
Temporal Logic Falsification of Cyber-Physical Systems:
An Input-Signal-Space Optimization Approach

A. Aerts1 B. Tong Minh2 M.R. Mousavi3 M.A. Reniers4

Abstract— Temporal logic falsification is a promising ap-
proach to model-based testing of cyber-physical systems. It
starts off with a formalized system requirement specified as
a Metric Temporal Logic (MTL) property. Subsequently, test
input signals are generated in order to stimulate the system and
produce an output signal. Finally, output signals of the system
under test are compared to those prescribed by the property
to falsify the property by means of a counterexample. To find
such a counterexample, Markov Chain Monte-Carlo (MCMC)
methods are used to construct an optimization problem to steer
the test input generations to those input areas that maximize
the probability of falsifying the property.

In this paper, we identify two practical issues in the above-
mentioned falsification process. Firstly, a fixed time domain of
the input-signal space is assumed in this process, which restricts
the frequency content of the (generated) input signals. Secondly,
the existing process allows for input selection steered by the
distribution of a single input variable.

We address these issues, by firstly, considering multiple time
domains for input-signal space. Subsequently, an input-signal-
space optimization problem is formally defined and imple-
mented in S-TaLiRo+, an extension of S-TaLiRo (an existing
implementation for solving the MTL falsification problem).
Secondly, we propose a decoupled scheme that considers the
distribution of each input variable independently. The appli-
cability of the proposed solutions are experimentally evaluated
on well-known benchmark problems.

I. INTRODUCTION

Model-Based Testing (MBT) is a technique that originates
from software and system testing [19], [31] and has been
traditionally applied to software as well as discrete event
systems [9], [30]. Many attempts have been recently made to
adapt MBT to the domain of cyber-physical systems (CPSs),
where discrete and continuous aspects of system behavior are
intertwined, cf. [7], [15], [21], [23] and references therein.

In this paper, we focus on a promising example of such
attempts, namely, on temporal logic falsification [4] for
CPSs. This technique evaluates the conformance of a system
to a set of formal properties expressed in Metric Temporal
Logic (MTL) [24]. A subset of the input-signal space is
used to trigger the system and observe the output behaviour
on which the formal property is checked. Hence, the goal
is to find an input signal such that a slighlty deviating

1Arend Aerts is with the Precision Motion Control
department, Bosch Rexroth, Eindhoven, The Netherlands
arend.aerts@boschrexroth.nl

3Bryan Tong Minh is with ALTEN Mechatronics, Eindhoven, The
Netherlands bryan.tongminh@alten.nl

3Mohammad Reza Mousavi is with the Department of Informatics,
University of Leicester, Leicester, UK mm789@le.ac.uk

4Michel A. Reniers is with the Department of Mechanical Engineer-
ing, Eindhoven University of Technology, Eindhoven, The Netherlands
m.a.reniers@tue.nl

output signal may falsify the formal property. This technique
is implemented in the S-TaLiRo (Systems Temporal Logic
Robustness) toolset [8] as a Matlab toolbox.

In the above-mentioned model-based testing process, if no
falsifying output trajectory or so-called falsifier is found, the
CPS model is assumed to conform to the MTL property.
Note that due to the nature of testing, the absence of
falsifying model (output) behavior does not formally prove
correctness (i.e., only non-conformance can be proved). In
[5], the aforementioned techniques have been applied to a
soccer wheelchair case study. In the course of this study, we
observed the following two practical issues with the existing
approach:

1) S-TaLiRo uses a coupled input proposal scheme for
their Simulated Annealing search approach. Hence, the
most constrained input will unavoidably restrict the
proposal scheme in all other dimensions.

2) The existing approach uses a fixed number of control
points for all input signals, for which the interval times
of the control points are optimized. Suppose that no
falsifiers can be found for the given CPS model, given
an input-signal-space subset, it can be the case that
a different subset of the input-signal space (using a
different number of control points) may be able to
prove non-conformance. As a result, based on a single
input-signal-space subset, invalid conformance verdicts
might be reached. (We refer to [26] for an analysis
of the effect of sampling on the soundness and the
completeness of conformance testing.)

In [4], this coupled proposal scheme is applied on models
with one input-signal. However, when considering multiple
inputs (higher dimensional input spaces), the effectiveness
of the approach can decrease significantly, i.e., previously
achieved falsification rates (based on a single input) may drop
substantially. We show examples of this phenomenon in the
remainder of this paper. Moreover, we devise a decoupled
proposal scheme which, by decoupling independent input
signals, improves the effectiveness of the existing approach
when dealing with multiple inputs.

Furthermore, we propose an extension of the MTL fal-
sification problem in this paper, namely an input-signal-
space optimization approach which allows an additional
optimization over the time domains of multiple input signals.
As a result, when searching for falsifying model output
behavior, a (non-)conformance verdict considers numerous
subsets of the model input-signal space and hence, provides
a more reliable conformance result.

Both of the above-mentioned improvements are imple-
mented in S-TaLiRo+ (see [5], [6] for source code and appli-
cation notes), an extension of S-TaLiRo which supports the
input-signal space MTL falsification problem with decoupled
proposal scheme. Moreover, in this work, benchmarks from
[4] are used and extended to show the effectiveness of the
extended and optimized approach.

The remainder of this paper is structured as follows. The
(original) MTL falsification problem [4] and a black-box
solution to it are introduced in Section II. In Section III,
two benchmarks are introduced that are used to evaluate the
proposed adaptations. In Section IV, the decoupled proposal
and its experimental verification are discussed. The input-
signal-space MTL falsification problem and the experimental
evaluation of the associated solution are discussed in Section
V. Section VI discusses an experimental evaluation of a solu-
tion where both adaptations are included. Finally, concluding
remarks are presented in Section VII.

II. MTL FALSIFICATION

In this section, we recall some basic notions regarding
MTL falsification that are used throughout the rest of the
paper.

