63–65] to determine the optimal
K (i.e., the number of clusters) for K-means. The Elbow method iterates
different K, fits the data, and computes the distortions (i.e., the average
distance from other data entries in each cluster to the centroid). The K until
which the distortion decreases significantly, but afterward, flattens out, is the
optimal value for K. Then, we cluster the two datasets into K clusters, and
any DeepScenario data that are grouped into a cluster with DMV California
data are considered similar scenarios.

3.4 Results Assessment

This step involves presenting the results to stakeholders and discussing the background
to the observed discrepancies in order to confirm or adjust the observations and draw
an action plan for the future. The objective is not to perform a systematic and rigorous
assessment of our findings, but rather to gather views and thoughts on them from
relevant stakeholders available to us. We interviewed the first author of DeepScenario,
as they led the generation of the DeepScenario dataset and was available to participate
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CA1: A1 and A5

Sinlge-attribute Distribution Multi-attribute Distrubution Euclidean Distance

A1: Weather

A5: Collision type

A2: Lighting

A3: Roadway surface

A4: Roadway condition

CA2: A2 and A5

CA2: A1 and A2 and A5

Dimension reduction

EC2: Maximum distance

EC1: Mean distance

EC3: K-means clustering

Fig. 5: An overview of the data evaluation. In single-attribute distribution analysis, we
compare the distribution of five attributes (A1–A5) between the two datasets. In multi-
attribute distribution analysis, we compare the distribution of three combinations of
attributes (CA1–CA3). Lastly, for Euclidean distance, we first perform PCA (Principle
Component Analysis) to reduce the dimensions of the data, and perform distance
analysis using three evaluation criteria (EC1–EC3).

our interview. We consciously used a semi-structured interview to give the interviewee
freedom and flexibility to discuss the validity and usefulness of our findings.

From our proof of concept, we observed discrepancies with respect to the synthetic
critical scenarios generated by DeepScenario, as well as some missing background
information with respect to the DMV California set. We discussed these observa-
tions, with the first author of DeepScenario, in an online semi-structured interview to
assess the results and analysis we obtain from the empirical evaluation, as described in
Section 3.3. Before the interview, we presented the design, results, observations, and
our analysis to the interviewee. During the interview, we had an open discussion to
collect further insights, feedback, and suggestions from them. The interview process
was flexible where we walked through the findings of this study and asked the inter-
viewee’s thoughts and feedback on them. Based on their responses, we continued the
discussion to explore additional insights with the interviewee. After that, we analysed
the response and presented relevant parts as assessments of our results. The interview
was semi-structured and primarily aimed to check the outcomes and discuss the feed-
back from the DeepScenario main author as they are aware of the background and the
design decisions for this dataset and its generation process.

4 Results and analysis

In line with the evaluation design in Section 3.3, we present results and analysis to
each evaluation analysis, which concerns primarily RQ1 – how realistic are synthetic
critical scenarios from realistic critical scenarios. Also, we provide our observations and
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recommendations based on the results to address RQ2 – guidelines for closing reality
gaps in synthetic critical scenarios. The data and scripts we use for evaluation are
available on Zenodo [51]. Although the quantitative results are specific to the analysed
datasets, we reflect on the quantitative results to find qualitative observations and
recommendations that are generaliseable to other analyses of realism in the future.

4.1 Single Attribute Distribution

As introduced in Section 3.3.1, we focus on analysing distributions of five relevant
attributes independently in single attribute evaluation, including weather, lighting,
roadway surface, roadway conditions, and collision type.

4.1.1 Evaluation Results

1. Weather. As shown in Table 1, weather distribution in DeepScenario differs sig-
nificantly from DMV California. DeepScenario has two weather conditions almost
evenly distributed, i.e., 50.81% Clear and 49.19% Raining. In contrast, DMV Cal-
ifornia has the majority (86.53%) Clear, a certain amount of Cloudy and Raining,
and several Fog/visibility. As DeepScenario used only two weather conditions, it
is unsurprising that other weather recorded in DMV California such as Cloudy
and Fog/visibility have no occurrence in its distribution. In addition, DeepSce-
nario employs each weather uniformly in its generation process, resulting in an
even distribution, and have more frequent collisions in the Raining weather than
in DMV California.

Weather DMV California DeepScenario
Population (282) Distribution Population (1049) Distribution

Clear 244 86.53% 533 50.81%
Cloudy 21 7.45% – –
Raining 14 4.97% 516 49.19%
Fog/visibility 3 1.06% – –
Snowing 0 0 – –
Wind 0 0 – –
Other* 0 0 – –

Table 1: Weather distribution for DMV California and DeepScenario. Sign ‘–’ means
a weather is not used and thus not applicable. Other* refers to weather not listed
above, for example, hail, dust, or smoke, as defined in California Collision Manual [56].

We also visit the actual weather distribution in California (i.e., 18.63% days
with precipitation for San Francisco [66] and 11.78% for San Diego [67] in 2023)
to analyse potential causal effects of weather on AV collisions. The actual distri-
bution suggests no evident impact of rain on collisions for DMV California data
as only 4.97% collisions were reported in this weather. However, that is subject
to the test arrangement of the manufacturers – how AV manufacturers arranged
their tests in different weather, which is unavailable presently.
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Furthermore, we conduct a one-way Chi-square test [68] with the distribution
of Raining and non-Raining weather in DMV California data against the actual
distribution in San Francisco to determine the association between them. The
result (i.e., statistic = 35.340035, pvalue = 2.76882e-09) indicates that their dif-
ference is significant. To identify the causal effect of rain on AV collisions, we
need more statistics on test arrangement, traffic density, driving behaviours, and
so on in each weather to perform further causal inference [48].

Lighting DMV California DeepScenario
Population (282) Distribution Population (1049) Distribution

Daylight 177 62.77% 529 50.43%
Dark – Street lights 92 32.62% 520 49.57%
Dusk – Dawn 12 4.26% – –
Dark – No street lights 1 0.36% – –
Dark – Street lights NFG 0 0 – –

Table 2: Lighting distribution for DMV California and DeepScenario. Sign ‘–’ means
a lighting condition is not used and thus not applicable. ‘NFG’ stands for ‘Not func-
tioning’ and is abbreviated due to space limitation.

