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Abstract

We introduce a new model for the joint dynamics of the S&P 100 index and the VXO implied

volatility index. The nonlinear specification of the variance process is designed to simultaneously ac-

commodate extreme persistence and strong mean reversion. This grants superior forecasting power over

the standard (linear) specifications for implied variance forecasting. We obtain statistically significant

predictions in an out-of-sample exercise spanning several market crashes starting 1986 and including

the recent subprime crisis. The model specification is possible through a simple continuous-time no-

arbitrage asset pricing framework that combines semi-analytic pricing with a nonlinear specification for

the market price of risk.

1 Introduction

Most financial time series exhibit rapid fluctuations while being extremely persistent at the same time.

Violent fluctuations are often identified as jumps caused by events such as central bank meetings or rating

announcements. The economic intuition suggests that for example interest rates should be stationary.

However, unit-root tests often imply that interest rates are integrated and therefore exhibit extreme

persistence. Ideally a model should be able to accommodate both extremes while maintaining compatibility

with economic theory: random walk like behaviour in a certain region, and reversion towards a mean

outside it. At first glance establishing the existence of such a model in continuous time under the real

world measure appears to be very difficult. A diffusion process with these characteristics would clearly

need to exhibit a highly nonlinear drift under the physical measure, which implies that global Lipschitz

and growth conditions, typically required for the existence of a solution to a multi-dimensional SDE, are

not satisfied. In a univariate diffusion setting Aı̈t-Sahalia (1996) applies a more general method, only

available in dimension one, to ascertain the existence of a model that exhibits the desired characteristics.

The reason for the econometric success of this model lies in the nonlinearity of the drift and the diffusion
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function. Two main obstacles to a wide applicability of such models remain. The first is the lack of

closed-form, or at least semi-analytic, solutions for the prices of contingent claims within the nonlinear

framework. The second is a lack of tools for proving the existence of solutions to the stochastic differential

equations used when attempting to introduce nonlinearity in a multivariate setting.

In this paper we develop a multivariate, nonlinear model for the joint time series of the S&P 100

and the VXO implied volatility index. The model is designed to feature the aforementioned traits and

turns out to be empirically successful. The specification offers statistically significant advantages in out-

of-sample forecasting over extant models in predicting both implied and realized variance over several

horizons. Results are particularly pronounced for long-term predictions. Furthermore we find that the

size and sign of the variance risk premia implied by our model coincide with the model-independent

results in Carr and Wu (2009). The study adds to the empirics of Bakshi et al. (2006) in that the VXO

is modelled in terms of instantaneous variance (and not directly) so that information from the index

price dynamics can also be taken into account. Our data ranges from 1986 until 2012 and spans multiple

market crashes. In order to demonstrate the robustness to the presence (and absence) of extreme market

conditions, we perform two out-of-sample studies using this data set: one including both the crash of 1987

and the extreme market conditions in the years 2008–2010 and the other excluding the two time intervals.

Since the prediction results are qualitatively very similar in both cases, this suggests that our specification

is robust even to extreme market conditions and that it performs equally well in their absence.

The model is justified theoretically by an econometrically inconspicuous dampening functions which

we introduce into the Radon-Nikodym density process. This technique is developed generically for a

multivariate diffusion framework which exploits the existence of a solution of an SDE under a risk-neutral

probability measure and guarantees the existence of a weak solution of a nonlinear SDE under the real

world probability measure. From the econometric point of view our framework extends the affine approach

from Cheridito et al. (2007) yielding substantially enriched dynamics. The most obvious application is

a state variable formulation that entails (semi-)analytic pricing under the risk-neutral measure, which

leaves flexibility for the dynamics under the physical measure similar to that of the discrete-time approach

considered in Dai et al. (2006) and Bertholon et al. (2008). Recent advances in estimating the parameters

of nonlinear diffusions such as the algorithms introduced in Aı̈t-Sahalia (2008), Beskos et al. (2006) and

Mijatović and Schneider (2010) ensure that reliable parameter inference can be made without explicit

formulae for transition densities.

The paper is organized as follows. Section 2 introduces the linear (LN) and nonlinear (NL) GARCH

stochastic volatility models as joint models for the S&P 100 and the VXO implied volatility index, which

are used for estimation and prediction. Section 3 describes the likelihood function which is used to find

the parameter values of the GARCH stochastic volatility models from Section 2 implied by the time series

of the S&P 100 and the VXO index data. The empirical results are discussed in Section 4. Appendix A

gives a simple theoretical construction (Theorem 1) for the framework we consider. Appendix B describes

in detail the steps to evaluate the likelihood function. Section 5 concludes the paper.
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2 S&P 100 stochastic volatility model

The task in this section is to specify a flexible model for the S&P 100 index. We start by defining the

model under the pricing measure Q. The dynamics under the real world measure P are then obtained by

Girsanov’s change of measure technique.

The specification of the dynamics of the process under the measure Q is in practice informed by

the analytical tractability of the model in terms of the pricing of derivatives. A common choice in the

multivariate diffusion setting are affine processes. The existence of this class of models is established

in Duffie et al. (2003) and the algorithms for the pricing of contingent claims, which rest on the extended

transform methods, are developed in Duffie et al. (2000). In the application discussed in this paper (see

Section 3) we shall deviate from the affine class and consider a stochastic volatility model based on a

GARCH diffusion, which is in the class of polynomial models in the sense of Cuchiero et al. (2010). The

existence of the process is not difficult to establish as can be seen below.1 Furthermore, the approximation

to the model-free implied volatility (MFIV), defined in Neuberger (1994), can in our model be analytically

computed, using a result in Meddahi and Renault (2004), in terms of the model parameters under Q.

This feature of the model is crucial because the goal is to estimate the risk-neutral and the real world

parameters simultaneously.

More precisely, we choose a stochastic GARCH diffusion variance model for the joint times series of

the logarithm of the S&P 100 prices and instantaneous variance, which evolves under the pricing measure

Q according to the SDE

dXt = (r − 1

2
Vt) dt+ ρ

√

VtdW
V Q
t +

√

1− ρ2
√

VtdW
XQ
t , (1)

dVt = (bQ0 + bQ1 Vt)dt+ σVt dW
V Q
t , (2)

where W V Q = (W V Q
t )t∈[0,T ] and WXQ = (WXQ

t )t∈[0,T ] are two independent standard Brownian motions

and the constant ρ lies in the open interval (−1, 1). This specification for the instantaneous variance

process was introduced in Meddahi and Renault (2004) in a time series context.

Note that the risk-neutral drift µQ (cf. notation in Theorem 1 of Appendix A) of the process that

satisfies (1)–(2) is given by

µQ(Vt) =

(

r − 1
2Vt

bQ0 + bQ1 Vt

)

.

It is well known that the SDE in (2) has a solution for all values of bQ0 , b
Q
1 and σ. Assume that

bQ0 > 0, (3)

1It is even possible to obtain a series representations of the transition density, see Wong (1964).
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and note that the comparison theorem for the solutions of SDEs (see Proposition 5.2.18

in Karatzas and Shreve (1991)), applied to V = (Vt)t∈[0,T ] and the geometric Brownian motion that

solves (2) when bQ0 = 0, implies that the process V does not leave the interval (0,∞) in finite time. It

therefore follows that under condition (3) we can define the process X = (Xt)t∈[0,T ] as a stochastic integral

given by (1). This argument shows that the process (X,V )⊤ with state space D = R× (0,∞) exists under

the pricing measure Q and that it follows SDE (1)–(2). It is shown in Forman and Sørensen (2008) that

if in addition we have bQ1 < 0, then the variance process V is ergodic.

