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Abstract. In this note we generalise the Phillips theorem [1] on the subordination of Feller

processes by Lévy subordinators to the class of additive subordinators (i.e. subordinators

with independent but possibly nonstationary increments). In the case where the original

Feller process is Lévy we also express the time-dependent characteristics of the subordinated

process in terms of the characteristics of the Lévy process and the additive subordinator.

1. Introduction

One of the established devices for building statistically relevant market models is that of

the stochastic change of time-scale (e.g. Carr et al. [2]). Such a time change may be modelled

as an independent additive subordinator Z = {Zt}t≥0, i.e. an increasing stochastic process

with independent possibly nonstationary increments. If we subordinate a time-homogeneous

Markov process X = {Xt}t≥0 by Z, the resulting process Y = {XZt
}t≥0 is a Markov process

that will in general be time-inhomogeneous. The main result of this note shows that if X is a

Feller process and Z satisfies some regularity assumptions, then Y is a time-inhomogeneous

Feller process. The generator of Y is expressed in terms of the generator of X and the

characteristics of Z. In the special case where X is a Lévy process it is shown that Y is an

additive process with characteristics that are given explicitly in terms of the characteristics

of X and of the additive subordinator Z. The explicit knowledge of the generator of Y

is desirable from the viewpoint of pricing theory because contingent claims in the time-

inhomogeneous market model Y can be evaluated using algorithms that are based on the

explicit form of the generator of the underlying process (see for example [3]).

2. Time-changed Feller processes

Throughout the paper we assume that X = {Xt}t≥0 is a càdlàg Feller process with the

state-space R
n for some n ∈ N and the infinitesimal generator L defined on a dense subspace

D(L) in the Banach space of all continuous functions C0(R
n) that vanish at infinity with

norm ‖f‖∞ := supx∈Rn |f(x)|. The corresponding semigroup (Pt)t≥0 is given by Ptf(x) =

Ex[f(Xt)] for any f ∈ C0(R
n), where the expectation is taken with respect to the law of

X started at X0 = x (see Ethier and Kurtz [5] for the definition and properties of Feller

semigroups).

Key words and phrases. Subordination; Semigroups; Generators; Time-dependent Markov processes.

1



2 ALEKSANDAR MIJATOVIĆ AND MARTIJN PISTORIUS

Let Z = {Zt}t≥0 be an additive process, independent of X, with the Laplace exponent

ψt(u) = log E[e−uZt ] given by ψt(u) :=
∫ t
0 ψs(u)ds, where β : R+ → R+, g : R+ × R+ → R+

are continuous and for all s ∈ R+, u ∈ C we have
∫
(0,∞)(1 ∧ r)g(s, r)dr < ∞ and

ψs(u) = −uβ(s) +

∫

(0,∞)
(e−ur − 1)g(s, r)dr if ℜ(u) ≥ 0.(1)

In other words Z is a càdlàg process with nondecreasing paths such that the random variable

Zt − Zs is independent of Zu for all 0 ≤ u ≤ s < t (see Jacod and Shiryaev [4] Ch. II, Sec.

4c, for a systematic treatment of additive processes).

In this paper we are interested in the process (D, Y ) = {(Dt, Yt)}t≥0 defined by Dt := D0+t

and Yt := XZDt
for some D0 ∈ R+.

Theorem 1. The process (D, Y ) is Feller with the state-space R+ × R
n and infinitesimal

generator L′, defined on a dense subspace of the Banach space C0(R+ × R
n) of continuous

functions that vanish at infinity, given by

L′f(s, x) =
∂f

∂s
(s, x) + β(s)Lfs(x) +

∫

(0,∞)
[Prfs(x) − f(s, x)] g(s, r)dr,

where f ∈ C0(R+ × R
n) such that fs(·) := f(s, ·) ∈ D(L) ∀s ∈ R+ and the functions

(s, x) 7→ Lfs(x) and (s, x) 7→ ∂f
∂s (s, x) are continuous and vanish at infinity.