2. Lighting. Table 2 presents the distribution of lighting for DMV California and
DeepScenario. Similar to weather, DeepScenario has each lighting condition
equally explored; we see a fairly close distribution for Daylight and Dark – Street
lights. In reality, DMV California recorded the same lighting as the two most
common lighting conditions in AV collisions, but also experienced a few Dusk –
Dawn and Dark – No street lights. As one may inevitably consider other lighting
than Daylight would impair the visibility of AVs and other road users and expect
more collisions, their distribution are much lower than Daylight, and raises our
concerns about the test arrangement for DMV California and simulation quality
for DeepScenario. In other words, if most testing happened during the day, more
collisions would be reported in Daylight condition for DMV California; if the sim-
ulator could not faithfully represent the lighting and potential impacts on AV
sensors, they would not contribute to collisions to a real extent in DeepScenario.
Like the analysis for weather, we also visit the day length in San Francisco [69]

and obtain an average of 12:12 (hh:mm) Daylight, 0:56 Dusk – Dawn, and 10:52
night (Dark – Street lights) in 2022, corresponds to a distribution of 50.83%,
3.89%, and 45.28% respectively. The actual distribution of lighting conditions
suggests no distinctive causal effects of inclement lighting such as Dark – Street
lights on collisions. Besides, the Chi-square test (i.e., statistic = 17.745138, pvalue
= 0.000140) uncovers that the observed distribution of lighting condition in DMV
California does not follow the actual distribution in San Francisco and the differ-
ence is significant. It may be due to uneven tests in different lighting conditions,
or poor lighting does not cause more collisions, which needs further investigation.

3. Roadway surface. As we introduced earlier in Section 3.2.2, DeepScenario sets the
wetness of the roadway based on weather, therefore; the distribution of roadway
surface is the same as weather, as shown in Table 3. DMV California encountered
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Roadway Surface DMV California DeepScenario
Population (282) Distribution Population (1049) Distribution

Dry 265 93.97% 533 50.81%
Wet 17 6.03% 516 49.19%
Snowy – Icy 0 0 – –
Slippery 0 0 – –

Table 3: Roadway surface distribution for DMV California and DeepScenario. Slip-
pery refers to Slippery (muddy, oily, etc.) in full name. Sign ‘–’ means a roadway
surface is not used and thus not applicable.

a predominant majority of Dry and a few Wet roadway surfaces, which is close
to the distribution of weather in Table 1. We conduct a Pearson correlation
coefficient analysis of weather and roadway surface for DMV California, and the
result (i.e., ρ = 0.536414) indicates a strong positive correlation between them.
In a further analysis, we discover that 98.51% (264/268) of Clear, Cloudy, and
Fog/visibility weather correspond to a Dry roadway surface, and 92.86% (i.e.,
13/14) of Raining weather has a Wet roadway surface.

Roadway Conditions DMV California DeepScenario
Population (282) Distribution Population (1049) Distribution

No unusual conditions 273 96.81% 1049 100%
Obstruction on roadway 3 1.06% – –
Construction – Repair zone 2 0.71% – –
Reduced roadway width 2 0.71% – –
Holes, deep rut 2 0.71% – –
Loose material on roadway 0 0 – –
Flooded 0 0 – –
Other* 0 0 – –

Table 4: Roadway condition distribution for DMV California and DeepScenario. Sign
‘–’ means a roadway condition is not used and thus not applicable. Others* refer to
roadway conditions not listed above and include such as oil slick on the road.

4. Roadway condition. We focus on DMV California data for roadway condition as
DeepScenario set No unusual conditions for scenario generation. Despite that
DMV California also ran into No unusual conditions for the vast majority (i.e.,
96.81%) of the collisions, they experienced a few Obstructions on roadway, Con-
struction – Repair zone, Reduced roadway width, and Holes, deep rut, as we can see
from Table 4. As one may consider unusual roadway conditions would remarkably
challenge AVs in their driving tasks and result in more collisions, such situations
are rare in comparison to usual roadway conditions [22, 33, 70], and the resulting
distribution still depends on the testing arrangement of different AV manufactur-
ers. For example, if manufacturers only test their AVs under No unusual roadway
conditions, then collisions are expected exclusively in this roadway condition, and
there will be no distribution of collisions for other roadway conditions. However,
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that does not necessarily mean No unusual roadway conditions lead to more colli-
sions for AVs than other roadway conditions. To understand the causal relations
between roadway conditions and AV collisions, we need to know how manufactur-
ers have arranged their tests under each different roadway condition. Therefore,
a causal relation cannot be established with current information available.

Collision type DMV California DeepScenario
Population (282) Distribution Population (1049) Distribution

Rear end 179 63.48% 434 41.37%
Side swipe 49 17.38% 363 34.60%
Broadside 24 8.51% 109 10.39%
Other* 11 3.90% 0 0
Head-on 10 3.55% 9 0.86%
Hit object 8 2.84% 28 2.67%
Vehicle/pedestrian 1 0.36% 106 10.11%
Overturned 0 0 0 0

Table 5: Collision type distribution for DMV California and DeepScenario. Other*
refers to collision types not listed herein and include such as a vehicle involved with
a bicycle, train, animal, falling passengers from a vehicle, a bicycle involved with a
pedestrian, etc.

5. Collision type. DeepScenario and DMV California share the same top three col-
lision type (i.e., Rear end, Side swipe, and Broadside), of which the cumulative
total constitutes 86.37% and 89.36% of all collisions respectively. Apart from that,
there are 11 Other collisions in DMV California, but none for DeepScenario, as in
Table 5. That is because DeepScenario employed only pedestrians and vehicles in
scenario generation, and no other road users such as bicycles, trains, and animals.
In addition, DeepScenario experienced a significantly higher ratio of vehicle/-
pedestrian collisions than DMV California. That calls for further scrutiny as to
how different pedestrian behaviour models were simulated in DeepScenario and
how testing with pedestrians was arranged in DMV California data. In a subse-
quent analysis, we sorted collision types for the two datasets in descending order
and computed the distribution gaps of adjacent types. We obtained a sum of 0.63
and a mean of 0.09 difference for DMV California. In comparison, DeepScenario
has a sum of 0.41 and a mean of 0.06 difference, which implies DeepScenario
has on average a lower difference of distribution for different collision types and
generated collision of each type more uniformly.