The power in the volatility function of SDE (2) (i.e. the CEV power) for the GARCH diffusion V is

equal to one. This is a pragmatic and parsimonious educated guess between the CEV powers of 0.65 in

Aı̈t-Sahalia and Kimmel (2007) and 1.33/1.17 in Jones (2003) for data sets similar to the one considered

in this paper (see also the discussion in Heston et al. (2007)). More sophisticated volatility-of-volatility

functions are also possible, e.g. (β0 + β1 Vt + β2 V
β3
t )1/2, but the existence of solutions of such SDEs is

more difficult to establish. Here we use the simple GARCH diffusion process (see Nelson (2002) for this

terminology) because the focus in this paper is the nonlinear drift specification.

Under the physical measure P we shall consider two kinds of dynamics: one with a linear drift function

µP
LN and another with a nonlinear drift function µP

NL. The first is given by the formula

µP
LN(Vt) :=

(

a0 + a1 Vt

bQ0 + b1 Vt

)

. (4)

There is no canonical choice for the market price of risk for a GARCH diffusion stochastic volatility

model. In Aı̈t-Sahalia and Kimmel (2007), the market price of variance risk is set to zero. Following Jones

(2003), we define a linear market price of risk, such that the drift µP
LN can be expressed as µP

LN(Vt) =

fLN(Vt) + µQ
LN(Vt), where the function fLN is given by

fLN(Vt) =

(

a0 − r + (a1 +
1
2)Vt

(b1 − bQ1 )Vt

)

. (5)

Note that the drifts under Q and P in the model LN take the same functional form (i.e. they are both linear

in the state variable). An easy application of Girsanov’s theorem (with the Novikov condition) implies the

existence of the real world probability measure P, equivalent to Q, and under which the process (X,V )

has the dynamics given by the drift function in (4).

The linear model LN will serve as a benchmark for the econometric relevance of the nonlinear model

(NL model) whose drift under the physical measure P is given by

µP
NL(Vt) :=

(

a0 + a1 Vt

b0 + b1 Vt + b2 V
2
t + b3/Vt

)

. (6)

The corresponding function fNL, which captures the difference between the drifts under P and Q, is given
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as

fNL(Vt) =

(

a0 − r + (a1 +
1
2)Vt

b0 − bQ0 + (b1 − bQ1 )Vt + b2 V
2
t + b3 / Vt

)

. (7)

In this case, however, a dampening function DNL, defined in (8), is required to guarantee the existence of

the process under the real world measure P. The mathematical reason for the inclusion of the dampening

factor lies in the fact that without it, it is not possible in general to ensure that the martingale property of

the corresponding stochastic exponential holds in our non-linear model. In Theorem 1 of Appendix A we

provide a theoretical basis for this purpose in the setting of general non-linear multi-dimensional SDEs.

The dampening factor, which depends on the drift and the diffusion functions of the SDE, is constructed

to prevent explosions of the density process in (20) under the measrue Q, thereby guaranteeing Novikov’s

condition. Its key ingredient is a strictly positive tuning constant c (cf. formula (8)), which can be chosen

to be arbitrarily small. If the volatility function Σ and the drift function f in Theorem 1 are continuous

in the state variable x ∈ D, as is the case in the proposed nonlinear model (see (1)–(2) and (7)), the

constant c can be chosen in such a way that the dampening factor D in Theorem 1 equals one in a finite

precision environment (i.e. a computer) on an arbitrarily large compact subset of the domain D. As a

consequence this gives the modeler a large amount of freedom when specifying the real world drift function

µP, since the approximate equality f + µQ ≈ µP on large compact subsets of the state space can achieve

the desired drift behaviour of the model under the real world measure P. The key observation here is that

the constant c in the function D does not need to be estimated. It is enough to know that it exists. This,

by Theorem 1, implies that the solution of the SDEs under both P and Q exists and that the density

process (20) gives rise to a valid pricing kernel. In order to empirically justify the equality f + µQ ≈ µP

used in the estimation, we perform a Monte Carlo study in Section 4.4 below, to validate that the process

stays within the compact subset where the equality f + µQ ≈ µP holds true with high probability. We

would like to stress here that, in any application of the method described here, it is the modeler’s task

to perform an empirical test, analogous to the one in Section 4.4, which demonstrates the robustness of

the method with respect to the choice of the constant c and justifies the claim that c does not need to be

estimated from the data.

In the present case the dampening factor takes the following form

DNL(Vt) = exp
(

−c
(

V 2
t + 1/(V

3/2
t σ

√

1− ρ2)
))

, (8)

since Theorem 1 of Appendix A can be applied in this instance with the function g(x, v) = v2 (note

that detΣ(x, v) = v3/2σ
√

1− ρ2 and hence both coordinates of the function fNL(v) are bounded above

by A(g(x, v) + 1/| detΣ(x, v)|) for all (x, v) and a large constant A > 0). As argued in Section 4.4,

in the setting of our GARCH stochastic volatility model with a nonlinear real world drift, for numerical

purposes and econometric implementation it suffices to work directly with the drifts µP
NL and µP

LN given by

the formulae in (4) and (6) respectively. In other words in the setting of our model the dampening factor
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DNL(Vt) can be made arbitrarily close to one on a set of probability 1 − ε, for any fixed but arbitrarily

small ε > 0, through the choice of the positive constant c. This intuitive argument is corroborated by

the numerical tests carried out in Section 4.4, where the impact of the dampening factor DNL(Vt) on the

likelihood ratio dP
dQ is shown to be insignificant for c ≤ 10−6. The resulting risk premia are non-explosive

and satisfy the conditions in Heston et al. (2007).

3 Estimation

The goal of this section is to describe the estimation algorithm for the linear and the nonlinear models

introduced in Section 2. The data set, the joint time series of the S&P 100 and VXO implied volatility

index, used in the estimation procedure will be described in the following section. In this section we define

the log-likelihood function (Section 3.1) and give a summary of the estimation procedure used to maximise

it (Section 3.2). A key step in this algorithm is the EML procedure form Mijatović and Schneider (2010)

(see Appendix B for details), which crucially allows us to reduce the number of parameters that need to

be estimated.

3.1 Likelihood function

The instantaneous stochastic variance is a latent variable even though a time series of implied variance is

available through the VXO index. Note that the drift of the variance V in our model, given by SDE (2)

under the pricing measure Q, is affine. The fact that in this case the price of the variance swap at a

current time t is linear in the current value of the instantaneous variance (of the asset return) Vt was first

established in Meddahi and Renault (1996) in a time series context under the P measure. The authors

also derived the following formula

1

∆
E
Q
t

[∫ t+∆

t
Vs ds

]

= A(θQ,∆) +B(θQ,∆)Vt, ∆ > 0, (9)

where the coefficients A(θQ,∆) and B(θQ,∆) are given by

B(θQ,∆) =
1

bQ1 ∆

(

exp(bQ1 ∆)− 1
)

, A(θQ,∆) = −bQ0
bQ1

(1−B(θQ,∆)). (10)
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We define IVt as the squared VXO index (described in Section 4.1) observed at time t. It is directly

related to the expected variance over the period of 22 days (i.e. ∆ = 22/262) by the formula2

IVt ≈
1

∆
E
Q
t

[∫ t+∆

t
Vs ds

]

. (11)

We now exploit the relationship in (11) to express the log-likelihood function for both the linear and

the nonlinear model described by the real world drifts given in (4) and (6) respectively and by SDE (1)–(2)

under the pricing measure Q. By the Markov property we can in both models decompose the log-likelihood

into a sum of log-transition densities (for ease of notation we henceforth denote IVti by IVi and Xti by