If Z is a Lévy subordinator, Theorem 1 reduces to the well-known Philips [1] theorem. If

X is a Lévy process, then the time-changed process is an additive process with characteristics

determined by those of Z and X.

Proposition 1. Let X be a Lévy process with X0 = 0 and characteristic triplet (c, Q, ν),

where c ∈ R
n, Q ∈ R

n×n a nonnegative symmetric matrix and ν a measure on R
n\{0} such

that
∫

Rn\{0}(|x|
2∧1)ν(dx). The process Y defined above (with D0 = 0) is additive with càdlàg

paths, jump measure

ν̃s(dx) = β(s)ν(dx) +

∫

(0,∞)
P(Xr∈dx)g(s, r)dr,

nonnegative symmetric matrix Q̃s = β(s)Q, drift

c̃s = β(s)c +

∫

(0,∞)
E[XrI{|Xr|≤1}]g(s, r)dr

and characteristic exponent Ψt(u) =
∫ t
0 Ψs(u)ds (recall that E[eiu·Yt ] = eΨt(u) for all u ∈ R

n)

where

Ψs(u) = iu · c̃s −
1

2
u · Q̃su +

∫

Rn\{0}

[
eiu·x − 1 − i(u · x)I{|x|≤1}

]
ν̃s(dx).
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3. Example: a symmetric self-decomposable process

Suppose that Y is an additive process, considered in [2] as a model for the risky security,

with no drift or Gaussian component and jump density

gY (t, y) = hν(|y|/tγ)
γ

νtγ+1
, where hν(y) =

1

ν
exp(−y/ν)I{y>0}.

Then in law the process Y is equal to a Brownian motion time-changed by an independent

additive subordinator Z with β ≡ 0 and jump density

g(t, r) = ate
−r/bt , where at =

γ

ν3t2γ+1
, bt = 2ν2t2γ .

It is clear from Proposition 1 that c̃t = Q̃t = 0 for all t ∈ R+ and that the moment-generating

functions of measures ν̃t(dx) and gY (t, x)dx coincide
∫

R\{0}
eλx ν̃t(dx) =

2γ

νt(1 − λ2ν2t2γ)
=

∫

R\{0}
eλxgY (t, x)dx

for |λ| < 1/νtγ . This implies that the two additive processes coincide in law.

4. Proofs

4.1. Proof of Proposition 1. Let ΨX(u) denote the characteristic exponent of the Lévy

process X, i.e. E[exp(iu·Xs)] = exp(sΨX(u)) for any u ∈ R
n. Since X and Z are independent

processes with independnent increments, for any sequence of positive real numbers 0 ≤ t0 <

. . . < tm and vectors u1, . . . , um ∈ R
n it follows that

E
[
ei

P

m

i=1
ui·(Yti

−Yti−1
)
]

= E

[
E

[ m∏

i=1

e
iui·(XZti

−XZti−1
)
Zt0 , . . . , Ztm

]]

= E

[
m∏

i=1

e(Zti
−Zti−1

)ΨX(ui)

]

=

m∏

i=1

E
[
eiui·(Yti

−Yti−1
)
]
.

Hence the process Y also has independent increments. Since Y is clearly càdlàg (as X and

Z are), it is an additive process.

Finally, we have to determine the characteristic curve of Y . An argument similar to the

one above implies that the characteristic function of Yt equals

E[eiu·Yt ] = E[eΨX(u)Zt ] = e
R

t

0
ψs(−ΨX(u))ds for any u ∈ R

n.

The last equality holds since ℜ(ΨX(u)) ≤ 0 for all u and the integral in (1) is well-defined.

It is not difficult to prove that for any Lévy process X started at 0 there exists a constant

C > 0 such that the inequality holds

max
{
P(|Xr| > 1), |E[XrI{|Xr|≤1}]|,E[|Xr|

2I{|Xr|≤1}]
}
≤ C(r ∧ 1) ∀r ∈ R+
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(see e.g. Lemma 30.3 in Sato [6]). Therefore, since
∫ ∞
0 g(s, r)(r ∧ 1)dr < ∞ by assumption,

we have
∫ ∞

0
g(s, r)max

{
P(|Xr| > 1), |E[XrI{|Xr|≤1}]|,E[|Xr|

2I{|Xr|≤1}]
}

dr < ∞.