4.1.2 Observations and Recommendations

Given the attribute distribution, as presented in Section 4.1.1, we formulate two obser-
vations (starting with O), derive three recommendations (starting with R), and receive
three comments (starting with C) from the first author of DeepScenario.
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O1 – DeepScenario used a strict subset of realistic parameter values; this may be
due to the design of the critical scenario generation and/or due to the limited
capabilities of the simulator to reflect the effect of a number of parameters.

O2 – There are discrepancies in attribute distribution in DeepScenario compared
to the real scenarios in DMV California. Some of these may be due to test
arrangement in DMV California and others may be due to design decisions
in DeepScenario, partly due to the quality of simulations.

1. O1 is evident in the evaluation, where substantial realistic parameter values are
not used in DeepScenario. Especially, DeepScenario used only two weather and
lighting conditions, and two roadway surfaces, which left out a variety of real-
istic values for weather and lighting conditions, roadway surface, and roadway
conditions. Consequently, more potential AV collision scenarios with realistic
conditions as evidenced by DMV California are not explored in DeepScenario.

O2 is highly likely yet requires further investigation to better understand the
ground truth. As per our analysis, there is no clear picture of the actual dis-
tribution of all attributes in California, when and under which conditions the
manufacturers have tested their AVs on public roads, and how well real-world
attributes and their impacts are represented in simulation in DeepScenario. Thus,
even though there is a significant difference between the two datasets, no simple
conclusions can be made on causality given the information we have. Neverthe-
less, our observations from the single attribute evaluation reveal the discrepancies
in distribution and draw attention to some considerations of scenario realism.

R1 – Include a more diverse range of realistic parameter values in synthetic sce-
nario exploration, such as snowy weather, icy roadway surface, and unusual
roadway conditions.

R1.1 Use the distribution of parameters in realistic critical scenarios to inform
the distribution of parameters in synthetic simulations.

R1.2 If causal analysis is performed on realistic data, a similar representation
of causal parameters should be prioritised in simulation.

R2 – Evaluate the quality of the simulation before using it for testing AVs.
R2.1 – Evaluate the feasibility of simulating real-world parameters, e.g.,

different weather.
R2.2 – Evaluate the representation and effects of real-world parameters in

simulation.
R2.3 – Decouple scenario generation from a single simulator and use a range

of simulators with different capabilities to explore more diverse critical
scenarios.

R3 – Include more contextual information for real critical scenario datasets on
the prior distribution of parameters to enable a causal analysis of AV collision
scenarios. These include statistical information about planned field tests and
traffic situations during field tests that were not recorded as critical.
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2. In response to O1, we recommend R1 to include more realistic parameter val-
ues in the exploration of synthetic collision scenarios to improve the diversity of
them in comparing to realistic AV collisions. This recommendation is inclusive,
meaning parameters should be considered from all realistic perspectives instead
of attributes of interest in this study. While layered frameworks for systematic
parameter selection in AV testing are developed and reported [71, 72], a compre-
hensive list of parameter values and the selection of them for different ADS with
different functions, implementations, or ODDs are still lacking [8].
Also, it is significant to evaluate the quality of simulation (R2), regarding

whether desired parameters are feasible to simulate (R2.1) and the realism of
their representations and effects on other entities (R2.2). For a concrete exam-
ple, how rainy weather in varying degrees is represented in simulation and
how road surface, tire friction, and sensor performance are impacted shall be
quantified. Particularly, studies already show substantial gaps between simula-
tion and real-world testing [14, 73–76], and the latest EU regulation for type
approval of AVs also mandates evaluating simulation if a simulator is used in
testing [8, 10]. Additionally, we recommend incorporating several simulators with
different capabilities to explore more diverse critical scenarios (R2.3). For exam-
ple, one simulator is not feasible to simulate a particular weather; thus, not able
to explore critical scenarios under this weather condition, but other simulators
are feasible. In this case, one could use several simulators to explore different con-
ditions they are capable of representing. Further, if we have several simulators
simulating the same conditions but getting different results, for example, in one
simulator the AV collides with other road users but not in other simulators, that
would indicate a discrepancy in simulation quality and call for further investiga-
tion of whether that particular simulator is representing the conditions faithfully
or not. Using multiple simulators enables us to explore more and diverse critical
scenarios and getting more insights into the critical scenarios identified.
Overall, our recommendations emphasize incorporating realistic parameters in

exploring critical test scenarios for AVs, and ensuring they are faithfully simulated
in the simulator. In addition, we also recommend R3 to explore and include the
prior distribution of parameters used in real-world critical scenarios to perform
a causal analysis of them on AV collisions and identify causal parameters that
are significant for AV collisions. That, in turn, encourages organisations such
as different AV manufacturers to collect and share more contextual information
such as the test arrangement, which would be rather significant for evaluating,
analysing, and understanding the realism of synthetic scenarios.

C1 – Scenario simulation and optimisation are computationally heavy, which
limits the feasibility of incorporating more realistic parameters and values in
DeepScenario.

C2 – SVL simulator supports limited parameter values from DMV Califor-
nia. An example is snowy weather and unusual roadway conditions such as
construction or holes.
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C3 – Reality gap in the SVL simulator is noticeable from different perspectives,
e.g., weather.

3. Generally, the first author of DeepScenario confirms our results. As C1 sounds,
optimisation and simulation of critical scenarios are computational resources- and
time-consuming, which limited them in incorporating more real-world parameters.
That limitation was exacerbated by the SVL simulator in which certain parame-
ters were not supported (C2). For example, snowy and windy weather. Although
a road damage level that changes road friction can be set, many unusual roadway
conditions such as construction or holes were infeasible in SVL when DeepSce-
nario was created. Lastly, the reality gap (C3) was evident in the SVL simulator
for, e.g., the effect of weight on vehicle dynamics, where a vehicle could be thrown
into the air abnormally after a collision. Another example is that the weather
stayed constantly the same and an update instruction would change it imme-
diately rather than incrementally over time. Those comments supply additional
insights into the realism of scenarios in DeepScenario, and also reveal specific
issues or limitations that impact the realism of the generated scenarios.

4.2 Multiple Attribute Distribution

As introduced in Section 3.2.2, we focus on analysing distribution of three combina-
tions of attributes in multiple attribute evaluation, including 1)weather and collision
type, 2) lighting and collision type, 3) weather, lighting, and collision type.