Xi) as follows

ℓ(X1, IV1, . . . , XN , IVN | X0, IV0, θ) =

N
∑

i=1

log pIV (Xi, IVi | Xi−1, IVi−1, θ), (12)

where pIV (Xi, IVi | Xi−1, IVi−1, θ) denotes the conditional transition density of the random vector

(Xti , IVti)
⊤. The linear transformation

Vt =
IVt −A(θQ, τ)

B(θQ, τ)
, (13)

which follows from (11), implies that we can express the log-likelihood as

N
∑

i=1

log pV (Xi, Vi | Xi−1, Vi−1, θ)−N logB(θQ, τ), (14)

where pV (Xi, Vi | Xi−1, Vi−1, θ) denotes the conditional transition density of the random vector (Xti , Vti)
⊤

given the values of Xi−1 and Vi−1. The final change of variable Yt = log(Vt)/σ (see also (22)) yields the

log-likelihood which takes the form

ℓ(θ) =
N
∑

i=1

{log p(Xi, Yi | Xi−1, Yi−1, θ)− σYi} −N (logB(θQ, τ)− σ), (15)

where p(Xi, Yi | Xi−1, Yi−1, θ) denotes the conditional transition density of the random vector (Xti , Yti)
⊤.

2With a continuum of option prices traded, the formula in (11) would be exact for diffusion processes through
the Carr and Madan (2001) formula applied to the log-payoff, since, under those assumptions, the log-contract is the forward
price of the expected quadratic variation (cf. for example Neuberger (2012, Proposition 5)),

−2EQ
t [logXT − logXt] = E

Q
t

[
∫ T

t

Vs ds

]

= 2

∫ Ft,T

0

Pt,T (K)

K2
dK + 2

∫ ∞

Ft,T

Ct,T (K)

K2
dK,

where Ft,T is the forward price of X and Pt,T (K) (resp. Ct,T (K)) is the put (resp. call) option struck at K and expiring
at T . With only finitely many options traded at the exchange, the VXO is only an approximation of the model-free implied
variance, which explains the use of ≈ sign in equation (11).
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θσ θQ θXP θV P

Linear Spec. (4) σ, ρ, bQ0 bQ1 a0, a1 b1
Nonlinear Spec. (6) σ, ρ bQ0 , b

Q
1 a0, a1 b0, b1, b2, b3

Table 1: Parameter sets for the linear and the nonlinear model: the table displays the partition of
the parameter vector θ into the following groups: θσ (the parameters that influence the dynamics under both
the risk-neutral measure Q as well as the physical measure P); θQ (parameters that influences the only the
risk-neutral dynamics); θXP ∪ θV P (parameters that appear only under the physical measure P).

3.2 Summary of the estimation algorithm

For estimation purposes we partition the parameter vector θ (of the models given by SDE (2) under Q

and with either linear (4) or nonlinear (6) drifts under P) into four classes. The first class θσ contains

the parameters that influence the dynamics under both the physical measure P and the pricing measure

Q. The second class θQ contains the parameters that arise only under the pricing measure Q. The third

set θXP contains the parameters that influence the dynamics of the process X only under the physical

measure P and the fourth class θV P contains the parameters that arise only under the measure P in the

SDE for the variance process V . It is clear that we can express θ = θσ ∪ θQ ∪ θXP ∪ θV P and that these

four classes are pairwise disjoint.

Our estimation algorithm uses likelihood-based inference. The separation of the parameter vector

θ described above, will enable us to reduce the estimation problem for θ to estimating only a subset

of parameters θσ ∪ θQ. The key idea is to treat the optimal parameter values for θXP and θV P as a

function of (i.e. conditional on) θσ ∪ θQ, via a non-analytic and yet computationally efficient expected

maximum likelihood (EML) algorithm from Mijatović and Schneider (2010). In particular, this will enable

us to perform a standard likelihood search over the reduced parameter space θσ ∪θQ, as for each proposed

parameter vector in θσ∪θQ we have, through the EML algorithm, the optimal θXP⋆∪θV P⋆ | θσ∪θQ (optimal

parameters are denoted with a superscript ⋆). It is important to note that our estimation algorithm is

not an iterative procedure which alternates between estimating in turn θσ ∪ θQ and θXP ∪ θV P, as was

for example proposed in Pastorello et al. (2003) or Song et al. (2005). On the contrary, our approach is a

standard likelihood search using the concentrated likelihood.3

The EML estimation step makes use of the fact that the law of the Brownian bridge and the law of a

3Expressed in the notation of Fan et al. (2006, Introduction), we are interested in estimating a parameter ξ, which can be
naturally partitioned into two sub-vectors θ and ν as ξ = (θ, ν). The relation to the parameter names in the present paper
is as follows: their θ is our θσ ∪ θQ and their ν is our θXP ∪ θV P. If Q(θ, ν) is the sample objective function, then, given any
θ, one can find the optimal value of ν as a function of θ by solving

ν(θ) = argmax
ν

Q(θ, ν).

In our case this step is achieved by the EML algorithm. The concentrated objective function (or profile objective function) is
then defined as a function of θ alone, Q(θ, ν(θ)), and its maximisation with respect to θ gives the estimator of interest:

θ⋆ = argmax
θ

Q(θ, ν(θ)) ⇒ [θ⋆, ν(θ⋆)] = argmax
θ,ν

Q(θ, ν)
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diffusion bridge are, in a certain precise sense, close to each other, making the Euler scheme approxima-

tion for the transition densities also close to each other, when the time interval between observations is

small. The EML algorithm itself cannot be directly applied to the present econometric problem, as this

approximation in law works only for one-dimensional diffusions. In the present paper we show how to

generalise the EML algorithm to a multivariate context in the special case where the variance process is

Markovian in its own right (i.e. its future law does not depend on the current level of the asset return

process).

The concentrated likelihood function is evaluated in three steps. In the first step, we convert (for a

given θσ ∪ θQ), using formula (13), the VXO time series to the time series for the latent instantaneous

variance process V . Note that this step is the same for the linear as well as the nonlinear model, since

under Q the variance process has an affine drift in both cases. In the second step, based on this time series,

we perform the EML algorithm, yielding the optimal parameters θV P⋆ as a function of θσ ∪ θQ. This step

involves simulating from a Brownian bridge and the solution of a least squares problem for a quadratic

form. The precise description of this step is given in Appendix B.2. In the same step, conditioning on

the same values θσ ∪ θQ and the optimal θV P⋆ obtained in the second step, we perform another EML

algorithm to obtain θXP⋆ as a function θσ ∪ θQ and θV P⋆. In its implementation, this step is completely

analogous to step two and the details are described in Appendix B.3. The computational efficiency of the

algorithm is based on the fact that EML can be used to express the globally optimal drift parameters

θV P⋆ and θXP⋆ as complicated, yet easily computable functions of the parameters θσ ∪ θQ and the data.

The concentrated likelihood function is then given directly in the third step via the simulated likelihood

approximation from Pedersen (1995).

We conclude this section by remarking that we compared the estimation based on the likelihood

function described above with the likelihood expansion of Aı̈t-Sahalia (2008). We found that the latter is

numerically much harder to handle but qualitatively they both deliver similar results.

4 Empirical results

The aim of this section is to assess the performance of the linear and nonlinear models introduced in

Section 2 by investigating forecasts of realized variance, implied variance and stock returns for various

maturities, based on the joint time series of the S&P 100 and VXO implied volatility index. We start by

describing the data set (Section 4.1). The forecasting exercise is then performed out of sample for the

entire data set, and also for a subsample excluding the 1987 crash and the credit crisis starting from 2007.