A. System model, input and output spaces

A (system) model Σ is assumed to be a mapping ∆Σ :
X0 ×U→ Y R from a compact set of initial conditions X0

(the set of vectors of valid input values) and a compact set
of input signals U ⊆ UR to output signals Y R. In these
notations U is a compact set of possible input values (the
input space), Y is the set of output values (the output space),
and R is a bounded time domain.

For the convergence of the test-case generation algorithm,
it is assumed that the input space U is discretized and limited
to a (possibly) large but finite set. Additional restrictions on
the type of models that are considered in this paper are the
same as in [4]. We do not list these explicitly here as they
play no role in the forthcoming developments.

B. MTL properties and falsification

In order to construct (timed) specifications for CPSs,
Metric Temporal Logic (MTL) [24], [27] and variants thereof
such as Signal Temporal Logic (STL) [25] are used. These
logics originate from Linear Temporal Logic (LTL) [28].
Although both logics are suitable to formalize system re-
quirements in this setting, MTL is used in this paper. In the
remainder of this section, we briefly and informally introduce
MTL and refer to [17] for a formal and detailed treatment.

In an MTL formula, propositions refer to properties of the
output space, i.e., each proposition stands for an atomic prop-
erty satisfied by a subset of the output space. Propositions can
be composed using classical propositional connectors such
as conjunction, disjunction, and negation. Moreover temporal
modalities such as ♦Iφ (for eventually within I) specify that
formula φ holds somewhere within the time interval I . Other
temporal modalities include �Iφ (for always within I) and
φ UI ψ (for until within I).

The semantics of an MTL formula is the set of output
signals satisfying it; as stated above, an atomic proposition
stands for a set of outputs in the output space and the se-
mantics is inductively defined for propositional and temporal
operators in a straightforward manner.

An MTL formula is falsified on a system if there is an
initial condition and an input signal, for which the the output
signal does not satisfy the MTL formula.

C. MTL robustness

It is assumed that the output-signal space is equipped with
a (generalized) metric defining how far apart two (sets of)
output signals are (see [4]). Hence, it is possible to define
the robustness of a given output signal with respect to an
MTL formula in terms of the distance of the output signal
from the set of output signals which violate (or satisfy) the
property: a large robustness value means that the signal is
far from falsifying it. Negative robustness values denote the
signals violating the property and positive robustness values
denote the signals satisfying it.

In the remainder of this paper, for an MTL formula ϕ
and an output signal y, the robustness of output trajectory y
w.r.t. property ϕ is denoted Dϕ(y). For more details about the
definition of this robustness value, we refer to [4]. However,
this information is not needed for the developments in this
paper.

D. Falsification as optimization

In [4], falsification of MTL formula ϕ on system ∆Σ :
X0 × U → Y R is reduced to the following optimization
problem:

(x∗0, u
∗) = arg min

x0∈X0,u∈U
Dϕ(∆Σ(x0, u)) (1)

where the robustness value Dϕ(∆Σ(x0, u)) denotes the
extent to which the property ϕ is falsified by the output
associated with input signal u and initial condition x0. In
case we end up with x∗0 and u∗ with Dϕ(∆Σ(x∗0, u

∗)) < 0,
a counterexample is found.

In Equation 1, a feasible optimization problem is formu-
lated, i.e., the initial conditions X0 and the input space U can
be manipulated by (test-)case generation tools, e.g., by input-
based search algorithms such as Monte-Carlo techniques.
Note that Equation 1 deviates in notation from what is
proposed in [4], namely the separation between x0 and u, for
purposes that become clear later. Next, the algorithmic solu-
tion of the minimization problem (e.g., test-case generation)
is further discussed.

E. MTL falsification solution

In order to solve the MTL falsification problem, a coun-
terexample to the property ϕ has to be found. If none
is found, the property is considered (possibly marginally)
satisfied on the system model. To discover such a counterex-
ample, Monte-Carlo optimization techniques (see [22] for an
overview) are used to perform a random walk over the initial
conditions X0 and input-signal space U. This randomized
search is steered by the above-discussed robustness metric

[12], [16], i.e., initial condition x0 and input signal u which
result in an output signal with a lower robustness value are
favored.

In Figure 1, the MTL falsification solution is presented
schematically. It contains a model Σ, an MTL robustness
block representing the MTL robustness computation, and
a test-case generation block containing the Monte-Carlo
optimization technique. In fact, the observed closed-loop (of
these three blocks) depicts a global optimization problem,
i.e., to find a counterexample to the MTL falsification
problem by discovering the global minimizer of the ro-
bustness degree (Dϕ(y)). In this case, the MTL robustness
computation serves as a cost function for the Monte-Carlo
optimization technique in the test-case generation. Hence, the
latter begins a random walk over the input-signal space by
generating and applying an input (x0 ∈ X0, u ∈ U) to the
model Σ and observing an output trajectory y ∈ Y R. Subse-
quently, based on this trajectory and the formal property ϕ, a
robustness value (Dϕ(y)) is computed which serves as ‘steer’
input for the next initial condition and input signal. Note that
a negative robustness value indicates that a counterexample
is found, while a positive value indicates that the property
ϕ is satisfied on y (both with some margin depicted by the
magnitude of Dϕ(y)). Finally, after identifying a falsifier, the
MTL falsification solution outputs the minimal robustness
value min(Dϕ(y)) and the corresponding model behavior
(x0, u, y)fals .

Mechanising this technique in a tool, such as S-TaLiRo, is
a non-non-trivial aspect of MBT, in particular regarding the
industrial applicability of the technique. In industry, effective
and especially affordable tooling may influence or determine
the choice for a particular testing approach. S-TaLiRo was
developed in collaboration with industry [21] to respond to
such a need and the present paper attempts to enhance its
effectiveness further. The tool description in the remainder
of this section is based on [4].