4.2.1 Evaluation Results

1. Weather and collision type. Table 6 presents the distribution of weather in con-
junction with collision type. Herein, we only focus on four weather that are
recorded by DMV California or used by DeepScenario. Similar to the weather
and collision type analysis from Section 4.1.1, DMV California has most collisions
reported in Clear weather, thus; collision types are further decomposed under
this weather. In contrast, DeepScenario has each collision type more evenly dis-
tributed in Clear and Raining weather, and has remarkably more collisions in
Raining weather. As highlighted in Table 6, DeepScenario did not generate Other
type collisions in Clear weather, which have been reported in DMV California,
but DeepScenario was able to identify Broadside and Vehicle/pedestrian collisions
in Raining weather, which have not been reported in DMV California yet.

2. Lighting and collision type. The distribution of lighting in conjunction with col-
lision type somewhat mirrors the separate distribution of weather and collision
type. Particularly, DMV California recorded collisions predominantly in Daylight,
while DeepScenario has a more uniform distribution for each collision type in Day-
light and Dark – Street lights lighting, as shown in Table 7. Other type collisions
are reported both in Daylight and Dark – Street lights in DMV California but
none in DeepScenario. Nevertheless, Vehicle/pedestrian collisions, which have not
been reported in Dark – Street lights in DMV California as of now, are identified
in a considerable ratio (4.67%) in DeepScenario.
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```````````Collision type

Weather
Clear Cloudy Raining Fog/visibility

Rear end 54.26% / 21.74% 6.38% / – 2.13% / 19.64% 0.71% / –
Side swipe 16.31% / 17.83% 0.36% / – 0.36% / 16.78% 0.36% / –
Broadside 7.45% / 5.15% 0.36% / – 0 / 5.24% 0 / –
Other* 3.90% / 0 0 / – 0 / 0 0 / –
Head-on 3.19% / 0.29% 0 / – 0.36% / 0.57% 0 / –
Hit object 1.06% / 1.53% 0.36% / – 1.42% / 1.14% 0 / –
Vehicle/pedestrian 0.36% / 4.29% 0 / – 0 / 5.82% 0 / –
Overturned 0 / 0 0 / – 0 / 0 0 / –

Table 6: Distribution of weather recorded in collisions in conjunction with collision
types. Each cell contains distributions from DMV California and DeepScenario, and
is separated by a ‘/’ sign. Columns headed Cloudy and Fog/visibility are grayed out
as they are not applicable for DeepScenario, thus; their distributions are annotated as
’–’. The distributions in bold imply only one dataset has a distribution.

```````````Collision type

Lighting
Daylight Dusk – Dawn Dark – Street lights Dark – No SL

Rear end 43.97% / 20.11% 3.19% / – 15.96% / 21.26% 0.36% / –
Side swipe 9.22% / 18.11% 1.06% / – 7.09% / 16.49% 0 / –
Broadside 4.97% / 4.67% 0 / – 3.55% / 5.72% 0 / –
Other* 1.77% / 0 0 / – 2.13% / 0 0 / –
Head-on 1.42% / 0.57% 0 / – 2.13% / 0.29% 0 / –
Hit object 1.06% / 1.53% 0 / – 1.77% / 1.14% 0 / –
Vehicle/pedestrian 0.36% / 5.43% 0 / – 0 / 4.67% 0 / –
Overturned 0 / 0 0 / – 0 / 0 0 / –

Table 7: Distribution of lighting recorded in collisions in conjunction with collision
types. Each cell contains distributions from DMV California and DeepScenario, and is
separated by a ‘/’ sign. Column heading Dark – No SL is short for ‘Dark – No street
lights’ due to space issues. Columns headed Dusk – Dawn and Dark – No SL are

grayed out as they are not applicable for DeepScenario, thus; their distributions are
annotated as ‘–’. The distributions in bold imply only one dataset has a distribution.

3. Weather, lighting, and collision type. In a higher-order multi-attribute analysis,
we obtain a more meticulous distribution of collision type in conjunction with
weather and lighting, as shown in Table 8. We exclude weather and lighting con-
ditions that do not apply to DeepScenario or are not reported in DMV California
as they do not provide additional insights to our analysis. DMV California fea-
tures most collisions recorded in Clear-Daylight, followed by Clear-Dark – Street
lights, and very few in Raining weather. In comparison, DeepScenario has each
collision type more uniformly distributed. As one may expect inclement weather
(e.g., Raining) and lighting conditions (e.g., Dark – Street lights) may increase
the chance of collisions, we see no distinctive distribution that deviates Raining-
Dark – Street lights from the others. Especially, DMV California has 54.97% of
collisions reported in Clear weather and Daylight lighting. As we presented in
Section 4.1.1, the actual distribution of weather and lighting conditions suggests
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inclement weather and lighting do not associate with collisions to a significant
degree. That, however, should be further analysed with how each different condi-
tion is tested by the manufacturers. Lastly, except for Other type collisions that
are recorded in Clear weather for DMV California but none in DeepScenario,
DeepScenario identified six collision types under specific weather or lighting con-
ditions that are not reported in DMV California. Among them, five are in Raining
weather, and three are Vehicle/pedestrian type.

```````````Coll type

Weath-Light
Clear-Daylight Clear-Dark* Raining-Daylight Raining-Dark*

Rear end 38.30% / 10.58% 13.83% / 11.15% 1.06% / 9.53% 1.06% / 10.11%
Side swipe 8.51% / 9.91% 6.74% / 7.91% 0 / 8.20% 0.36% / 8.58%
Broadside 4.61% / 2.0% 2.84% / 3.15% 0 / 2.67% 0.71% / 2.57%
Other* 1.77% / 0 2.13% / 0 0 / 0 0 / 0
Head-on 1.06% / 0.19% 2.13% / 0.10% 0.36% / 0.38% 0 / 0.19%
Hit object 0.36% / 0.86% 0.71% / 0.67% 0.36% / 0.67% 1.06% / 0.48%
Vehicle/pedestrian 0.36% / 2.19% 0 / 2.10% 0 / 3.24% 0 / 2.57%
Overturned 0 / 0 0 / 0 0 / 0 0 / 0

Table 8: Distribution of collision types in conjunction with weather and lighting. Each
cell contains distributions from DMV California and DeepScenario, and is separated
by a ‘/’ sign. Due to space issues, the column heading Coll type is short for Collision
type, Weath-Light for Weather-Lighting, Clear-Dark* for ‘Clear-Dark – Street lights’,
and Raining-Dark* for ‘Raining-Dark – Street lights’. The distributions are grayed
out if only one dataset has a distribution.