For the out-of-sample period the model is re-estimated each time a new data point is added. Figure 1

gives a visual impression of the data sample. We then perform a statistical test given in Clark and West

(2007) on the estimated models with respect to their forecasting abilities. This test corrects for the upward

bias in mean squared errors (MSE) which occurs with more flexibly parameterized models. The test is

designed for nested models and allows direct comparison.
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Figure 1: Log of S&P 100 index and VXO: The figure shows the evolution of the logarithm of the S&P
100 index (right y-axis) and of the implied volatility index VXO (left y-axis in %). For our out-of-sample
analysis we use a burn-in period (shaded in white), and the forecasting is then done within the sample shaded
in grey.

4.1 Data

Models are estimated using daily S&P 100 log prices and daily VXO implied volatilities. The VXO index

is defined in terms of the current value of the expected realised variance of S&P 100 over a period of one

month. The CBOE computes the value of VXO using a carefully designed portfolio of exchange traded

call and put options on the S&P 100 that expire in one month’s time. The algorithm used by CBOE4

enables them to obtain a time series of (averaged over strikes) implied volatility, highly correlated with

model-free implied volatility (VIX). We use the VXO instead of the VIX index to include the crash in 1987.

The data set ranges from 2 January 1986 until 3 February 2012. The data is obtained from Bloomberg.

The market crashes in 1987 and the subprime crisis pose extreme scenarios, challenging the specifications

tested in this paper. Figure 1 shows the trajectory of the VXO implied volatility index published by the

CBOE and the logarithm of the S&P 100 index. We partition our data set into two subsets. For our

out-of-sample analysis we use a burn-in period from 2 January 1986 until 11 November 1999 and then the

remaining sample for forecasting. For robustness we also use a second sub sample ranging from January

1988 until January 2007, excluding the big crashes in 1987 and the credit crisis starting from 2008.

4Originally designed by Whaley (1993).
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Figure 2: VXO index and Implied Instantaneous S&P 100 Volatility: this figure displays the VXO
implied volatility index along with the instantaneous variance implied by the Q parameters from Table 2. The
data are reported in percent.

4.2 Risk premia

Conventional stationarity tests are based on linear model assumptions and financial time series regularly

fail these tests contrary economic intuition. The VXO time series is no exception: Depending on the

sub sample used augmented Dickey-Fuller tests sometimes report a unit root, and sometimes stationarity.

The nonlinear model introduced in this paper is potentially capable of reflecting mean-diverting behaviour

in certain regions while displaying strong pull-back to the unconditional mean for very high or very low

variance regimes. In this section we investigate this question and also consider implications for risk

premia induced through nonlinearities. We start by estimating the parameters, the procedure of which is

described in detail in Appendix B. Point estimates and standard errors for the parameters of the nonlinear

model NL (cf. (24)) and the linear model LN (cf. (23)) can be found in Table 2.

The Q mean-reversion parameter bQ1 is large and positive for both the linear and the nonlinear model.

This is consistent with the explosive coefficients estimated in Jones (2003) and Pan (2002) and with the

negative variance risk premia observed in Carr and Wu (2009), for the VIX index.5 The positive estimates

result in a time series for instantaneous variance that is located consistently below the time series of the

VXO through relation (11). This can be seen in Figure 2 to be the case for both the linear and the nonlinear

models under the real world measure P. Since both models are linear under the risk-neutral measure Q

the implied variance series are virtually indistinguishable. The correlation and diffusion parameters ρ and

5The VIX and the VXO indices are very highly correlated and very similar in level.
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Figure 3: Variance premia and the nonlinear Drift: Risk premia for the variance (see Section 4.2 for
the definition) are displayed in Figure 3a. Figure 3b and 3c display the nonlinear drift in variance model (6),
and the linear drift in model (4) (both at the estimated parameter values).
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σ ρ b
Q
0

b
Q
1

a0 a1 b0 b1 b2 b3
Linear 2.4196 -0.7146 0.0778 8.3141 0.0296 0.9384 -1.6904

(0.1066) (0.0108) (0.0081) (0.0521) (0.0248) (0.2543) (0.0105)
Nonlinear 2.4407 -0.7137 0.0837 8.1319 0.0421 0.6438 0.0351 1.1075 -24.5954 9.704e-05

(0.0908) (0.0069) (0.0082) (0.0097) (0.0220) (0.0069) (0.0142) (0.0183) (0.0040) (8.769e-05)

Table 2: Parameter Estimates: The table displays parameter estimates for the linear model (23) and the
nonlinear model (24). Huber (sandwich) standard errors are computed from the asymptotic covariance matrix
pertaining to the likelihood in (15) with the transition density approximation in in (30). The asymptotic
covariance matrix of the estimated parameter vector θ̂ is computed according to the formula in Hamilton
(1994, page 145, formula 5.8.7).

σ as well as bQ0 are also comparable in scale for both specifications.

Under the physical measure P, however, the linear and the nonlinear specifications predict very different

behaviour. Figure 3c shows that during calm times (in the region between 0.01 and 0.04) the nonlinear

specification predicts that the instantaneous variance behaves like a random walk or a process that mean-

diverts at an even faster rate. Figure 3b suggests that there is a strong pull away from the zero boundary

and from very high values in the case of the nonlinear drift. Such behaviour cannot be generated with

a linear drift specification. The drift function estimated from the time series of the VIX index non-

parametrically in Bandi and Renó (2009) and Bakshi et al. (2006) is of a shape similar to that of the

drift function in Figure 3b. This suggests that the nonlinear drift specification is flexible enough to

accommodate the necessary functional form.

Next we investigate the nonlinear specification through the lense of risk premia. Specifically we look

at the compensation for Brownian motion risk driving the variance state variable. Recall that the risk

premium (i.e. the market price of risk) at time t ∈ [0, T ] in the model M ∈ {LN, NL} is given by

ΛM(Vt) = Σ(Vt)
−1fM(Vt), where Σ(Vt) =

√

Vt

(
√

1− ρ2 ρ

0 σ
√
Vt

)

, (16)

and fM is defined in (5) and (7) for M = LN and M = NL respectively. The risk premium for the

stochasticity of the variance is given by the second component ΛV
M(Vt) of the market price of risk vector

ΛM(Vt). In the case M = LN, the variance risk premium ΛV
LN(Vt) is a non-zero constant given by

(b1 − bQ1 )/σ. The resulting time series of the risk premia reflect the difference in the estimated real world

drifts described in the previous paragraph: while the unconditional mean of the risk premium on the

W V Q Brownian motion (see SDE (2)) is similar for both specifications, the nonlinear model exhibits time-

variability in the market prices of risk (see Figure 3a), in contrast to the constant risk premium, given

by (b1 − bQ1 )/σ, in the linear model. Consistent with the literature on variance risk premia measured

through variance swaps, the instantaneous compensation from Brownian motion risk is, on average, large

and negative.
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4.3 Forecasts

In this subsection we consider, in addition to the nonlinear model (NL) and the linear model (LN), a

random walk martingale model (RW), where the prediction for any future value is taken to be the current

value. The forecasting power of the models is tested out-of-sample with predictions for implied variance,

realized variance and stock returns. Each observation of forecast errors is comprised of a cross section

of residuals pertaining to 1 day, 1 week, 4 weeks, 12 weeks (quarter trading year) and 26 weeks (half

trading year) forecasting errors for stock returns and implied variance. Realized variance forecast errors

are computed for horizons of 1 week, 4 weeks, 12 weeks and 26 weeks, where realized variance at time ti

computed over N days is defined as

RVi(N) :=
262

N

i
∑

j=i−N

(

Xj −Xj−1

Xj−1

)2

. (17)

For the model M ∈ {RW, LN, NL} we compute the realized variance using the model-implied instan-

taneous variance, which is annualized by construction

RV M
i (N) :=

1

N

i
∑

j=i−N

Vj . (18)

Conditional expectations for the LN and NL models are computed by Monte Carlo integration using 2 ·104

paths with hourly discretization of the SDE.6 Tables 3, 4 and 5 report the mean absolute error (MAE) and

the root mean squared error (RMSE) of the sampling distribution of forecasting residuals for the realized

variance, the implied variance and the stock returns, respectively. In addition, directional forecasts as

well as p-values of the Clark and West (2007) (CW) test statistics for nested models are reported. Table 3

reports normalized MSE (NMSE) for comparison with the results in Sizova (2008).