We can thus define the measure ν̃s(dx), the vector c̃s, the matrix Q̃s and the function Ψs(u)

by the formulae in Proposition 1. The Lévy-Khintchine representation

ΨX(u) = iu · c −
1

2
u · Qu +

∫

Rn\{0}

[
eiu·x − 1 − i(u · x)I{|x|≤1}

]
ν(dx)

and Fubini’s theorem, which applies by the inequality above, yield the following calculation,

whcih concludes the proof of the proposition:

ψs(−ΨX(u)) = β(s)ΨX(u) +

∫ ∞

0
(E[eiu·Xr ] − 1)g(s, r)dr

= β(s)ΨX(u) + iu ·

∫ ∞

0
E[XrI{|Xr|≤1}]g(s, r)dr

+

∫ ∞

0
(E[eiu·Xr ] − 1 − iu · E[XrI{|Xr|≤1}])g(s, r)dr = Ψs(u).

4.2. Proof of Theorem 1. Note first that the paths of the process (D, Y ) are càdlàg. In

what follows we prove that (D, Y ) is a Markov process that satisfies the Feller property and

find the generator of its semigroup.

1. Markov property. For any g ∈ C0(R+ × R
n) define

Qtg(s, x) := E[g(Dt, Yt)|D0 = s, Y0 = x] = E[g(s + t, XZs+t
)|XZs

= x].

Let λs,s+t(dr) := P(Zs+t − Zs ∈ dr) denote the law of the increment of Z which may have

an atom at 0. Then, since X and Z are independent processes and the increments of Z are

independent of the past, it follows from the definition that

Qtg(s, x) =

∫

[0,∞)
E[g(s + t, XZs+r)|XZs

= x]λs,s+t(dr).

Define for any v ∈ R+ a σ-algebra Gv = σ(Xl : l ∈ [0, v]). Then for a Borel set A ∈ B(Rn)

and any X0 = x0 ∈ R
n the Markov property of X yields

Ex0 [g(t + s, XZs+r)I{XZs
∈A}] =

∫

[0,∞)
Ex0 [g(t + s, Xv+r)I{Xv∈A}]λ0,s(dv)

=

∫

[0,∞)
Ex0

[
E[g(t + s, Xv+r)|Gv]I{Xv∈A}

]
λ0,s(dv)

= Ex0

[
EXZs [g(t + s, Xr)]I{XZs

∈A}

]
.

Hence we get E[g(t + s, XZs+r)|XZs
] = EXZs [g(t + s, Xr)] a.s. for any r ∈ R+ and the

following identity holds

(2) Qtg(s, x) =

∫

[0,∞)
Ex[g(s + t, Xr)]λs,s+t(dr).
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A similar argument and the monotone class theorem imply that, if Φs = σ(XZl
: l ∈ [0, s]),

then

E[g(t + s, Xr+Zs
)|Φs] = EXZs [g(t + s, Xr)] a.s.

The process (D, Y ), started at (0, x0), satisfies

E[g(Ds+t, Ys+t)|Fs] = E[g(t + s, XZs+t
)|Fs] = Qtg(s, XZs

) = Qtg(Ds, Ys)

and is therefore Markov with the semigroup (Qt)t≥0.

2. Feller property. Since (D, Y ) and Z are right-continuous, identity (2) implies that

limtց0 Qtf(s, x) = f(s, x) for each (s, x) ∈ R+ × R
n. It is well-known that in this case

pointwise convergence implies convergence in the Banach space (C0(R+×R
n), ‖ · ‖∞). It also

follows from representation (2), the dominated convergence theorem and the Feller property

of X that a continuous function (s, x) 7→ Qtg(s, x) tends to zero at infinity for any g ∈

C0(R+ × R
n). Hence (D, Y ) is a Feller process.