4.2.2 Observations and Recommendations

Same as in Section 4.1, we present our observations, recommendations, and comments
from the DeepScenario author for multiple attribute evaluation.

O1 – DMV California recorded most collisions, i.e., 54.97%, in clear weather
and daylight conditions, thus; inclement weather and lighting do not hold a
higher distribution for AV collisions. Yet, further statistics for such as test
arrangement and traffic densities are needed to understand the causal effect
of inclement weather and lighting conditions on AV collisions.

O2 – DeepScenario identified new collisions that have not been reported to DMV
California such as vehicle/pedestrian collisions in raining weather, while miss-
ing out on some that existed in DMV California, e.g., other type collisions
in clear weather as in Table 8.

1. We do not observe a significantly higher distribution of collisions in inclement
weather (e.g., Raining) and lighting (e.g., Dusk – Dawn, Dark –Street lights) in
DMV California. Instead, most collisions from DMV California were recorded in
Clear weather and Daylight lighting. Therefore, one observation is that they do
not contribute to more collisions for the datasets in this study (O1). However, that
should be further analysed with additional statistics such as test arrangement by
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the manufacturers, traffic densities, and interactions between AV and other road
users in DMV California data. Therefore, a causal relation cannot be established.
DeepScenario identified new collision scenarios that have not been reported to

DMV California (O2), which clearly shows it is effective to use synthetic sce-
nario exploration to find new critical scenarios for testing AVs/ADS. However,
DeepScenario did not use all realistic parameter values from DMV California and
missed out on certain collisions that have been reported to DMV California, so
synthetic scenario exploration should complement, rather than replace, real-world
testing or realistic scenarios in the current stage [4, 8, 77].

R1 – Identify and use critical parameters for exploring synthetic critical scenar-
ios.

R1.1 – Explore the prior distributions of parameters that are relevant for com-
posing critical scenarios (as illustrated by steps 1-3 in Figure 6), perform
causal analysis with the observed distributions in collision scenarios (see
steps 4-5 in Figure 6), and identify which parameters are critical for AV
collisions.

R1.2 – Ensure the feasibility of simulating those critical parameters from R1.1,
and validate their representation and effects in simulation environment
to ensure a faithful simulation and scenario realism.

R2 – Use realism measurement in a feedback loop between the real and syn-
thetic scenarios: when new types of collisions are found in synthetic scenarios,
use field tests to verify the criticality of these parameter values and adjust
the parameter distribution. This will lead to an updated measure for real-
ism and a virtuous loop for more covering tests both in real- and simulated
environments.

2. Even though O1 is a specific observation for this study and is subject to data
acquisition and size of data for analysis, it is still important to identify parame-
ters that are critical for causing AV collisions (R1.1) and how realistic they are
represented in simulation for critical scenario exploration (R1.2) to reduce reality
gaps for simulation environments, as articulated in several studies [14, 74, 77].
Moreover, a feedback loop needs to be developed for integrating real-world

testing and simulation testing of AVs concerning guidelines for field testing with
synthetically generated scenarios. Specifically, simulation can be used to explore
unknown critical test scenarios (e.g., collisions or other hazardous scenarios) and
improve scenario coverage of real-world testing. Correspondingly, real-world test-
ing can give useful feedback to improve the parameters and distribution of values
in simulation testing and reduce the reality gaps (R2). Overall, they should
complement each other and be combined effectively for testing AVs [78–80].

C1 – Evaluation and analysis of the realism of synthetically generated scenarios
are significant for effective testing of AVs/ADS.

C2 – DeepScenario should be maintained continuously, enabling more contribu-
tors.

26



3. The first author of DeepScenario confirms our analysis, observations, and recom-
mendations. Particularly, they believe that evaluation and analysis of syntheti-
cally generated scenarios from realistic driving scenarios is extremely important
(C1) as realism is an essential quality for test scenarios, and suggest every study in
the field to incorporate more realistic parameter values, AD systems, and related
tools to increase realism of test scenarios for AVs/ADS. Besides, they also artic-
ulate testing AVs and critical scenario exploration as continuous work, meaning
working on and enhancing them gradually and iteratively over time.

DeepScenario, as an open driving scenario dataset for testing AVs/ADS, needs
to be maintained constantly and enables more subscribers/contributors to refine
it (C2). Several proposals were discussed, including to 1) transfer the scenarios
into OpenScenario format, which is a fairly standard format for scenarios that are
commonly used [4, 25, 38, 81], 2) switch to the Carla simulator, which is a robust
and common simulation tool for ADS [4, 82–85], 3) update the scenarios to use
more accurate specifications, for such as GPS positions, 4) continuously expand
the scenario set by exploring other maps, realistic weather, roadway conditions,
road infrastructures, and interactions with various road users, 5) keep open source
the tool and scenario set. With that, DeepScenario is expected to attract more
researchers or practitioners to use and improve the test scenarios.

4.3 Euclidean Distance

As described in Section 3.3.3, we evaluate DeepScenario data with DMV Califor-
nia data based on the measurement of Euclidean distance. We use PCA to reduce
the dimensions of the vectorised data. Then, we use distance criteria and K-means
approach to evaluate the data. We employ unique data entries in the two datasets,
i.e., 40 for DMV California and 24 for DeepScenario.

4.3.1 Evaluation Results

1. Dimension Reduction. As described in Section 3.3.3, we perform a Scree test [59]
and find 6 the optimal number of target dimensions, which can capture 96.08%
of the variance in the original data (i.e., the union of unique data entries in
DeepScenario and DMV California). Then, we use PCA from sklearn library and
transform the vectorised data of DeepScenario and DMV California from 32 into
6 dimensions for subsequent evaluation.

2. Distance-based analysis.
(a) In the first iteration, we discover all DeepScenario data are similar to DMV

California data as they are close in distance comparison.
(i) 17 out of 24 unique DeepScenario scenarios find an identical copy in

DMV California data. In addition, the maximum distance for a DeepSce-
nario data to find its nearest DMV California neighbour (1.07) is much
smaller than the maximum distance for a DMV California data to find
the nearest neighbour of its own kind (1.40). Similarly, the mean distance
for a DeepScenario data to find its nearest DMV California neighbour
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(0.17) is also much smaller than the mean distance for a DMV Califor-
nia data to find the nearest neighbour of its own kind (0.68), with the
same standard deviation (0.3). That indicates, while DMV California
data is more scattered in distance in general, DeepScenario data appear
to stick around the DMV California data and are easier to find a DMV
California neighbour than DMV California data.