Figure 2 indicates structural breaks in the implied variance time series. The sample period spans

these regimes, and the out-of-sample period contains both very rough and very calm periods. The visual

impression suggests exactly what the nonlinear model is designed to accomplish: Very high volatility states

persist only very briefly, the negative pull in the drift growing quadratically and directing the process down

to smaller levels. An analogous phenomenon occurs for very low volatility states. During normal market

periods the process itself becomes very persistent. We therefore expect the nonlinear model to do at least

as good as the RW model. The effect of mean reversion, which the LN model also accommodates is likely

to show advantages.

With realized variance being path-dependent we would also expect the effect of mean reversion to

amplify the advantage of the LN and the NL model over the RW model. Table 3, which contains the

6With approximation (11) forecasts for the implied variance can be computed as linear functions of conditional instanta-
neous variance expectations. Expectations for both the linear and nonlinear model are evaluated by Monte Carlo integration.
This is despite the availability of an analytic expression for the conditional expectation in the linear model so that both
specifications are subject to the same simulation error (the same set of random numbers is used for the integration).
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OUT-SAMPLE (short) 1w 4w 12w 26w

RMSE RW 0.0622 0.0681 0.0711 0.0729
LN 0.0326 0.0242 0.0226 0.0231
NL 0.0334 0.0258 0.0239 0.0240

NMSE RW 186% 351% 543% 718%
LN 51% 44% 55% 72%
NL 53% 50% 61% 78%

MAE RW 0.0304 0.0329 0.0348 0.0359
LN 0.0163 0.0135 0.0144 0.0162
NL 0.0165 0.0139 0.0143 0.0165

DIR RW 49% 47% 49% 48%
LN 70% 70% 65% 60%
NL 70% 70% 64% 59%

CW LN vs. RW 0.0000(∗∗∗) 0.0000(∗∗∗) 0.0001(∗∗∗) 0.0012(∗∗∗)

NL vs. RW 0.0000(∗∗∗) 0.0000(∗∗∗) 0.0001(∗∗∗) 0.0014(∗∗∗)

NL vs. LN 0.9926 0.8100 0.2386 0.1118

OUT-SAMPLE
RMSE RW 0.1157 0.1265 0.1373 0.1426

LN 0.0603 0.0574 0.0593 0.0547
NL 0.0611 0.0591 0.0600 0.0547

NMSE RW 160% 242% 379% 582%
LN 43% 49% 70% 85%
NL 44% 52% 72% 85%

MAE RW 0.0444 0.0490 0.0534 0.0564
LN 0.0243 0.0224 0.0250 0.0275
NL 0.0245 0.0229 0.0250 0.0267

DIR RW 49% 48% 47% 47%
LN 70% 68% 61% 60%
NL 70% 68% 62% 60%

CW LN vs. RW 0.0003(∗∗∗) 0.0082(∗∗∗) 0.0386(∗∗) 0.0578(∗)

NL vs. RW 0.0003(∗∗∗) 0.0081(∗∗∗) 0.0396(∗∗) 0.0594(∗)

NL vs. LN 0.9830 0.8761 0.7033 0.0910(∗)

Table 3: Realized variance forecasting: This table displays mean absolute error MAE, given by
1

N−τ

∑N

i=τ |ǫi(τ)|, root mean squared forecast error RMSE, given by
√

1
N−τ

∑N

i=τ ǫi(τ)
2, and normalized MSE

(NMSE), defined as
∑N

i=τ ǫi(τ)
2/

(

∑N

i=τ (RVi(τ)−RV i(τ))
2
)

, where ǫi(τ) := RVi(τ)− EP
ti−τ

[

RV M
i (τ)

]

and

τ ∈ {5, 22, 66, 131}. The realized varieance RVi(τ) is defined in (17) and the random variable RV M
i (τ) is

given in (18) for any M ∈ {RW, LN, NL}, where RW denotes the random walk model and LN (resp. NL)
stands for the linear (resp. nonlinear) model given in (23) (resp. in (24)). DIR shows the percentage of
correct directional forecasts. CW denotes p-values for the Clark and West (2007) test for nested models.
Asterisks (∗∗∗),(∗∗),(∗) denote significance at the 1%, 5% and 10% confidence level respectively. The top panel
is based on the joint S&P 100 and VXO sample excluding the ’87 crash and the credit crisis ’08-. The bottom
panel is based on the entire sample ranging from ’86 until ’12.
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OUT-SAMPLE (short) 1d 1w 4w 12w 26w

MSE RW 0.0086 0.0169 0.0266 0.0367 0.0421
LN 0.0086 0.0168 0.0261 0.0356 0.0426
NL 0.0085 0.0162 0.0256 0.0348 0.0406

MAE RW 0.0048 0.0095 0.0157 0.0229 0.0264
LN 0.0048 0.0095 0.0163 0.0257 0.0337
NL 0.0048 0.0092 0.0153 0.0234 0.0300

DIR RW 48% 48% 46% 45% 45%
LN 49% 51% 53% 55% 52%
NL 50% 53% 56% 52% 52%

CW LN vs. RW 0.0027(∗∗∗) 0.0001(∗∗∗) 0.0001(∗∗∗) 0.0022(∗∗∗) 0.0407(∗∗)

NL vs. RW 0.0196(∗∗) 0.0082(∗∗∗) 0.0055(∗∗∗) 0.0108(∗∗) 0.0218(∗∗)

NL vs. LN 0.0266(∗∗) 0.0125(∗∗) 0.0116(∗∗) 0.0285(∗∗) 0.0500(∗∗)

OUT-SAMPLE

MSE RW 0.0184 0.0311 0.0495 0.0747 0.0902
LN 0.0184 0.0307 0.0471 0.0656 0.0722
NL 0.0182 0.0298 0.0460 0.0629 0.0700

MAE RW 0.0073 0.0135 0.0226 0.0358 0.0458
LN 0.0073 0.0134 0.0223 0.0339 0.0419
NL 0.0073 0.0132 0.0218 0.0319 0.0386

DIR RW 0.4754 0.4706 0.4442 0.4241 0.4327
LN 0.5188 0.5306 0.5547 0.5665 0.6045
NL 0.4994 0.5148 0.5425 0.5719 0.6031

CW LN vs. RW 0.1134 0.0504(∗) 0.0371(∗∗) 0.0369(∗∗) 0.0642(∗)

NL vs. RW 0.1210 0.0495(∗∗) 0.0506(∗) 0.0477(∗∗) 0.0717(∗)

NL vs. LN 0.1449 0.0754(∗) 0.0986(∗) 0.0709(∗) 0.0903(∗)

Table 4: Implied variance forecasting: This table displays mean absolute error MAE, given by
1