3. Infinitesimal generator of the semigroup (Qt)t≥0. As before, let λs,s+t be the law

of the increment Zs+t − Zs and let ψs be as in (1). Let (tn)n∈N be a decreasing sequence in

(0,∞) that converges to zero. Denote by µ̂n the Laplace transform of a compound Poisson

process with Lévy measure t−1
n λs,s+tn . Hence we find for any u ∈ C that satisfies ℜ(u) ≥ 0

µ̂n(u) = exp

(
1

tn

∫ ∞

0
(e−ur − 1)λs,s+tn(dr)

)

= exp
(
t−1
n (e

R

s+tn

s
ψv(u)dv − 1)

)
.

Since the function t 7→
∫ t
0 ψs+v(u)dv is right-differentiable at zero with derivative ψs(u), we

get

lim
n→∞

µ̂n(u) = exp(ψs(u)).

It is clear from (1) that exp(ψs(u)) is a Laplace transform of an infinitely divisible distribution

with Lévy measure g(s, r)dr. Therefore by Theorem 8.7 in [6] for every continuous bounded

function k : R → R that vanishes on a neighbourhood of zero we get

(3) lim
n→∞

t−1
n

∫ ∞

0
k(r)λs,s+tn(dr) =

∫ ∞

0
k(r)g(s, r)dr.

Furthermore the same theorem implies that for any continuous function h such that h(r) =

1 + o(|r|) for |r| → 0 and h(r) = O(1/|r|) for |r| → ∞ we have

(4) lim
n→∞

t−1
n

∫ ∞

0
rh(r)λs,s+tn(dr) = β(s) +

∫ ∞

0
rh(r)g(s, r)dr.

A key observation is that (3) and (4) together imply that (3) holds for every continuous

bounded function k that satisfies k(r) = o(|r|) as r ց 0.
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Claim. Let the function f ∈ C0(R+ × R
n) satisfy the assumptions of Theorem 1. Then for

any (s, x) ∈ R+ × R
n the limit holds

lim
tց0

t−1(Qtf − f)(s, x) =
∂f

∂s
(s, x) + β(s)Lfs(x)

+

∫ ∞

0
[Prfs(x) − fs(x)]g(s, r)dr.

To prove this claim recall first that (Pt)t≥0 is the semigroup of X and note that the identity

holds

(Qtf − f)(s, x) = Es,x[f(Dt, Yt) − f(D0, Yt)] +

∫ ∞

0
[Prfs(x) − fs(x)]λs,s+t(dr).

If we divide this expression by t and take the limit as t ց 0, the first term converges to the

partial derivative ∂f
∂s (s, x) by the dominated convergence theorem (recall that the paths of Y

are right-continuous).

Choose a function h as above, define D(r) := Prfs(x)− fs(x) and express the second term

as

t−1

∫ ∞

0
D(r)λs,s+t(dr) = t−1

∫ ∞

0
D(r)(1 − h(r))λs,s+t(dr)

+ t−1

∫ ∞

0
(D(r) − rLfs(x))h(r)λs,s+t(dr)

+ Lfs(x)t−1

∫ ∞

0
rh(r)λs,s+t(dr).

The first and second integrals on the right-hand side converge by (3) to
∫ ∞

0
D(r)(1 − h(r))g(s, r)dr and

∫ ∞

0
(D(r) − rLfs(x))h(r)g(s, r)(dr)

respectively and the third integral converges by (4) to

Lfs(x)

∫ ∞

0
rh(r)g(s, r)dr.

This proves the claim.

Since (Qt)t≥0 is a strongly continuous contraction semigroup on the function space C0(R+×

R
n) with some generator L′, if the pointwise limit in the claim exists and is in C0(R+ × R

n)

for some continuous function f that vanishes at infinity, then f is in the domain of L′ and

L′f equals this limit (see e.g. Lemma 31.7 in [6]). This concludes the proof of the theorem.
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