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Abstract. This paper gives a simple proof of a limit theorem for the length of the largest

interval straddling a fixed number of i.i.d. points uniformly distributed on a unit interval.

The key step in our argument is a classical theorem of [Watson, 1954] on the maxima of

m-dependent stationary stochastic sequences.

1. Introduction and the main result

Both the distributional and asymptotic theories of spacings between consecutive order

statistics of a sample of i.i.d. random variables play a central role in classical probability

theory and mathematical statistics, see [Pyke, 1965], [Shorack and Wellner, 1986, Sec. 18–

21] and the references therein. A deep understanding of this subject has been achieved

over the past decades. In particular, [Devroye, 1981, Deheuvels, 1982] give a very fine de-

scription of the almost sure behaviour (as the sample size tends to infinity) of the maxi-

mal spacing between the ordered statistics of uniform random variables. The laws of it-

erated logarithms proved in these papers for the maximal spacings are further extended

in [Deheuvels and Devroye, 1984] to analogous statements on the maximum of k consecutive

spacings (called k-spacings).

In this note we prove a weak limit theorem for the maximal k-spacings. To the best of

our knowledge, no result of this type was available in the past; it is truly surprising that this

problem was not even mentioned in [Deheuvels and Devroye, 1984].

More precisely, let U1, . . . , Un be i.i.d. random variables that are uniformly distributed

on [0, 1]. Denote by

U1:n ≤ · · · ≤ Un:n
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their order statistics, which are the elements of U1, . . . , Un arranged in the ascending order,

and define U0:n := 0, U(n+1):n := 1. The maximal spacing M
(1)
n := max0≤i≤n(U(i+1):n − Ui:n)

is the lenght of the longest interval containing no points of the sample U1, . . . , Un. The

classical representation of the uniform spacings given below in (1), which relates M
(1)
n to the

maximum of i.i.d. exponential random variables, together with the law of large numbers

easily yields

nM (1)
n − log n

d−→ G,

where G follows a standard Gumbel distribution P(G ≤ x) = exp (−e−x) , x ∈ R.

We study an analogous weak limit of the maximal k-spacing, that is the length of the

largest open subinterval of [0, 1] that contains k − 1 uniform points:

M (k)
n := max

0≤i≤n+1−k
(U(i+k):n − U(i):n).

Our main result is as follows.

Theorem 1. Let G be a random variable that follows a standard Gumbel distribution. For

any integer k ≥ 1, it holds

nM (k)
n − log n − (k − 1) log log n + log(k − 1)!

d−→ G as n → ∞.

We will use the following well-known fact: the uniform spacings are represented as

(

U1:n − U0:n, . . . , Un:n − U(n−1):n

)

d
=

( X1

X1 + · · · + Xn+1

, . . . ,
Xn

X1 + · · · + Xn+1

)

, (1)

where X1, X2, . . . are i.i.d. standard exponential random variables; moreover, the random

vector on the right-hand side is independent of the sum X1 + · · ·+Xn+1, see e.g. [Pyke, 1965,

Sec. 4.1].

To discuss the statement of Theorem 1, consider the simplest case that k = 2 on

the largest interval straddling a single uniform point. It is not hard to show that An :=

max1≤i≤n(X2i−1 + X2i), Bn := max1≤i≤n(X2i + X2i+1), which are maxima of i.i.d. gamma

random variables, satisfy An − log n − log log n
d−→ G and Bn − log n − log log n

d−→ G.

The crucial observation is that An − log n − log log n and Bn − log n − log log n are

asymptotically independent. Then

M (2)
n =

max(A⌊n/2⌋, B⌊(n−1)/2⌋)

X1 + · · · + Xn+1

,
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and hence the law of large numbers and the continuous mapping theorem imply1

nM (2)
n − log(n/2) − log log(n/2)

d−→ max(G1, G2),

where G1 and G2 are i.i.d. random variables with a standard Gumbel distribution. Since

max(G1, G2)
d
= log 2 + G, Theorem 1 follows in the case that k = 2.

The asymptotic independence of An and Bn is non-trivial and somewhat unexpected.