N−τ

∑N−τ

i=1 |ǫi(τ)|, and root mean squared forecast error RMSE, defined by
√

1
N−τ

∑N−τ

i=1 ǫi(τ)2, where

ǫi(τ) := IVti+τ − EP
ti

[

IV M
ti+τ

]

and τ ∈ {1, 5, 22, 66, 131}. The random variable IV M
t is defined as a linear

transformation, given in (13), of the instantaneous variance in the model M ∈ {NL, LN} and IVt denotes the
square of the VXO index at time t. As in the previous table RW denotes the random walk model and LN
(resp. NL) stands for the linear (resp. nonlinear) model given in (23) (resp. in (24)). DIR shows the
percentage of correct directional forecasts. CW denotes p-values for the Clark and West (2007) test for nested
models. Asterisks (∗∗∗),(∗∗),(∗) denote significance at the 1%, 5% and 10% confidence level respectively. The
top panel is based on the joint S&P 100 and VXO sample excluding the ’87 crash and the credit crisis ’08-.
The bottom panel is based on the entire sample ranging from ’86 until ’12.
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OUT-SAMPLE (short) 1d 1w 4w 12w 26w

MSE RW 0.0115 0.0240 0.0457 0.0719 0.1067
LN 0.0115 0.0243 0.0475 0.0804 0.1315
NL 0.0115 0.0242 0.0476 0.0823 0.1366

MAE RW 0.0082 0.01744 0.0336 0.0553 0.0835
LN 0.0082 0.0175 0.0343 0.0604 0.0992
NL 0.0082 0.0175 0.0342 0.0609 0.1004

DIR RW 51% 51% 54% 51% 52%
LN 50% 51% 51% 47% 46%
NL 51% 51% 54% 51% 52%

CW LN vs. RW 0.9691 0.9825 0.9826 0.9699 0.9617
CW NL vs. RW 0.6856 0.7710 0.8225 0.9167 0.9214
CW NL vs. LN 0.2449 0.2659 0.3010 0.5275 0.5805

OUT-SAMPLE

MSE RW 0.0137 0.0274 0.0521 0.0868 0.1395
LN 0.0137 0.0276 0.0536 0.0951 0.1586
NL 0.0137 0.0276 0.0534 0.0930 0.1560

MAE RW 0.0093 0.0194 0.0381 0.0647 0.1024
LN 0.0093 0.0194 0.0385 0.0688 0.1145
NL 0.0093 0.0194 0.0384 0.0678 0.1120

DIR RW 52% 54% 58% 59% 60%
LN 49% 50% 52% 52% 59%
NL 50% 52% 52% 56% 60%

CW LN vs. RW 0.4136 0.7086 0.8686 0.9166 0.8658
CW NL vs. RW 0.8145 0.9277 0.9318 0.9264 0.8880
CW NL vs. LN 0.7641 0.4299 0.1299 0.1190 0.0909(∗)

Table 5: Log stock forecasting: This table displays mean absolute error MAE, given by 1
N−τ

∑N−τ

i=1 |ǫi(τ)|,

and root mean squared forecast error RMSE, defined by
√

1
N−τ

∑N−τ

i=1 ǫi(τ)2, where

ǫi(τ) : Xti+τ − EP
ti

[

XM
ti+τ

]

and τ ∈ {1, 5, 22, 66, 131}. The random variable XM
t represents the log stock in

the model M ∈ {NL, LN} and Xt denotes the recorded value of the logarithm of the S&P 100 at time t. As
in the previous table RW denotes the random walk model and LN (resp. NL) stands for the linear (resp.
nonlinear) model given in (23) (resp. in (24)). DIR shows the percentage of correct directional forecasts. CW
denotes p-values for the Clark and West (2007) test for nested models. Asterisks (∗∗∗),(∗∗),(∗) denote
significance at the 1%, 5% and 10% confidence level respectively. The top panel is based on the joint S&P 100
and VXO sample excluding the ’87 crash and the credit crisis ’08-. The bottom panel is based on the entire
sample ranging from ’86 until ’12.

17



results for realized variance forecasting, indeed demonstrates that the RW model is dominated both by

the LN and the NL models. The directional forecasts ranging from 60%-70% are encouraging for both the

LN and NL models, recommending their use in connection with a variance trading strategy.7 The NMSE

statistic given in Table 3 is comparable to the one reported in Sizova (2008) even though the forecasts

in Sizova (2008) are based on a single time horizon. The numbers suggest that both the LN and the NL

fare well with her SV-CJ jump diffusion model for the VIX index for short forecast maturities. The top

panel in Table 3 indicates that the extreme returns in market crashes have no immediate effect on the

predictability of realized variance through the LN or the NL model.

The results for implied variance forecasting in Table 4 are more clear-cut. The RW forecast cannot

compete with either the LN, or the NL model. In this case also the pattern emerges that NL gives

significant advantages over LN. Except for the 1 day forecast the NL outperforms the LN model uniformly

with respect to MAE, MSE, and in particular the CW criterion across all maturities. In the shorter sample

excluding the big crises, the effects are even more pronounced. There is evidence for predictability on the

one-day horizon, where the NL model outperforms the LN model, showing that a nonlinear drift can have

impact over short time horizons. Directional forecasts also exhibit an interesting pattern. The quality of

the LN and NL forecasts improve with the forecasting horizon, while RW forecasts deteriorate. This is

a strong indication of reversion to an unconditional mean and thus hints at the weaknesses in unit root

tests, which the VXO and VIX indices regularly fail depending on the sub sample under consideration.

The results in Bollerslev et al. (2009) suggest that variance risk premia, measured by the difference

between S&P 500 realized variance and the VIX index, have predictive power for S&P 500 returns. One

source for this predictability may well be the pronounced negative correlation between S&P 500 returns

and their variance, i.e. the leverage effect. With explicit variance models, we can re-assess this question

through the lens of the VXO. Inspecting Table 5, we find no evidence for predictability through any of

the models. In particular, neither the NL or the LN model have anything to add over the RW model.

Consolidating the results from realized variance, implied variance, and index return forecasting, the

nonlinear model suggests itself as an alternative to the prevailing purely affine models used in the literature.

Its specification is suited for the peculiar behaviour of index variance, which exhibits strong mean reversion

and extreme persistence at the same time, and its suitability carries over to predicting instantaneous

variance-related quantities such as realized variance and implied variance. Overall the prediction power

of the nonlinear model is not worse than that of the LN and RW models in the case of the realized

variance and index returns. However, the prediction of the VXO implied variance in the nonlinear model

outperforms significantly the LN and RW models out-of-sample.

7With VIX futures traded very liquidly, the forecasts could be used as buy or sell signals.
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4.4 How significant is the dampening factor DNL(Vt)?

In the present section we investigate how much the dampening factor DNL(Vt) affects the likelihood ratio

η from eq. (20). In the estimations the dampening factor was treated with a value identically equal to

one. While this is of no concern for predicting out of sample, a justification for this choice is nevertheless

important. Using the full-sample parameter estimates reported in Table 2, we evaluate the likelihood ratio

for different time horizons and for different choices of c and compare quantiles of the distributions.

Specifically we simulate the system (1)-(2) under the Q (P) measure, using high-frequency data aug-

mentation to reduce the discretization bias, to evaluate the stochastic integrals in (20) as accurately as pos-

sible. We generate 5,000,000 sample paths and estimate the probability distribution function Q(ητ (c) ≤ x)

(P(ητ (c) ≤ x)), where we choose x ∈ {0.05, 0.5, 0.95}, c ∈
{

10−4, 10−6, 10−8, 10−10, 10−12
}

, and compare

the quantiles of the parameterized distributions.