(ii) The mean distance for a DeepScenario data to all DMV California data
(maximum is 2.23) is smaller than the maximum mean distance (2.54)
for a DMV California data to the rest data of its own kind. That implies
every DeepScenario data has a shorter average distance to DMV Cali-
fornia data than the mean distance of the farthest DMV California data
to rest data in its own group. We conclude that every DeepScenario data
is still within the boundary of the DMV California data.

(b) In the second iteration, we first use the Elbow method and find 6 the opti-
mal number of clusters for our data. Then, we use K-means from the sklearn
library to cluster the two datasets. The results indicate all six clusters are a
mixture of data from both datasets, not a single cluster that contains Deep-
Scenario data exclusively. The clustering does not separate DeepScenario and
DMV California data, given the attributes we extract.

4.3.2 Observations and Recommendations

Based on the distance evaluation in Section 4.3.1, we formulate our observations and
recommendations. Except for confirming our findings and giving general feedback, the
first author of DeepScenario supplies no specific insights or concerns for this part.

O1 – DeepScenario identifies new collision scenarios that are not recorded by
DMV California, but are still considered similar to DMV California data
according to the distance analysis.

O2 – The current datasets provide limited attributes that are extractable, espe-
cially DeepScenario due to no functioning simulators available. Given more
relevant attributes are available or extractable such as vehicle maneuvers,
we expect a further evaluation of the realism of DeepScenario and more
sophisticated comparison of the two datasets to be feasible.

1. Further elaborating on the distribution discrepancies presented in Sections 4.1
and 4.2, the distance evaluation discloses that DeepScenario contains different
scenarios from DMV California, but they are not overly different from scenarios
reported in DMV California from a distance perspective (O1). As reported in the
distance-based analysis in Section 4.3.1, DeepScenario data is close to DMV Cal-
ifornia data in a vectorized space, and the Euclidean distance from DeepScenario
data to DMV California data are generally lower than the Euclidean distances
within DMV California data. Therefore, they are considered not significantly dif-
ferent from DMV California data from a distance point of view. Also, we refer to
Section 3.1.2 again, discrepancies in attribute distribution does not necessarily
mean scenarios contained in the two datasets are different.
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We also observe that the current datasets we analyse contain limited attributes
that are available or extractable, thus not allowing more thorough evaluations
(O2). As we mentioned in Section 3, DMV California data contains additional
information such as Accident details – Description, Movement Proceeding Colli-
sion, and Other Associated Factors, which can be useful to reveal further insights,
but are not included in this study due to the limitations of DeepScenario and
SVL simulator. Particularly, the Accident details – Description describes such
as the location, traffic situation, cause of the collision, trajectories, maneuvers,
and post-accident actions for each involved entity. Movement Proceeding Colli-
sion has 18 options (e.g., Stopped, Making right turn, Backing, Changing lanes,
and Parking) and clearly indicates the movement and behaviour of each entity.
Similarly, Other Associated Factors has 12 options (e.g., Vision obscurement,
Entering/Leaving ramp) and gives additional information about a collision.

R1 – Develop guidelines of which attributes and in which formats should a
scenario contain for future scenario exploration and collection.

R2 – Include more attributes pertaining to the dynamics and kinematics of vehi-
cles, their relative positions and maneuvers in future scenario evaluation and
analyses.

2. In response to O2, we recommend developing guidelines for defining future criti-
cal scenarios regarding which attributes (e.g., weather and lighting) are required,
their formats (e.g., categorical or numeric forms), and collection frequency (R1).
More specifically, how each attribute and attribute value are collected, and in
which format and precision each attribute is defined, are also important to under-
stand. For example, DeepScenario used three floating points’ precision for the
GPS coordinates of each entity, which does not form an accurate location. Oth-
erwise, the GPS coordinates can be mapped back to a map of San Francisco and
obtain such as the vehicle trajectory, location (e.g., an intersection), and some
maneuvers (e.g., lane switching) involved in a scenario even without a simulator.

Furthermore, we recommend evaluating and analysing the realism of synthetic
scenarios using more attributes from R1, to close the reality gap for synthetically
generated scenarios (R2). Given that DeepScenario and DMV California can pro-
vide accurate information regarding those attributes, more perspectives of the
scenarios can be compared for realism.

5 Discussion

Going beyond the factual results and analysis in Section 4, we discuss our findings,
limitations, and future work concerning our research goals and questions as well as
their implications. Besides, we present threats to the validity of our study and how
we have mitigated them appropriately.
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Fig. 6: Process for continuous evaluation and improvement of realism for critical
scenarios, based on the findings of our pilot study. The process consists of several steps
(in rectangles and annotated with 1–5) and output (in cylindrical) from each step.

5.1 Findings and Implications

Realism is an essential quality to evaluate not only to critical scenarios, but all relevant
test scenarios in general [8]. However, it is not sufficiently addressed in the current
research. In this study, we propose a methodology using two metrics, i.e., attribute
distribution and Euclidean distance, to evaluate the realism of synthetic critical sce-
narios. As a proof of concept, we employ two AV collision sets, including a synthetic
one from DeepScenario and a realistic one from DMV California for empirical evalua-
tion of our methodology. We evaluate the similarity of DeepScenario data by analysing
the attribute distribution with and distance to DMV California data. After the eval-
uation, we assess our results by interviewing the DeepScenario author. Based on our
findings from the pilot study, we propose a continuous process, depicted in Figure 6.
In this process, we propose to use our methodology for a continuous analysis of real-
ism and using the findings, potentially after a causal analysis, to address the gaps
by updating the fitness functions for the synthetic scenarios and guidelines for field
testing and data collection for real scenarios.