In order to solve an optimization problem in a black-
box fashion, stochastic (search) algorithms are utilized by S-
TaLiRo. Such techniques typically evade local minima, often
present when solving an optimization problem (cf. the work
of Abbas and Fainekos [2] where local sub-gradient descent
is used to optimize the search). The toolset has a modular
structure and hence, it supports a wide range of optimiza-
tion engines such as Simulated Annealing (SA) [1], Cross-
Entropy [29], and (extended) Ant-Colony Optimization [13].
In this paper, simulated annealing is selected as a Monte-
Carlo technique to realize the test-case generation step of
Figure 1, due to its proven service record [14]. In fact, to
improve its convergence and test-input generation properties,
SA is combined with acceptance-rejection sampling [10]
and extended to the class of Markov-Chain Monte-Carlo
(MCMC) techniques [18], i.e., a random walk over a Markov
chain (representing the input space) is performed. To further
elaborate, the SA algorithm is depicted below. The goal of
SA is as described in Equation 1, i.e., to find an input (x0, u)
which produces a counterexample to the formal property ϕ.
In Algorithm 1, the evaluation of the robustness value of a

given input condition and input signal is represented by the
robustness function f .

Algorithm 1: Simulated annealing algorithm (based on
[4])

Input : X0, U, Robustness function f , Proposal
scheme PS

Output: x0 ∈ X0, u ∈ U

1 Generate an initial x0 ∈ X0, u ∈ U;
2 while f(x0, u) ≥ 0 do
3 (x′0, u

′)← PS(x0, u);
4 α← e−β (f(x′

0,u
′)−f(x0,u));

5 r ← UniformRandomReal(0,1);
6 if r ≤ α then
7 (x0, u)← (x′0, u

′);
8 end
9 end

In Algorithm 1, SA starts by generating an input signal
(x0, u) at random (Line 1). Subsequently, the robustness
of the generated input signal is evaluated by f(x0, u).
Based on the outcome, the algorithm either proceeds or a
counterexample is found, i.e., the generated (x0, u) produces
a falsifying trajectory (Line 2). In the case of a positive
valuation, based on the current input sample (x0, u), a next
input signal (x′0, u

′) is generated by the proposal scheme
PS (Line 3). In the implementation, in fact, the domain
of the input signals is discretized. A (user-defined) number
of control points is distributed equidistantly over the time
domain R of the input signals. For each such control point,
a value is determined and an input signal is interpolated from
these. S-TaLiRo also offers other possibilities, but these are
not considered in this paper. More details about the proposal
scheme used by S-TaLiRo are provided in Section IV-A. Note
that the generation of a next input signal, which is based on
the current input sample, transforms the otherwise ordinary
Monte-Carlo technique into a MCMC.

Subsequently, the robustness value of the newly proposed
(input) trajectory f(x′0, u

′) is computed and compared to the
existing (best) robustness value. Based on this comparison, a
ratio α is computed using an additional parameter β (Line 4).
During the iterations, the β parameter is frequently updated
in order to allow the SA algorithm to escape local minima.
See [4] for more details on this mechanism.

Next, a (real) number r is sampled from a uniform
distribution over [0,1] (Line 5), and subsequently compared
to α (Line 6). Based on the outcome of this comparison,
the new signal is either accepted (x0, u become x′0, u

′) or
rejected (x0, u remains) (Line 7). In case the new input signal
has a smaller robustness value (f(x′0, u

′) − f(x0, u) < 0),
then α > 1 and the new signal is always accepted. In case
the new input sample has a worse robustness value, then
0 < α < 1 and the new (input) signal is accepted with some
non-zero probability (based on the generated r and r ≤ α

Model Σ
Test-case

generation

MTL
robustness

X0,U x0, u

y

Dϕ(y)

ϕ

(x0, u, y)fals

min(Dϕ(y))

Fig. 1. MTL falsification solution (based on [4])

criteria). Intuitively, larger values of f(x′0, u
′) − f(x0, u)

result in a smaller acceptance probability based on r ≤ α
(due to the negative exponent of e).

Since Algorithm 1 may not terminate, e.g., when the
system under test indeed conforms to the formulae, the im-
plementation has an upper bound on the number of iterations
of the while loop construct.

III. BENCHMARKS FOR EXPERIMENTAL EVALUATION

In order to evaluate our proposed extensions, two bench-
mark examples are adopted from [4], namely the automatic
transmission (AT) [32] and the third order ∆−Σ modulator
[11]. Both examples are Matlab Simulink models and the
AT benchmark example is also proposed as a standard
benchmark problem for hybrid system verification in [20].

A. Automatic transmission

In Figure 2, the AT benchmark example is shown. This
Simulink model contains a combination of three Simulink
subsystem blocks (containing multiple integrators), a number
of one- or two dimensional look-up tables, and a Stateflow
model which contains two sub-charts. Hence, because of
the input and/or conditional dependencies of many of these
components, such a relatively small model is already a
challenge for formal verification methods/tools [4].

Based on a throttle input signal (U1), the AT benchmark
example outputs a vehicle velocity (speed) and an engine
RPM signal (RPM). Note that the brake input signal is
intentionally not considered and left at zero. Moreover, in
[4], for these two output signals, the following four MTL
properties are formulated.

ϕAT1 = ¬(♦ speed ≥ 120 ∧ ♦ RPM ≥ 4500)

ϕAT2 = ¬♦(speed ≥ 120 ∧ ♦[0,10] RPM ≥ 4500)

ϕAT3 = ¬♦(speed ≥ 120 ∧ ♦[0,10] speed ≥ 125)

ϕAT4 = ¬♦(speed ≥ 120 ∧ ♦[0,7.5] RPM ≥ 4500)

Formula ϕAT1 is the MTL formalization of the property that
the car speed is always below 120 km/h or the rotational
speed of the engine is always below 4500 rpm (the temporal
operator ♦ stands for ♦[0,∞), i.e., eventually now or in the
future). Formula ϕAT2 expresses that the speed of the vehicle
is always below 120 km/h or that the rotational speed of the

engine is below 4500 rpm in the first 10 time units. The
other formulae follow the same pattern as ϕAT2 and hence,
are clear from that context.