The results of this numerical exercise are consolidated into figures 4a, 4b, and 4c for the Q simulation

and figures 5a, 5b, and 5c for the P simulation. Under both measures, the distribution of the likelihood

ratio shows very little sensitivity to the dampening parameter for c small enough. While the percentage

difference between Q(ητ (10
−4) ≤ x) and Q(ητ (0) ≤ x) (P(ητ (10

−4) ≤ x) and P(ητ (0) ≤ x)) grows with

the time horizon, for c ≤ 10−6, there is virtually no difference between the quantiles. This numerical

exercise demonstrates that for the nonlinear model used in this paper the procedure is robust to the

choice of c ≤ 10−6. Put differently, the observed path of the process lies well within the compact sets that

correspond to c ≤ 10−6 and the model specification given by (1)–(2) and (7).

5 Conclusion

We introduce a simple continuous-time diffusion framework that combines semi-analytic pricing formulae

with flexible nonlinear time series modeling. Using an econometrically inconspicuous dampening function

we ensure that a solution to the nonlinear stochastic differential equation under the physical measure

exists. We estimate a nonlinear stochastic volatility model on the joint time series of the S&P 100 and the

VXO implied volatility index. Out-of-sample forecast tests show that the nonlinear model has superior

forecasting power over the random walk and the linear model in particular for long prediction horizons in

predicting the VXO. This suggests that a nonlinear specification of the drift under the physical measure

could potentially be very useful in trading and risk management.
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Figure 4: Sensitivity of Likelihood Ratio η to the Dampening Factor: Denoting by
F (x; c, τ) := Q (ητ (c) ≤ x), where the likelihood ratio ητ (c) =

dP
dQ

(c) is defined in eq. (20), the panels display

G(p; c, τ) := log
(

F−1(p; c, τ)/F−1(p; 0, τ)
)

. The quantiles are computed from Monte Carlo integrating the
likelihood ratio using high-frequency data augmentation with 5,000,000 sample paths. The time horizon is
chosen to match exactly the times used in the forecasting exercise.
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Figure 5: Sensitivity of Likelihood Ratio η to the Dampening Factor: Denoting by
F (x; c, τ) := P (ητ (c) ≤ x), where the likelihood ratio ητ (c) =

dP
dQ

(c) is defined in eq. (20), the panels display

G(p; c, τ) := log
(

F−1(p; c, τ)/F−1(p; 0, τ)
)

. The quantiles are computed from Monte Carlo integrating the
likelihood ratio using high-frequency data augmentation with 5,000,000 sample paths. The time horizon is
chosen to match exactly the times used in the forecasting exercise.
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A Equivalence of the risk-neutral and real world measures in the mod-

els of Section 2

In this section we describe the theoretical basis for the modelling framework used in this paper. Theorem 1

below allows us to define a model under the pricing measure Q and perform Girsanov’s measure change

to obtain any desired model under the physical measure P in a wide class of Itô processes where the state

vector satisfies a possibly nonlinear SDE. Theorem 1 also provides a weak solution of this SDE.

Theorem 1. Fix a time horizon T > 0 and suppose X = (Xt)t∈[0,T ] is an n-dimensional Itô process with

state space D ⊆ Rn that satisfies the following SDE under the pricing measure Q

dXt = µQ(Xt) dt+Σ(Xt) dW
Q
t , X0 = x0 ∈ D, (19)

where the drift is given by the function µQ : D → Rn and WQ = (WQ
t )t∈[0,T ] is a standard n-dimensional

Brownian motion under Q. We further assume that the volatility function Σ : D → Rn×n satisfies

| detΣ(x)| > 0 for all x ∈ D. Let f : D → Rn be any measurable function with coordinates fj : D → R,

j = 1, . . . , n, and define the function D : D → R+ by the formula

D(x) := exp

[

− c

| detΣ(x)| − cg(x)

]

,

where g : D → R is a function that satisfies
∑n

j=1 |fj(x)| ≤ A · (g(x) + 1/| detΣ(x)|) for all x ∈ D and a

constant A > 0, and c is some positive constant. Then the function Λ : D → R+, defined by the formula

Λ(x) := D(x)Σ−1(x)f(x),

is bounded and the process η = (ηt)t∈[0,T ] given by

ηt = exp

(∫ t

0
Λ(Xs)dW

Q
s − 1

2

∫ t

0
Λ(Xs)

⊤Λ(Xs)ds

)

, t ≤ T, (20)

is a Q-martingale. Then the dynamics of X = (Xt)t∈[0,T ] under the real world measure P, which is defined

via the Radon-Nikodym derivative dP
dQ = ηT , are given by

dXt = (D(Xt)f(Xt) + µQ(Xt)) dt+Σ(Xt) dW
P
t , X0 = x0, (21)

where W P = (W P
t )t∈[0,T ] is a standard n-dimensional Brownian motion under the measure P, defined by

W P
t := WQ

t −
∫ t
0 Λ(Xs)ds.

Proof. The proof of Theorem 1 follows by construction since the random variable Λ(Xt) is bounded

uniformly in t ∈ [0, T ]. Therefore the Novikov criterion (see Proposition 1.15 in Chapter VIII
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of Revuz and Yor (1999)) can be applied to the local martingale

∫ t

0
Λ(Xs)dW

Q
s

and hence the density process η is a true martingale under the pricing measure Q. The other statements in

Theorem 1 follow from Girsanov’s theorem (see Theorems 1.4 and 1.7 in Chapter VIII of Revuz and Yor

(1999)).

B Concentrated likelihood estimation

A summary of the estimation algorithm is given in Section 3.2. This section describes in detail the steps

to evaluate the concentrated likelihood function for the models introduced in Section 2. One evaluation

of the likelihood function (as a function of θσ ∪ θQ) is based on 5 steps

1. Invert the latent variance state variable V from the VXO through equation (13).

2. Transform the variance state variable to a unit-diffusion process, through equation (22).

3. Compute θV P⋆ | θσ, θQ through EML, described in section B.2.

4. Compute θXP⋆ | θσ, θQ through EML, described in section B.3.

5. Evaluate transition density approximation, described in section B.4.

B.1 Preparations for EML estimation

For implementation it is convenient to consider the process Y = (Yt)t∈[0,T ], given by Yt := γ(Vt), where

the transformation γ : (0,∞) → R of the variance process is defined by the formula

γ(v) =
log v

σ
. (22)

The evolution of the process Y under the physical measure P is given by

dYt =

{

(

bQ0 + b1 Vt

) 1

σ Vt
− σ

2

}

dt+ dW P
V (t), (23)

in linear model (4) and by

dYt =

{(

b0 + b1 Vk + b2 V
2
t +

b3
Vk

)

1

σ Vk
− σ

2

}

dt+ dW P
V (t), (24)

in nonlinear model (6).
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To make our processes suitable for EML estimation we first introduce M − 1 auxiliary data

Ui,1, . . . , Ui,M−1 between each observed data pair (Xi, Yi)
⊤, (Xi+1, Yi+1)

⊤ with the convention that

Ui,0 := Ui := (Xi, Yi)
⊤, and Ui,M := Ui+1 := (Xi+1, Yi+1)

⊤. This augmentation leads to a total of

MN + 1 data pairs. To lighten notation we switch for the below equations to a single-index notation

Uk, k = 0, . . . ,MN . We set δ := ∆
M and write down the discretized version of the continuous-time SDE

eliminating heteroskedasticity in the innovations for the linear variance model (LN)

Xk+1 −Xk − ρ
√
eσYkεVk+1√

eσYk

√

1− ρ2
=

{

(

a0 + a1 e
σYk
) 1√

eσYk

√

1− ρ2

}

δ + εXk+1

Yk+1 − Yk +
σ

2
δ =

(

bQ0 + b1 e
σYk

) 1

σ eσYk
δ + εVk+1,

(25)

and the nonlinear variance model (NL)

Xk+1 −Xk − ρ
√
eσYkεVk+1√

eσYk

√

1− ρ2
=

{

(

a0 + a1 e
σYk
) 1√

eσYk

√

1− ρ2

}

δ + εXk+1

Yk+1 − Yk +
σ

2
δ =

(

b0 + b1 e
σYk + b2 e

2σYk +
b3
eσYk

)

1

σ eσYk
δ + εVk+1.