In addition to this general recommendation, we analyse the specific findings to
answer our research questions below.
1. Regarding RQ1.1, we observe the attribute distribution between the two datasets

differs significantly. While DMV California had substantial AV collisions in Clear
weather, Daylight lighting, Dry roadway surface, and No unusual roadway con-
ditions, DeepScenario explored and identified collision scenarios evenly in each
selected condition. For example, DMV California has 86.53% of collision scenar-
ios recorded in Clear weather while DeepScenario has 50.81%. However, that does
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not necessarily mean the scenarios contained in the two datasets are different.
In the distance-based analysis, we take each individual scenario from DeepSce-
nario and find whether a similar scenario appears close by in DMV California.
The result reveals that the two datasets, although possessing several different sce-
narios, are still similar. Overall, attribute distribution and Euclidean distance are
considered effective metrics to quantify similarities between two critical scenario
sets, further indicating the realism of the synthetic critical scenarios.
As we reported in Section 4.1 and 4.2, we find no evident impact of inclement

weather or lighting on AV collisions; it requires, however, further investigation for
RQ1.2 to identify which attributes are critical for causing more collisions for AVs
in the real world, and subsequently,RQ1.3 – how the identified casual parameters
from real world are reflected in synthetic collision scenarios. Therefore, we are
unable to answer these research questions in this study, given the datasets and
contextual information we have, e.g., test arrangements for DMV California data.
In summary, for RQ1, we conclude, based on our methodology and results,

that DeepScenario is similar and exposes no big differences to realistic collisions,
although it does identify new scenarios not recorded in DMV California. However,
that depends on how different AV manufacturers have arranged their tests. Also,
as we discussed in Section 3.3, the current study evaluates limited attributes while
other attributes of interest are not available or not feasible to extract.

2. For RQ2, we observe that more realistic attributes and values should be incor-
porated in the exploration of synthetic critical scenarios, and the quality of
simulation should be properly evaluated with respect to real-world testing before
using it for testing AVs/ADS.
Specifically, DeepScenario used only a small subset of realistic weather, lighting,

roadway surface, and roadway conditions. To close the reality gaps in RQ2.1,
more realistic attributes should be used and their representation, as well as effects
in simulation, should be evaluated. The author of DeepScenario confirms such
gaps, and it corroborates the findings by Song et al. [8] that systematic selection
of parameters and faithful representation of them in simulation is required for
critical scenario exploration. We need to validate and ensure at least attributes
that are critical for collisions (as concerned in RQ1.1) are precisely simulated.

As for RQ2.2, field testing needs to be compensated by simulation testing as
they identify new critical scenarios that might be rare in real-world traffic. Cor-
respondingly, field testing can provide useful guidance for improving the realism
of simulation and synthetic scenarios as well. Therefore, we propose developing a
feedback control loop for real-world and simulation testing and combining them
in an effective way for testing AVs/ADS. While such a concept has been stud-
ied and reported [14, 73], how the two testing approaches should be divided or
combined effectively in AV testing is not entirely evident yet.

Overall, this is the first step towards a data-centric evaluation of synthetic critical
scenarios. We observe that a decisive outcome of our analysis is hampered by the
fact that 1) the two datasets used are arguably too small to be statistically significant,
2) some contextual information such as test arrangement and simulation quality are
unavailable, and 3) prior distributions of some attributes such as roadway surface
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and conditions are unavailable. Those limitations have hindered us from performing a
comprehensive evaluation of the two datasets and exposed some threats to our study.

Nevertheless, we maximise the findings of this study by 1) selecting the best datasets
available to us, 2) using all extractable attributes in our evaluation, and 3) deriving
general recommendations and guidelines for evaluating and improving the realism of
synthetic critical scenarios. Given realism is an essential quality for test scenarios
for AVs/ADS, and limited approaches, empirical evaluation, and insights have been
reported so far, our study sheds some light on this urgent topic and serves as a basis for
future studies by making four main contributions, as already described in Section 1:
1. A methodology for evaluating the realism of synthetic scenarios from realistic

scenarios, using two metrics – attribute distribution and Euclidean distance. The
metrics provide both macroscopic and microscopic views of the realism of a
synthetic critical scenario set.

2. An empirical evaluation of how well a synthetic scenario set DeepScenario gen-
erates realistic AV collisions as recorded in DMV California, revealing findings
and insights from empirical perspectives.

3. Observing existing shortcomings and possible future improvements, serving as
guidelines for recording realistic scenarios, and generating and evaluating syn-
thetic critical scenarios. The recommendations are general and not specific to the
datasets used in this study.

4. We include human assessment in the loop to provide further insights and guide-
lines for evaluating the realism of synthetic critical scenarios on top of the
empirical evaluation. The assessment strengthens the need to evaluate the realism
of synthetic scenarios for testing AVs/ADS and the findings of our study.

5.2 Limitations

Although our methodology is defined to be generic and is meant to be applicable to
various datasets, generalising our results particularly concerning our proof of concept
is prone to some limitations (as also mentioned in Section 4 and 5.1).

In our proof of concept, one limitation concerns the different ADS and ODDs
involved in the two datasets. As introduced earlier in Section 3, DMV California col-
lects collision reports from several manufacturers, such as Waymo and Cruise, on
different roads and weather in California. In contrast, DeepScenario uses Apollo ADS
and four roads in San Francisco. Ideally, we want both (synthetic and realistic) datasets
generated by the same system, in the same places, under the same weather and road
conditions, and so on, to get a fair comparison between them. Otherwise, the discrep-
ancies in collisions between the two datasets may simply be attributed to the different
ADS and ODDs involved. That, however, is very challenging for the time being due to
the unavailability of two perfectly matching datasets and thus; we acknowledge that
as an inherent limitation for the current study. As a proof of concept, we use the two
selected datasets (from DeepScenario and DMV California), which are the closest and
publicly available datasets that we can find, to analyse how well DeepScenario (with
the combination of Apollo ADS and SVL simulator) can produce similar critical sce-
narios as recorded in DMV California. This has been useful in revealing some insights
and deriving general recommendations about realism from them.

32



Another limitation stems from the small size of the two datasets, further; raising
general concerns about the usefulness of comparing their similarities. A small real-
world dataset, e.g., DMV California data, owns the risk of not being statistically
significant or not reflecting the ground truth distribution of real-world accidents. Fur-
ther, the risks potentially lead to uncertainties and lack of confidence in findings we
obtain from comparing DeepScenario from DMV California. For example, our distri-
bution analysis reveals DeepScenario has a significantly different attribute distribution
from DMV California, as described in Section 4, suggesting collisions take place to
a different extent in DeepScenario from DMV California, under the same conditions
(e.g., weather, road conditions). However, different results may emerge if a larger num-
ber of realistic AV collisions were collected in DMV California and expose a different
distribution of attributes. Therefore, the evaluation analysis and some observations,
as reported in Section 4, are restricted to the selected datasets only. Still, we derive
general recommendations for improving the realism of synthetic critical scenarios.