For the experiments with the decoupled proposal scheme
benchmark in Section IV, an additional input (U2) is added
to the AT benchmark example of Figure 2. However, this
input is disconnected from the rest of the model and does
not influence any AT system dynamics, it solely expands the
input space with a trivial second input signal. Note that the
benchmark with the additional input is denoted AT*.

B. Third order ∆− Σ modulator

Originally, the third order ∆−Σ modulator is an example
from the electrical domain with one input signal, three initial
conditions, and three output signals. However, in this paper,
the three initial conditions are added to the input space as
(configurable) constants. In Figure 3, this (slightly) modified
version of the third order ∆− Σ modulator is shown.

For the above example, the following falsification problem
is formulated. Based on initial conditions in the set [-0.1,0.1],
i.e., U2, U3, U4 ∈ [−0.1, 0.1], and a configurable input
signal range for U1, the system states X1, X2, and X3
should always stay within the interval [-1,1]. This is captured
by the MTL formula �(−1 ≤ X1 ≤ 1 ∧ −1 ≤ X2 ≤
1 ∧ −1 ≤ X3 ≤ 1) (as before, � stands for �[0,∞), i.e.,
everywhere throughout the execution). The MTL falsification
problem with this MTL formula for a model with a restricted
input range for U1 to satisfy U1 ∈ [−i, i] is denoted by
P∆−Σ
i .
In this paper, the following MTL falsification problems

are used: P∆−Σ
0.45 , P∆−Σ

0.40 , P∆−Σ
0.35 , P∆−Σ

0.30 , P∆−Σ
0.25 , and P∆−Σ

0.20 .
Note that the last three, more challenging, MTL falsification
problems were not considered in [4].

IV. DECOUPLED PROPOSAL SCHEME

In this section, we extend the existing proposal scheme
(as part of the solution of the MTL falsification problem
in Section II-E) to deal with multiple inputs independently.
First, in Section IV-A, the proposal scheme from [4] is
introduced. Then, in Section IV-B, the extended version of
the proposal scheme, called the decoupled proposal scheme,
is introduced. In Section IV-C, the original proposal scheme

Fig. 2. Automatic transmission benchmark example

Fig. 3. Third order ∆ − Σ modulator benchmark example

and our decoupled proposal scheme are compared on the
benchmarks introduced in Section III.

A. Proposal scheme

In Section II-E, a proposal scheme is introduced which
generates or samples a new initial condition and input signal
(x′0, u

′) based on the current values (x0, u). In fact, because
of this dependency, a Markov chain over the input-signal
space is considered, i.e., every state of the Markov chain
represents a (reachable) state of the input-signal space. Note
that a discretized input-signal space has been assumed, and
hence, the Markov chain is finite.

To construct a (x0, u)-dependent proposal scheme, all
x′0 ∈ X0\{x0} and u′ ∈ U\{u} are considered with some
non-zero probability. Typically, such a next-state selection is
realized by means of a random walk over the Markov chain.
In addition, the PS should also converge to the distribution
defined by the robustness function f to find the global
minimizer. To have such convergence, three requirements

regarding (the random walk over) the Markov chain are
considered, namely detailed balance, irreducibility, and ape-
riodicity (see [4] for details).

Despite the above convergence requirements, it is rel-
atively straightforward to construct a converging proposal
scheme, e.g., a purely uniform sampling of the input space
already indicates conformance to these requirements [4].
Typically, a PS based on a normal distribution centered at
(x0, u) provides a well-suited approach to solve the optimiza-
tion problem and adheres to the convergence requirements
[4]. Hence, such a technique is used in a so called hit-and-
run proposal scheme, shown in Figure 4. Note that in the
following explanation, for simplicity x0 is not considered.

Firstly, some notation of Figure 4 is introduced. If a model
Σ contains two input variables with input spaces U1 and
U2, respectively, then the complete (model) input space U
is given by U1 × U2. Input signals for the different input
variables all use the same time domain, which is a set of
control points that lie within R. For each of these control

Fig. 4. Hit-and-run proposal scheme (based on [4])

points, for each of the input variables a value has to be
provided.

For the following explanation, only one control point is
considered. Note that in most practical cases, multiple control
points are present and hence, the search space becomes
higher dimensional than the discussed 2D example. Now,
based on Figure 4, the following three phases/steps of the
proposal scheme are elaborated. Note that in this paper,
only convex input domains are considered, i.e., there are no
dependencies between U1 and U2 constraining the overall
input space U .

1) Firstly, from the value of the input variables u =
(u1, u2), based on a normal probability distribution,
a random unit vector v is generated in the search
space U . In practice, such a unit vector is generated by
v = h

|h|2 , with h being a sampled vector in U (from a
normal distribution).

2) Next, based on the generated unit vector v, the minimal
and maximal displacement along this vector are iden-
tified, i.e., the smallest value δm and largest value δM
are determined which keep u + δv with δ ∈ [δm, δM]
in the input space U .

3) Finally, based on a value s sampled from a uniform
probability distribution over [-1,1] with zero mean,
the sampled value s is multiplied with δm or δM
(depending on the sign of s) to generate δ, resulting in
the next input value u′ (along the vector v): u′ = u+δv
where δ = −sδm if s < 0 and δ = sδM , otherwise.

Hence, the above proposal scheme is used to generate new
input samples/signals. Note that this concept also applies for
x0, which only adds additional dimensions to the PS search
space.

B. Decoupled proposal scheme

In Section IV-A, a hit-and-run proposal scheme is intro-
duced which performs a (steered) random walk or search
over a convex input space. Moreover, as explained in that
subsection, a typical (convex) model input space is often
higher dimensional. In this paper, based on benchmark exam-
ples (discussed later on) and experiences with the previously
mentioned soccer wheelchair [5], it is observed that the per-
formance/convergence of this proposal scheme is inadequate,

i.e., higher dimensional input spaces heavily constrain any
movement or search in the input space. To elaborate, when
expanding Figure 4 with numerous dimensions, there is a
(increasingly) high probability for a single dimension to
result in a (very) small δm or δM . As a consequence also the
displacements in all other dimensions are restricted by this
small value. This results in a (strong) performance decrease,
i.e., convergence of the hit-and-run proposal scheme tends
to go to infinity (but remains bounded).