(26)

It can be seen that the difference equations (25) and (26) above for both, log stock prices, as well as

stochastic variance can be written in the form

gX(Uk+1, Uk) = (fX
0 (Uk) + fX

1 (Uk)) δ + εXk+1

gM(Uk+1, Uk) =

LM
∑

l=0

fM
l (Uk) δ + εVk+1, M ∈ {LN, NL} ,

where the functions g and f are displayed in tables 6b and 6a. For the linear variance model we have

LLN = 1, and for the nonlinear model we have LNL = 3. Innovations εVk and εXk are both identically

independently N(0, δ)-distributed random variables for k = 1, . . . ,MN . Note the appearance of εVk+1

in equ. (25) and (26), respectively. This is the reason why we need to estimate θV P first (the variance

dynamics do not depend on the log stock price) and θXP subsequently, conditional on θV P⋆. For the below

algorithm denote with θV
MP,M ∈ {LN, NL} the parameters of the linear, respectively nonlinear variance

process. If there is no ambiguity we will just write θV P.

B.2 Optimal θV P | θσ, θQ:

Plugging the current values of θσ and θQ into eq. (11) the observed data implies a time series of Y .

An estimate of the parameters of the transformed variance process Y can now be obtained by means of

EML (Mijatović and Schneider, 2010). For this purpose we introduce functions f and g from difference

equations (25) and (26) which are displayed in Table 6. For a given variance model M we put the variance
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M = LN M = NL

fM
0 (uk) 1/(σeσyk) 1/(σeσyk)
fM
1 (uk) 1/σ 1/σ
fM
2 (uk) eσyk/σ
fM
3 (uk) 1/(σ e2σyk)

gM(uk, uk−1) yk − yk−1 + (12σ − bQ0 )δ yk − yk−1 +
1
2σδ

(a) Variance drift functions

fX
0 (uk) 1/(

√

1− ρ2
√
eσyk)

fX
1 (uk)

√
eσyk/

√

1− ρ2

gX(uk, uk−1)
(

xk − xk−1 − ρ
√
eσyk−1εVk

)

/
(

√

1− ρ2
√
eσyk−1

)

(b) Stock drift functions for model M ∈ {NL, LN}

Table 6: Function specification for EML estimation: The tables contain the functions that appear as
summands in the respective drifts of the LN and NL models, which need to be evaluated in the conditional
expectations in (27) and (28), expressed in terms of the variable uk := (xk, yk).

drift parameters in a vector xM :=
(

bM0 , . . . , bM
LM

)⊤

. EML then yields the optimal drift coefficients θV
MP⋆

as the unique solution of the linear system xM = (ΞM)−1̟M with

ΞM = δ
N−1
∑

n=1

M−1
∑

m=0











E
Q

Un,Un+1
M

[

fM
0 (Un,m)fM

0 (Un,m)
]

· · · E
Q

Un,Un+1
M

[

fM
LM

(Un,m)fM
0 (Un,m)

]

...
. . .

...

E
Q

Un,Un+1
M

[

fM
0 (Un,m)fM

LM
(Un,m)

]

· · · E
Q

Un,Un+1
M

[

fM
LM

(Un,m)fM
LM

(Un,m)
]











, (27)

̟M =

N−1
∑

n=1

M−1
∑

m=0











E
Q

Un,Un+1
M

[

g(Un,m+1, Un,m) fM
0 (Un,m)

]

...

E
Q

Un,Un+1
M

[

g(Un,m+1, Un,m) fM
LM

(Un,m)
]











. (28)

The symbol Qx,y
M denotes the (unknown) law of the diffusion bridge pertaining to model M conditioned

on the endpoints x and y, respectively. We approximate the law of the true diffusion bridge Q
x,y
M with

the law of a Brownian bridge W
x,y
M . It is shown in Mijatović and Schneider (2010) that Qx,y

M is absolutely

continuous with respect to W
x,y
M , and that there is in fact very little deviation between the two even for

long time intervals. Exact draws from the Brownian bridge are obtained from the stochastic difference

equation (Stramer and Yan, 2007)

Ui−1,m+1 = Ui−1,m +
Ui−1,M − Um

M −m
+

√

M −m− 1

M −m
εi−1,m+1, (29)

with εi,m ∼ N(0, δ), i = 1, . . . , N − 1,m = 1, . . . ,M − 1.
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B.3 Optimal θXP | θσ, θQ, θV P⋆:

Conditional on the optimal variance drift parameters θV P⋆ the f and g functions (the g function depends

on the drift parameters of the variance through εV ) from Table 6a can now be swapped with the functions

from Table 6b to estimate optimal stock drift parameters θXP⋆ through the solution of the linear system

(27) – (28).

B.4 Transition Density Evaluation

There is no direct EML estimator for θσ ∪ θQ. To find θσ⋆ and θQ⋆ we therefore need to perform a

conventional likelihood search using likelihood (15) as the objective function. Since for any value of θσ

and θQ EML yields optimal θXP⋆ and θV P⋆, we see likelihood function (15) only as a function of θσ, θQ, and

the data. To approximate the unknown transition densities which appear in (15) we use the simulation-

based estimator from Pedersen (1995) in connection with the Brownian bridge importance sample from

Durham and Gallant (2002)

N
∑

i=1

log pM(Xi, Yi | Xi−1, Yi−1, θ
σ, θQ, θXP⋆(θσ, θQ), θV P⋆(θσ, θQ))

≈
N
∑

i=1

log

{

1

S

S
∑

s=1

∏M
m=1 p

EM(Ui−1,m | Ui−1,m−1, θ
σ, θQ, θXP⋆(θσ, θQ), θV P⋆(θσ, θQ))

∏M−1
m=1 q(Ui−1,m | Ui−1,m−1, Ui−1,M )

}

.

(30)

Here, pM refers to the true transition density arising from Heston dynamics with variance specification (23)

(LN) and (24) (NL), respectively. The density pEM denotes a normal distribution arising from the Euler

discretization of the corresponding SDE. Auxiliary state variables Ui−1,m, . . . , Ui−1,m, i = 1, . . . , N,m =

1, . . . ,M − 1 are simulated according to the stochastic difference equation

Ui−1,m+1 = Ui−1,m +
Ui−1,M − Um

M −m
+

√

M −m− 1

M −m
Σ(Ui−1,m) εi−1,m+1, (31)

where

Σ(Ui−1,m) =

(
√

1− ρ2eσYi−1,m ρσeσYi−1,m

0 1

)

, εi−1,m+1 =

(

εXi−1,m+1

εVi−1,m+1

)

. (32)

Both pEM and q are multivariate normal densities:

q(Ui−1,m+1 | Ui−1,m, Ui−1,M ) = φ

(

Ui−1,m+1;Ui−1,m +
Ui−1,M − Um

M −m
,
M −m− 1

M −m
Σ(Ui−1,m)Σ(Ui−1,m)⊤δ

)

pEM(Ui−1,m+1 | Ui−1,m, θ) = φ

((

Xi−1,m+1 −Xi−1,m

gM(Ui−1,m+1, Ui−1,m)

)

;

(

a0 + a1e
σYi−1,m

∑LM

l=0 fM
l (Ui−1,m)

)

δ,Σ(Ui−1,m)Σ(Ui−1,m)⊤δ

)

.
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Following Stramer and Yan (2007) we set S = M2 = 576. Note that the ε variates appearing in (29) from

EML estimation may be reused in this step.
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