Our initial approach to the proof of Theorem 1 rested on establishing this property using the

specific structure of these random variables. However, once the classical result [Watson, 1954]

on the maxima of m-dependent stationary sequences came to our attention, we understood

that our Theorem 1 can be established as a direct consequence2. We describe this shorter

and easier proof in the next section.

2. Proofs

We start by recalling the result from [Watson, 1954]. Random variables Y1, Y2, . . . are

said to be m-dependent if |i − j| > m implies that Yi and Yj are independent.

Theorem 2. For any m ≥ 1, let Y1, Y2, . . . be a strictly stationary sequence of m-dependent

unbounded random variables. Assume that

lim
y→∞

max
1≤|i−j|≤m

P(Yj > y|Yi > y) = 0. (2)

Then for any positive numbers ξ, y1, y2, . . . satisfying

lim
n→∞

nP(Y1 > yn) = ξ, (3)

it holds

lim
n→∞

P

(

max
1≤i≤n

Yi ≤ yn

)

= exp(−ξ).

The theorem says that the maximum of m-dependent stationary random variables has

the same weak limit as the maximum of an i.i.d. sequence with the same common distribu-

tion. Although the actual theorem of [Watson, 1954] makes a more restrictive assumption

ξ = nP(Y1 > yn) for all n ≥ 1, which may even be impossible to satisfy for certain ξ, the pre-

sented version easily follows by the monotonicity of distribution functions and the continuity

of exp(−ξ).

1See the analogous argument after (7) below.
2The asymptotic independence appears not to be an easy consequence of the result in [Watson, 1954].
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The aim is to apply Theorem 2 to the (k − 1)-dependent stationary sequence of moving

sums

Yi :=
i+k−1
∑

ℓ=i

Xℓ, i ≥ 1, (4)

and the numbers

ξ := e−x, yn := log n + (k − 1) log log n − log(k − 1)! + x (5)

for any fixed real x.

Note first that Yi are gamma random variables with densities fk, where fθ(y) :=

yθ−1e−y/Γ(θ) for any positive y and θ. Then it is straightforward to check using L’Hopital’s

rule that

P(Y1 > y) ∼ yk−1e−y

(k − 1)!
, y → ∞ (6)

(where by ∼ we mean that the ratio tends to 1), hence (3) holds by

lim
n→∞

nP (Y1 > yn) = lim
n→∞

nyk−1
n e−yn

(k − 1)!
= e−x lim

n→∞

(

yn

log n

)k−1

= ξ.

It remains to check the assumption (2). For any integer 1 ≤ a ≤ k − 1, we have

Ya+1 = Y1

(

1 − X1 + · · · + Xa

X1 + · · · + Xk

)

+ (Xk+1 + · · · + Xk+a).

Hence

(Y1, Ya+1)
d
=

(

Y1, Y1(1 − Ua:(k−1)) + Za)
)

,

where the three random variables in the r.h.s. are mutually independent and Za has a gamma

distribution with density fa. By (6), for any ε > 0 there exists an R > 0 such that

P(Y1 > y + R) ≤ εP(Y1 > y) for all y large enough.

Then (2) follows as for such y,

P(Yi > y, Ya+i > y) ≤ P(y < Y1 ≤ y + R, Ya+1 > y) + P(Y1 > y + R)

≤
∫ y+R

y

P
(

Za > y − x(1 − Ua:(k−1))
)

fk(x)dx + εP(Y1 > y)

≤
(

P
(

Zk−1 > yU1:(k−1) − R
)

+ ε
)

· P(Y1 > y).

Thus we showed that Theorem 2 applies to the sequence Y1, Y2, . . . defined in (4), hence

combined with (5) this implies

max
1≤i≤n+1−k

Yi − log n − (k − 1) log log n + log(k − 1)!
d−→ G. (7)
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Then by (1), we find

nM (k)
n =

n

X1 + · · · + Xn+1

max
1≤i≤n+1−k

Yi.

Now Theorem 1 follows by (7), the law of large numbers, the continuous mapping theorem,

and the relation

log n
( n

X1 + · · · + Xn+1

− 1
)

=
log n√

n
· (n − (X1 + · · · + Xn+1))/

√
n

(X1 + · · · + Xn+1)/n

d−→ 0,

which itself holds by the law of large numbers, and the central limit theorem.
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