To improve the proposal scheme of S-TaLiRo, a decoupled
version is proposed, i.e., every input signal is bounded indi-
vidually (see [6] for the Matlab implementation). In Figure
5, this concept is visualized. Note that the notation is adopted
from Section IV-A (with the assumption that for the figure,
only one control point is considered). To briefly elaborate, by
generating a vector vi and applying only the corresponding
displacement bounds (δim and δiM), heavy constrained input
signals do not influence other (minor-constrained) input
signals. For example, if u (with v1 and v2) is situated in
the lower right corner, then v1 is heavily constrained in its
forward direction but that does not influence the forward
movement of v2.

Fig. 5. Decoupled Proposal Scheme (DPS): illustrated for two dimensions

The three steps of the decoupled proposal scheme are
exactly the same as those for the proposal scheme dis-
cussed before, with the only difference that these steps are
performed for each input separately. The resulting u′i are
combined into the input signal u′ as expected.

In Figure 5, two input variables are considered with only
one control point. However, in case of multiple control points
in Ui, v1 and v2 become higher dimensional, then U1 and
U2 represent the set of all possible input values as a function
of time (control points). Note that in this case, in Figure 5,
the displacement bounds apply on the entire input signal,
i.e., based on the considered control points of a signal ui,
the minimum and maximum of the set of all displacement
bounds are considered.

In Section IV-A, three convergence criteria for the pro-
posal scheme are briefly mentioned. Without going into
detail, based on its similar structure to the original PS, the
decoupled proposal scheme conforms to these requirements
as well, i.e., detailed balance, irreducibility, and aperiodicity
of the Markov chain (representing all states of the input

space) are achieved.

C. Experimental results for the decoupled proposal scheme

To evaluate the performance differences between the orig-
inal proposal scheme and the decoupled version, the two
benchmarks introduced in Section III are considered.

Note that the AT* benchmark example has an additional
input with the same range but different domain, i.e., 210
control points (for the additional input) versus 7 control
points (throttle input). Hence, the resulting input space is
217-dimensional. Moreover, the input space of the third order
modulator is 13-dimensional, i.e., 13 control points (10 for
the input signal and 3 initial conditions).

In Tables I and II, both benchmark examples are run for
100 times in which every run iterates 1000 times through the
MTL falsification solution (given a random generated initial
falsification solution). As observed, for both benchmark
examples, the decoupled proposal scheme shows a large
performance increase.

In particular, the experiments with the AT* benchmark
show a considerable performance increase when considering
more difficult falsification problems (e.g., ϕAT3) up to the
point where no falsifiers can be found (ϕAT4). Moreover,
the decoupled proposal scheme almost achieves a maximal
falsification rate for both ϕAT1 and ϕAT2 . The (original)
proposal scheme achieves a much lower falsification rate for
these simpler properties which is mainly due to the number
of (algorithm) iterations which is insufficient to compensate
for the long convergence times. In addition, no meaningful
conclusions about timing can be made (other than that
DPS is faster) due to large differences in falsification rates,
i.e., falsification rates until 50-70% are heavily influenced
(negatively) by non-falsifying runs with maximal run times,
e.g., see ϕAT∗1 .

TABLE I
DECOUPLED PROPOSAL SCHEME BENCHMARK FOR AT*

ψ # Fals. Robustness Time (sec)
PS DPS PS DPS PS DPS

ϕAT∗
1 51% 99%

0.18
38.18
8452

15.442
15.442

0

0.046
37.2
210.6

0.041
3.47
33.98

ϕAT∗
2 31% 95%

0.015
48.4

11683

0.95
8.22
46.48

0.047
45.1
157.6

0.404
8.02

122.04

ϕAT∗
3 1% 54%

0.03
34.46
6400

0.0051
1

11.2

43.93
50.14
0.57

5.07
31.7
300.4

ϕAT∗
4 0% 0%

0.17
24.75
3112

0.16
0.52

3

48.6
49.8
0.126

47.96
48.59
0.29

PS: proposal scheme, DPS: decoupled proposal scheme, # runs: 100,
maximum # iterations: 1000, Matlab seed: 123. Legend: # Fals.: percentage
of falsified runs, Robustness: minimum, average, and variance of the non-
falsifying runs, Time: minimum, average, and variance of execution time
per run

For the third order modulator benchmark example, a max-
imal performance increase of the DPS is detected for prob-
lems P∆−Σ

0.45 until P∆−Σ
0.35 in the form of a 100% falsification

rate. Hence, the original benchmark in [4] is extended with

three increasingly difficult falsification problems (P∆−Σ
0.30

until P∆−Σ
0.20) to detect the performance boundaries of the

decoupled proposal scheme. As a result, the DPS showed the
ability to detect falsifiers upto a (modulator) input bound of [-
0.20,0.20]. Moreover, the (original) proposal scheme clearly
is incapable to deal with such hard falsification problems
(within 1000 iterations).

TABLE II
DECOUPLED PROPOSAL SCHEME BENCHMARK FOR THIRD ORDER

MODULATOR

ψ # Fals. Robustness Time (sec)
PS DPS PS DPS PS DPS

P∆−Σ
0.45 67% 100%

0.0017
0.033
0.0004

−
0.059
11.82
48.66

0.042
0.843
0.9

P∆−Σ
0.40 47% 100%

0.0029
0.062
0.0008

−
0.064
16.97
58.52

0.043
1.31
1.81

P∆−Σ
0.35 11% 100%

0.0031
0.079
0.0018

−
5.54
19.1
9.16

0.065
3.2
8.41

P∆−Σ
0.30 2% 86%

0.0049
0.12

0.0029

0.0037
0.024
0.0003

21.49
22.95
0.112

0.155
9.23
45.8

P∆−Σ
0.25 0% 13%

0.0318
0.16

0.0018

0.0071
0.065
0.0009

20.18
20.36
0.028

0.134
19.44
16.6

P∆−Σ
0.20 0% 1%

0.1003
0.19

0.0015

0.0036
0.1023
0.001

20.12
20.54
0.116

20.11
20.56
0.13

PS: proposal scheme, DPS: decoupled proposal scheme, # runs: 100,
maximum # iterations: 1000, Matlab seed: 123. Legend: # Fals.: percentage
of falsified runs, Robustness: minimum, average, and variance of the non-
falsifying runs, Time: minimum, average, and variance of execution time
per run