Lastly, the limitation also lies in that only few attributes are extractable from the
two selected datasets and their prior distribution in the real world is lacking. As dis-
cussed earlier in Section 4.3.2, there are several relevant attributes defined in DMV
California data, such as movement proceeding collision and other associated factors,
not used, due to inability to extract them from DeepScenario. When more attributes
are included in the evaluation, we may obtain different results and analysis on the sim-
ilarity between the selected datasets. Additionally, more contextual information such
as test arrangements and prior distribution of the extractable attributes could enable a
causal analysis and identify critical attributes for AV collisions. Those, unfortunately,
are not available at the moment and thus; causal relations cannot be established.

5.3 Threats to Validity

As our goal is to devise a methodology and demonstrate a proof of concept for evaluat-
ing the realism of synthetic collision scenarios from realistic AV collisions, we strive to
maximise the construct and internal validity throughout the study. Several limitations
are discussed in Section 5.2, herein we focus on the validity of this study, especially
regarding possible threats and their impacts as well as how we mitigate them.

• Construct validity refers to how well the constructs under study are measured [86,
87]. Our primary focus in this study is the realism of synthetic critical scenarios
for testing AVs/ADS.
One threat to construct validity is how the concept of realism is defined and

measured for synthetic scenarios. As discussed in Section 2, no standard defini-
tions or metrics are reported. To mitigate that, we define realism as the degree
of similarity of synthetic scenarios to realistic scenarios, and propose two evalu-
ation metrics to analyse realism from macroscopic and microscopic perspectives.
Also, we employ various analyses based on the metrics to capture a better view
of realism, including single- and multiple-attribute distribution analysis, and
distance-based analysis via several criteria and K-means categorisation.
Another threat comes from the datasets and attributes we select for evaluation,

especially concerning how well they can be used to measure realism. To mitigate
that, we use the best datasets that are available to us and use all extractable
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attributes in our analysis. DeepScenario is a fairly large scenario set generated
using various optimisation strategies, weather, road users, and user behaviours
on a map of San Francisco. DeepScenario is open and provides a structured
specification for each scenario. DMV California collects and releases all real AV
collisions, in a standard template, for 10 years in California. Although they are not
big currently, the two datasets represent synthetic and realistic critical scenario
sets from the same place (although not entirely exactly the same) to some extent,
and are live projects that are continuously maintained and updated.

• Internal validity refers to the validity of the results internal to the study [86, 87],
e.g., how we have analysed the data and derived the findings and conclusions.
One threat to internal validity is the small size of the two datasets for attribute

distribution analysis. We acknowledge that as an inherent limitation as critical
scenarios like collisions are rare, and contextual information such as how manufac-
turers have arranged their tests in different conditions is missing. As a preliminary
step attempt to evaluate realism, we explore different perspectives and maximise
insights or current limitations we can learn from them. Also, we manually com-
pensate data with missing field(s) and maximise the data for evaluation. Despite
the evaluation results being subject to the datasets used, the recommendations
are somewhat general, and provide a basis and considerations for future studies.
Another threat concerns about the limited attributes we use for evaluation. To

mitigate that, we analyse both datasets and use all extractable attributes in our
evaluation. As described in Section 3.2.1 and 4.3.2, some additional attributes
are available from DMV California data, but are not used due to the limitations
in DeepScenarios and SVL simulator. We expect new results may emerge when
more attributes are used, and we do not claim the evaluation results are general.
Nevertheless, this study reveals some empirical observations by evaluating the
two datasets, and provides general recommendations for future studies.

5.4 Future Work

Given the current limitations and validity concerns for the proof of concept, we identify
several tasks, ideas, and potential research directions for future work.

One future work is to update the datasets to incorporate recently included collision
scenarios, and explore new datasets and attributes available for evaluation and anal-
ysis of realism. We should also synchronize with the DeepScenario team to work out
additional attributes, or explore new datasets with more relevant attributes. Also, to
develop guidelines on what attributes need to be collected for AVs/ADS test scenarios.

Another idea for future studies is to consider a different strategy to evaluate realism
of synthetic scenarios. Instead of comparing everything in a driving scenario as a whole,
we could separate the ADS behaviour, surrounding environment, and interactions
between ADS and other road users into different parts. For example, we may only focus
on evaluating how well a simulation environment represents regular road traffic and
surrounding environment, i.e., human traffic without ADS, and evaluating whether
simulation reflects ADS behaviour in the real world in another study. The formal one
would only require real-world dataset for human traffic, which are already available
at a large scale, such as SHRP2 NDS [88] and GIDAS [89] datasets.
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The evaluation of realism can significantly impact the selection of test scenarios for
ADS based on their realism. It would be important to study how realism evaluation
can be used for test scenario selection for ADS, and further; improve the test efficiency
and effectiveness. This suggests the testing should only focus on realistic and relevant
scenarios for the ADS under test. Another research direction would be studying how
realism impacts the scenario coverage. Although critical scenario identification is, in
general, expected to identify critical scenarios and improve the overall test coverage
effectively, the realism of such scenarios remains a fundamental issue to understand.

6 Conclusion

Critical scenarios are significant and have received considerable attention in research
for testing AVs/ADS. Such scenarios are identified and analyzed to determine where,
how, and why AVs fail, providing insights into their safety performance and helping to
prevent similar incidents in the future. While extensive studies of critical scenario iden-
tification for testing AVs/ADS have been reported, the realism of resulting scenarios is
rarely explored and their relevance to testing is unclear. In this study, we propose two
metrics and evaluate the similarity of a synthetic collision set DeepScenario from realis-
tic AV collisions collected by DMV California. We analyse the distribution of different
attributes such as weather and lighting conditions, and observe a significant difference
between the two datasets. We also perform a distance-based analysis and find that
DeepScenario generates new collision scenarios that have not been recorded by DMV
California, but they are still similar to the scenarios from DMV California from a dis-
tance perspective. Based on the evaluation results, we derive several recommendations
for improving the realism of synthetic critical scenarios, concentrating on including
more realistic parameter values (e.g., snowy weather) for critical scenario exploration,
evaluating the quality of simulation, performing causal analysis on attributes for AV
collisions, and developing a guideline of which attributes to collect for test scenarios.
The study is limited by the data and attributes available, and we expect future studies
to incorporate more attributes to evaluate the realism of synthetic critical scenarios.
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