ON THE WEAK LIMIT LAW OF THE MAXIMAL UNIFORM
k-SPACING
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ABSTRACT. This paper gives a simple proof of a limit theorem for the length of the largest
interval straddling a fixed number of i.i.d. points uniformly distributed on a unit interval.
The key step in our argument is a classical theorem of [Watson, 1954| on the maxima of

m-dependent stationary stochastic sequences.

1. INTRODUCTION AND THE MAIN RESULT

Both the distributional and asymptotic theories of spacings between consecutive order
statistics of a sample of i.i.d. random variables play a central role in classical probability
theory and mathematical statistics, see [Pyke, 1965], [Shorack and Wellner, 1986, Sec. 18-

21] and the references therein. A deep understanding of this subject has been achieved

over the past decades. In particular, [Devroye, 1981, Deheuvels, 1982] give a very fine de-

scription of the almost sure behaviour (as the sample size tends to infinity) of the maxi-
mal spacing between the ordered statistics of uniform random variables. The laws of it-

erated logarithms proved in these papers for the maximal spacings are further extended

in [Deheuvels and Devroye, 1984] to analogous statements on the maximum of k consecutive

spacings (called k-spacings).
In this note we prove a weak limit theorem for the maximal k-spacings. To the best of

our knowledge, no result of this type was available in the past; it is truly surprising that this

problem was not even mentioned in [Deheuvels and Devroye, 1984].

More precisely, let Uy, ..., U, be i.i.d. random variables that are uniformly distributed
on [0, 1]. Denote by
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their order statistics, which are the elements of Uy, ..., U, arranged in the ascending order,
and define Uy, := 0, Ugq1):n == 1. The maximal spacing MY = maxo<i<n(Uiit1)m — Uin)
is the lenght of the longest interval containing no points of the sample Uy,...,U,. The
classical representation of the uniform spacings given below in (1), which relates MY to the
maximum of i.i.d. exponential random variables, together with the law of large numbers

easily yields
nM®Y —logn L. q,

where G follows a standard Gumbel distribution P(G' < x) = exp (—e %),z € R.
We study an analogous weak limit of the maximal k-spacing, that is the length of the

largest open subinterval of [0, 1] that contains k£ — 1 uniform points:
(k) ‘: y . - Y. .
Mo ogz'rgnfﬁfk(U“”“)-n Ugiyn)

Our main result is as follows.

Theorem 1. Let G be a random variable that follows a standard Gumbel distribution. For

any integer k > 1, it holds
nM® —logn — (k —1)loglogn + log(k — 1)! 2. as n — 0o.

We will use the following well-known fact: the uniform spacings are represented as

X, X
U — Uons s Ui — U n>i( n ) 1
(1- . R % S OIS RLLILL ONSRS GY LIS

where X1, X,,... are i.i.d. standard exponential random variables; moreover, the random
vector on the right-hand side is independent of the sum X; +- - -+ X, 1, see e.g. [Pyke, 1965,
Sec. 4.1].

To discuss the statement of Theorem [1, consider the simplest case that & = 2 on
the largest interval straddling a single uniform point. It is not hard to show that A, :=
maxi<j<p(Xoi—1 + Xoi), By := maxi<;<,(Xo; + Xo;41), which are maxima of i.i.d. gamma
random variables, satisfy A,, —logn — loglogn 4, G and B, —logn — loglogn Nye)

The crucial observation is that A, — logn — loglogn and B, — logn — loglogn are

asymptotically independent. Then

@ — max(Apyz), Bim-1y2))
" Xy + -+ X

’
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and hence the law of large numbers and the continuous mapping theorem implyﬁ
nM? —log(n/2) — loglog(n/2) N max (G, Ga),

where G; and Gy are i.i.d. random variables with a standard Gumbel distribution. Since
max(G1, Go) < log 2 + GG, Theorem [1/ follows in the case that k = 2.

The asymptotic independence of A,, and B, is non-trivial and somewhat unexpected.
Our initial approach to the proof of Theorem 1lrested on establishing this property using the
specific structure of these random variables. However, once the classical result [Watson, 1954]
on the maxima of m-dependent stationary sequences came to our attention, we understood
that our Theorem [1] can be established as a direct consequence®. We describe this shorter

and easier proof in the next section.

2. PROOFS

We start by recalling the result from [Watson, 1954|. Random variables Y7, Y5, ... are
said to be m-dependent if |i — j| > m implies that Y; and Y; are independent.

Theorem 2. For any m > 1, let Y1,Ys, ... be a strictly stationary sequence of m-dependent

unbounded random variables. Assume that

lim max P(Y; >ylY;>y) =0. (2)
y—00 1<|i—j|<m
Then for any positive numbers &, y1,ys, ... satisfying
lim nP(Y; > y,) = ¢, (3)
it holds

lim P (max Y, < yn) = exp(—¢).

n—00 1<i<n

The theorem says that the maximum of m-dependent stationary random variables has
the same weak limit as the maximum of an i.i.d. sequence with the same common distribu-
tion. Although the actual theorem of [Watson, 1954] makes a more restrictive assumption
¢ =nP(Y1 > y,) for all n > 1, which may even be impossible to satisfy for certain £, the pre-

sented version easily follows by the monotonicity of distribution functions and the continuity
of exp(—¢).

ISee the analogous argument after (7) below.
2The asymptotic independence appears not to be an easy consequence of the result in [Watson, 1954].
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The aim is to apply Theorem [2|to the (k — 1)-dependent stationary sequence of moving

sums
itk—1
Yii= > X, ix1, (4)
=i
and the numbers
Ei=e ", Yn :=logn + (k —1)loglogn — log(k — 1)! + x (5)

for any fixed real z.

Note first that Y; are gamma random variables with densities fi, where fo(y) :=
y?’~te7v/T'(#) for any positive y and @. Then it is straightforward to check using L’Hopital’s
rule that

ykflefy
P(Yy >3/)Nm7 y — 00 (6)
(where by ~ we mean that the ratio tends to 1), hence (3) holds by
- k-1
Jim B> ) = i TR = e () =
It remains to check the assumption (2). For any integer 1 < a < k — 1, we have
X+ 4 X,

Ya+1:Yl(1— >+<Xk+1+"'+Xk+a)-

X+ + Xy
Hence

(Y1, Yar1) = (Y1, Y21 = Uney) + Z0)).
where the three random variables in the r.h.s. are mutually independent and Z, has a gamma
distribution with density f,. By (6), for any € > 0 there exists an R > 0 such that

P(Y; >y + R) <eP(Y; > y) for all y large enough.
Then (2) follows as for such y,

P(Y; >y, Yori>y) < Ply<Vi<y+R Yo >y)+PYi>y+R)

y+R
< / P(Za >y —a(l — Ua:(k_l)))fk(x)dx +eP(Y) > y)
y

IN

(P(Zy-1 > yUrg—1y — R) +¢) - P(Y1 > ).

Thus we showed that Theorem [2 applies to the sequence Y7, Y5, ... defined in (4), hence
combined with (5) this implies

max Y; —logn — (k—1)loglogn + log(k — 1)! LG (7)

1<i<n+1-k
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Then by (1), we find

(k) _ i :
nMn X+ -+ Xn+1 1§ir§nna—i{1—k}/z'

Now Theorem [T follows by (7), the law of large numbers, the continuous mapping theorem,

and the relation

logn< n _1>:logn_(n—(X1+...+Xn+1))/\/ﬁi)O,
X+ X Jn (X1 + -+ Xpg1)/n

which itself holds by the law of large numbers, and the central limit theorem.
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