V. INPUT-SIGNAL-SPACE OPTIMIZATION APPROACH FOR
MTL FALSIFICATION

In Section II, the MTL falsification problem is denoted
as an optimization problem to find a falsifying input pair
(x∗0, u

∗) which triggers model output behaviour y∗ that
falsifies the MTL property ϕ. Moreover, to find such a
falsifying pair, the set of initial conditions X0 and input-
signal space U are used as search spaces. To choose a
suitable U for the above described optimization problem
(besides guesswork), knowledge of the system or model Σ
is required. Since the model-based testing step is performed
in a black-box fashion, no or minimal model knowledge
is used or even available. As a result, especially since the
temporal aspect or domain of the input signals has severe
consequences for its frequency content, this choice becomes
non-trivial, i.e., specific model resonances or sensitivities to
certain input stimuli (with higher chance to falsify) may not
be triggered. In this section, the MTL falsification problem is
adapted to include a form of input-signal-space optimization.

A. Input-signal space MTL falsification problem

To avoid using a specific (model) input-signal space U
and to move towards a (pure) black-box model-based testing
technique, the input-signal-space MTL falsification problem
is proposed, i.e., besides x0 and u, the input-signal space

U ⊆ UR is included in the optimization problem as a
search variable. As a result, based on computed robustness
values, several time domains for the input-signal spaces can
be considered during the solution process. Hence, based on
Equation 1, the input-signal-space MTL falsification problem
is denoted in Equation 2.

(x∗0, u
∗,U∗) = arg min

U⊆UR
min

x0∈X0,u∈U
Dϕ(∆Σ(x0, u))

(2)
In the above equation, an extensive but feasible optimization
problem is formulated, i.e., by expanding Equation 1 with a
variable input-signal space U, the search space is extended
with another optimization dimension. As a result, the MTL
falsification solution becomes computationally heavier, i.e.,
the required number of simulations to achieve convergence
grows exponentially fast (compared to the original solution).
However, the algorithm does gain the ability to look for an
input-signal space U which triggers the least robust output
behaviour. Now, based on the (original) MTL falsification
solution of Figure 1, the input-signal-space solution is pre-
sented in Figure 6.

As observed in Figure 6, the original MTL falsification
solution is included (unmodified) as part of a higher-level
optimization loop. In fact, this (higher-level) loop comprises
only one other block, namely the U-space generation block.
Connected to this block is the output of the (original)
MTL robustness solution (min(Dϕ(y)), see Figure 1). Now,
based on an initially generated input space (X0,U), the
original MTL falsification solution provides a minimal ro-
bustness value min(Dϕ(y)) to the U-space generation block.
This value, together with the provided inputs X0 and UR,
determines if it is favorable to stay close to the current
(possibly less robust) input-signal space U or to move away
from this (possibly very robust) input region. Inspired by
Algorithm 1, this decision process in the U-space generation
block is further elaborated in Algorithm 2. Note that in this
case, g(U) represents the outcome of the (original) MTL
falsification problem with (X0,U) as input and min(Dϕ(y))
as output.

Algorithm 2: U-space generation algorithm

Input : Input space UR, Minimal robustness function
g, Proposal scheme PS

Output: U ⊆ UR

1 Generate an initial U ⊆ UR;
2 while g(U) ≥ 0 do
3 U′ ← PS(U);
4 α← e−λ (g(U′)−g(U));
5 r ← UniformRandomReal(0,1);
6 if r ≤ α then
7 U← U′;
8 end
9 end

As observed in Algorithm 2, similar to Algorithm 1,

simulated annealing is used as optimization engine to search
for the least robust input-signal space U. Initially, an input-
signal space U is generated/sampled (Line 1) and its (mini-
mal) robustness value is evaluated by g(U) (Line 2). Based
on the outcome, the algorithm either proceeds or a coun-
terexample is found, i.e., the generated input-signal space
U contains an input signal u which triggers model output
behaviour y that falsifies the MTL property ϕ. In case of a
positive valuation, identical to Algorithm 1, an optimization
process starts to find the minimal (and if possible negative)
robustness value min(min(Dϕ(y))). For more details about
this process, see Section II-E. Note that the parameter λ of
Algorithm 2 is the equivalent of parameter β in Algorithm
1. Henceforth, the two optimization loops are referred to
as the frequency optimization loop (extended, focusing on
the time domain of the input signals) and the amplitude
optimization loop (original, focusing on the input space of
the input signals).

B. Experimental results for the input-signal-space optimiza-
tion approach

To evaluate the input-signal-space problem, it cannot be
directly compared to the (original) MTL falsification prob-
lem, i.e., to fix the temporal domain of the latter is a
rather ill-constructed comparison. Hence, the original MTL
falsification problem is performed using several randomly
selected (temporal) domains in the form of different numbers
of control points (CPs). As a result, based on an identi-
cal CP interval, the input-signal-space problem contains a
frequency and amplitude optimization loop (SA) while the
original MTL falsification problem contains an amplitude
optimization loop with a uniform coverage of the CP range
(UR).

Note that due to testing durations, the maximum simula-
tion number for every benchmark is limited to one million
model simulations and correspondingly subdivided, i.e., each
optimization loop is granted 1000 model simulations which
are further subdivided over runs versus iterations.

Note that in [6], the Matlab implementation of the input-
signal-space solution (in the form of S-TaLiRo+) is available
with which the benchmark is performed.

In Tables III and IV, the input-signal-space problem
is shown with 25 runs of 40 iterations of the frequency
optimization loop, and 5 runs with 200 iterations of the
amplitude optimization loop. For the frequency loop, more
runs are preferred (25) compared to the amplitude loop (5)
where more iterations are preferred (200 versus 40) since
the same frequency/input-signal space can be considered
multiple times. For the AT benchmark example, the CP
number ranges between 7 and 210 points while the modulator
benchmark example varies between 2 and 65 points. In
addition, this benchmark is based on the original proposal
scheme.

As observed in Tables III and IV, for both the benchmarks,
better falsification rates are achieved with the input-signal-
space MTL optimization solution.

Model Σ
Test-case

generation
U-space

generation

MTL
robustness

Original
Input-signal space

x0, u

y

X0,U

Dϕ(y)

min(Dϕ(y))
ϕ

X0, U
R U, (x0, u, y)fals

min(min(Dϕ(y)))

Fig. 6. Input-signal-space falsification problem solution

TABLE III
INPUT-SIGNAL-SPACE OPTIMIZATION BENCHMARK FOR AT

ψ # Fals. Robustness Time (sec)
UR SA UR SA UR SA

ϕAT
1 100% 100% − −

2.78
511

213250

2.18
325.57
66252

ϕAT
2 88% 100%

13.31
26.93
172.46

−
5.62
886.2

442310

8.96
430.73
68795

ϕAT
3 28% 100%

27.14
293.9
46631

−
97.89
1625

235340

243.26
706.21
99547

ϕAT
4 0% 0%

0.36
385

50152

0.17
0.18

0.00016

1719
1731
73

1718
1733
2693

UR: S-TaLiRo with uniform frequency coverage, SA: input-signal-space
optimization solution (S-TaLiRo+), # frequency runs: 25, maximum #
frequency iterations: 40, # amplitude runs: 5, maximum # amplitude
iterations: 200, Matlab seed: 123. Legend: # Fals.: percentage of falsified
frequency runs, Robustness: minimum, average, and variance of the non-
falsifying runs, Time: minimum, average, variance of execution time per
frequency run

Regarding the third order modulator benchmark example,
the difference between the number of falsifiers found is
rather small. Analysis showed that counterexamples where
found over the whole temporal/CP range and hence, since
the UR combination covers the temporal domain uniformly,
a higher falsification rate is achieved compared to the AT
benchmark example (which only contains a small falsifying
CP range). As a result, it is demonstrated that when a
particular region of interest needs to be located, in this case
less robust input-space regions, the input-signal-space MTL
optimization solution performs exceptionally well. In case
such a specific region does not exist and a very wide spec-
trum is ‘interesting’, the use of a steered method becomes
less efficient. However, when considering the robustness
values in Table IV, in all cases, the input-signal-space MTL
optimization solution reaches smaller (robustness) values
indicating weaker system behaviour (closer to the falsifying
bounds). Note that for designers of CPSs or mechatronic
systems, such behaviour can still be of great importance.

TABLE IV
INPUT-SIGNAL-SPACE OPTIMIZATION BENCHMARK FOR THIRD ORDER

MODULATOR

ψ # Fals. Robustness Time (sec)
UR SA UR SA UR SA

P∆−Σ
0.35 100% 100% − −

10.65
172.74
30265

4.0827
169.6
30390

P∆−Σ
0.30 56% 80%

0.0472
0.078
0.00

0.0122
0.0227
0.00

46.85
674.6

111090

0.99
520.7
81002

P∆−Σ
0.25 24% 40%

0.0782
0.132
0.0011

0.0039
0.076
0.0019

54.83
698.83
45503

220.27
653.24
45819

P∆−Σ
0.20 0% 16%

0.1363
0.18

0.0005

0.0261
0.114
0.0022

940.4
946.64

8.6

286.3
861.7
47295

UR: S-TaLiRo with uniform frequency coverage, SA: input-signal-space
optimization solution (S-TaLiRo+), # frequency runs: 25, maximum #
frequency iterations: 40, # amplitude runs: 5, maximum # amplitude
iterations: 200, Matlab seed: 123. Legend: # Fals.: percentage of falsified
frequency runs, Robustness: minimum, average, and variance of the non-
falsifying runs, Time: minimum, average, variance of execution time per
frequency run

VI. EXPERIMENTAL EVALUATION OF COMBINED
DECOUPLED PROPOSAL SCHEME AND
INPUT-SIGNAL-SPACE OPTIMIZATION

In Table V, some experimental results of the third or-
der modulator benchmark example with the input-signal-
space optimization approach combined with the decoupled
proposal scheme are demonstrated. As observed, compared
to the results of Tables II and IV, more complex MTL
falsification problems become (easily) feasible, i.e., a 100%
falsification rate is achieved until P∆−Σ

0.15 (compared to a
1% and 16% falsification rate for P∆−Σ

0.20 for the sepa-
rate improvements). Hence, for the benchmarks studied in
this paper, combining the input-signal-space optimization
approach and decoupled proposal scheme provides another
MTL falsification performance increase.

VII. CONCLUDING REMARKS

In this work, we proposed two improvements upon the
MTL falsification method [4], namely an input-signal-space

TABLE V
INPUT-SIGNAL-SPACE OPTIMIZATION AND DECOUPLED PROPOSAL

SCHEME BENCHMARK FOR THIRD ORDER MODULATOR

ψ # Fals. Robustness Time (sec)
SA+ SA+ SA+
DPS DPS DPS

P∆−Σ
0.20 100% −

1.5531
91.6

14807

P∆−Σ
0.15 100% −

0.7938
178.53
20570

P∆−Σ
0.10 0%

0.0613
0.141
0.0015

960.35
972.5
111.5

frequency runs: 25, maximum # frequency iterations: 40, # amplitude
runs: 5, maximum # amplitude iterations: 200, Matlab seed: 123. Legend:
Fals.: percentage of falsified frequency runs, Robustness: minimum,
average, and variance of the non-falsifying runs, Time: minimum, average,
and variance of execution time per frequency run

optimization approach and a decoupled proposal scheme
for the simulated annealing optimization engine. These two
improvements were implemented as an extension of S-Taliro
and based on experimental benchmarks, proved to work
exceptionally well, i.e., based on a broad range of control
points for the input space, the weakest (less robust) control
point region was consistently located.

In this work, simulated annealing is selected as optimiza-
tion approach for the (input-signal-space) MTL falsification
solution. However, as mentioned in Section II-E, several
other options are available. Hence, a future research direction
is a (performance) comparison between optimization algo-
rithms for the type of optimization problem put forward in
this work. We would like to investigate our approach for
arbitrary polytopes as input-spaces and whether for such
input-spaces, the probability of sampling points is non-zero
along the lines of [3].

Acknowledgements. We are grateful to Houssam Abbas
and Georgios Fainekos for their comments on a draft of this
paper.

REFERENCES

[1] E. Aarts and J. Korst. Simulated annealing and Boltzmann machines:
A stochastic approach to combinatorial optimization and neural com-
puting. Wiley, 1988.

[2] H. Abbas and G. E. Fainekos. Computing descent direction of MTL
robustness for non-linear systems. In Proc. ACC’13, pages 4405-4410,
IEEE, 2013.

[3] H. Abbas and G. E. Fainekos. Convergence proofs for Simulated
Annealing falsification of safety properties. In Proc. Allerton’12 pages
1594-1601, IEEE, 2012.

[4] H. Abbas, G. E. Fainekos, S. Sankaranarayanan, F. Ivančić, and
A. Gupta. Probabilistic temporal logic falsification of cyber-physical
systems. ACM TECS, 12(2s):95, 2013.

[5] A. Aerts. Model-based design and testing of mechatronic systems:
an industrial case study. Master’s thesis, CST report 2016.052, TU
Eindhoven, 2016.

[6] A. Aerts. S-TaLiRo+. Online SVN repository,
https://svn.riouxsvn.com/staliroplus, Revision 2, 2016.

[7] A. Aerts, M. R. Mousavi, and M. A. Reniers. Model-based testing
of cyber-physical systems. In Cyber-Physical Systems: Foundations,
Principles and Applications, chapter 19. Elsevier, 2017.

[8] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. S-
TaLiRo: A tool for temporal logic falsification for hybrid systems. In
Proc. TACAS’11. Springer, 2011.

[9] C. G. Cassandras and S. Lafortune. Introduction to discrete event
systems. Springer, 2008.

[10] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings
algorithm. The American Statistician, 49(4):327–335, 1995.

[11] T. Dang, A. Donzé, and O. Maler. Verification of analog and mixed-
signal circuits using hybrid system techniques. In Proc. FMCAD’04,
volume 3312, pages 21–36. Springer, 2004.

[12] A. Donzé and O. Maler. Robust satisfaction of temporal logic over
real-valued signals. In Proc. FORMATS’10, volume 6246 of LNCS,
pages 92–106. Springer, 2010.

[13] M. Dorigo and T. Stützle. Ant colony optimization: overview and
recent advances. Tech. Rep., Universite Libre de Bruxelles, 2009.

[14] K. A. Dowsland and J. M. Thompson. Simulated annealing. In
Handbook of Natural Computing, pages 1623–1655. Springer, 2012.

[15] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Desh-
mukh. Efficient guiding strategies for testing of temporal properties
of hybrid systems. In Proc. NFM’15, pages 127–142. Springer, 2015.

[16] G. E. Fainekos and G. J. Pappas. Robustness of temporal logic
specifications for continuous-time signals. TCS, 410(42):4262–4291,
2009.

[17] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel.
Verification of automotive control applications using S-TaLiRo. In
Proc. ACC’12, pages 3567–3572. IEEE, 2012.

[18] W. R. Gilks. Markov chain Monte Carlo. Wiley, 2005.
[19] H.-G. Gross. Component-based software testing with UML. Springer,

2005.
[20] B. Hoxha, H. Abbas, and G. Fainekos. Benchmarks for temporal logic

requirements for automotive systems. In Proc. ARCH@CPSWeek 2015
and 2015, pages 25–30, 2015.

[21] B. Hoxha, H. Bach, H. Abbas, A. Dokhanchi, Y. Kobayashi, and G. E.
Fainekos. Towards formal specification visualization for testing and
monitoring of cyber-physical systems. In Proc. DIFTS’14, 2014.

[22] M. H. Kalos and P. A. Whitlock. Monte Carlo methods. Wiley, 2008.
[23] N. Khakpour and M. R. Mousavi. Notions of conformance testing

for cyber-physical systems: Overview and roadmap. In Proc. CON-
CUR’15, volume 42 of LIPIcs Proc., pages 18–40. Schloss Dagstuhl,
2015.

[24] R. Koymans. Specifying real-time properties with metric temporal
logic. Real-time systems, 2(4):255–299, 1990.

[25] O. Maler and D. Nickovic. Monitoring temporal properties of
continuous signals. In Proc. FORMATS’04, vol. 3253 of LNCS, pages
152–166. Springer, 2004.

[26] M. Mohaqeqi and M. Mousavi. Sound Test-Suites for Cyber-Physical
Systems. In Proc. TASE’16. IEEE CS, 2016.

[27] J. Ouaknine and J. Worrell. Some recent results in metric temporal
logic. In Proc. FORMATS’08, vol. 5215 of LNCS, pages 1–13, 2008.

[28] A. Pnueli. The temporal logic of programs. In Proc. FOCS’77, pages
46–57. IEEE, 1977.

[29] R. Y. Rubinstein and D. P. Kroese. The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation and
machine learning. Springer, 2013.

[30] A. C. Uselton and S. A. Smolka. A compositional semantics for
Statecharts using labeled transition systems. Proc. CONCUR’94, pages
2–17. Springer, 1994.

[31] M. Utting and B. Legeard. Practical model-based testing: a tools
approach. Morgan Kaufmann, 2010.

[32] Q. Zhao, B. H. Krogh, and P. Hubbard. Generating test inputs for
embedded control systems. IEEE Control Systems, 23(4):49–57, 2003.

