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Abstract

Famously, a d-dimensional, spatially homogeneous random walk whose incre-
ments are non-degenerate, have finite second moments, and have zero mean is re-
current if d ∈ {1, 2} but transient if d ≥ 3. Once spatial homogeneity is relaxed, this
is no longer true. We study a family of zero-drift spatially non-homogeneous ran-
dom walks (Markov processes) whose increment covariance matrix is asymptotically
constant along rays from the origin, and which, in any ambient dimension d ≥ 2,
can be adjusted so that the walk is either transient or recurrent. Natural examples
are provided by random walks whose increments are supported on ellipsoids that
are symmetric about the ray from the origin through the walk’s current position;
these elliptic random walks generalize the classical homogeneous Pearson–Rayleigh
walk (the spherical case). Our proof of the recurrence classification is based on
fundamental work of Lamperti.

Key words: Non-homogeneous random walk; elliptic random walk; zero drift; recurrence;
transience.
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1 Introduction

A d-dimensional random walk that proceeds via a sequence of unit-length steps, each in
an independent and uniformly random direction, is sometimes called a Pearson–Rayleigh
random walk (PRRW), after the exchange in the letters pages of Nature between Karl
Pearson and Lord Rayleigh in 1905 [16]. Pearson was interested in two dimensions and
questions of migration of species (such as mosquitoes) [17], although Carazza has specu-
lated that Pearson was a golfer [3, p. 419]; Rayleigh had earlier considered the acoustic
‘random walks’ in phase space produced by combinations of sound waves of the same
amplitude and random phases.

The PRRW can be represented via partial sums of sequences of i.i.d. random vectors
that are uniformly distributed on the unit sphere Sd−1 in Rd. Clearly the increments
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have mean zero, i.e., the PRRW has zero drift. The PRRW has received some renewed
interest recently as a model for microbe locomotion [1, 14, 15]. Chapter 2 of [8] gives a
general discussion of these walks, which have been well-understood for many years. In
particular, it is well known that the PRRW is recurrent for d ∈ {1, 2} and transient if
d ≥ 3.

Suppose that we replace the spherically symmetric increments of the PRRW by in-
crements that instead have some elliptical structure, while retaining the zero drift. For
example, one could take the increments to be uniformly distributed on the surface of
an ellipsoid of fixed shape and orientation, as represented by the picture on the right of
Figure 1. More generally, one should view the ellipses in Figure 1 as representing the cov-
ariance structure of the increments of the walk (we will give a concrete example later; the
uniform distribution on the ellipse is actually not the most convenient for calculations).

Figure 1: Pictorial representation of spatially homogeneous random walks with incre-
ments distributed on a fixed circle (left) and a fixed ellipse (right).

A little thought shows that the walk represented by the picture on the right of Figure 1
is essentially no different to the PRRW: an affine transformation of Rd will map the walk
back to a walk whose increments have the same covariance structure as the PRRW. To
obtain genuinely different behaviour, it is necessary to abandon spatial homogeneity.

In this paper we consider a family of spatially non-homogeneous random walks with
zero drift. These include generalizations of the PRRW in which the increments are not
i.i.d. but have a distribution supported on an ellipsoid of fixed size and shape but whose
orientation depends upon the current position of the walk. Figure 2 gives representations
of two important types of example, in which the ellipsoid is aligned so that its principal
axes are parallel or perpendicular to the vector of the current position of the walk, which
sits at the centre of the ellipse.

The random walks represented by Figure 2 are no longer sums of i.i.d. variables.
These modified walks can behave very differently to the PRRW. For instance, one of the
two-dimensional random walks represented in Figure 2 is transient while the other (as
in the classical case) is recurrent. The reader who has not seen this kind of example
before may take a moment to identify which is which. It is this anomalous recurrence
behaviour that is the main subject of the present paper. In the next section, we give a
formal description of our model and state our main results.

We end this introduction with a brief comment on motivation. In biology, the PRRW
is more natural than a lattice-based walk for modelling the motion of microscopic organ-
isms, such as certain bacteria, on a surface. Experiment suggests that the locomotion of
several kinds of cells consists of roughly straight line segments linked by discrete changes
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Figure 2: Pictorial representation of spatially non-homogeneous random walks with in-
crements distributed on a radially-aligned ellipse with major axis aligned in the radial
sense (left) and in the transverse sense (right).

in direction: see, e.g., [14, 15]. The generalization to elliptically-distributed increments
studied here represents movement on a surface on which either radial or transverse mo-
tion is inhibited. In chemistry and physics, the trajectory of a finite-step PRRW (also
called a ‘random chain’) is an idealized model of the growth of weakly interacting polymer
molecules: see, e.g., §2.6 of [8]. The modification to ellipsoid-supported jumps represents
polymer growth in a biased medium.

2 Model and main results

We work in Rd, d ≥ 1. Our main interest is in d ≥ 2, as we shall explain shortly. Write
e1, . . . , ed for the standard orthonormal basis vectors in Rd. Write 0 for the origin in Rd,
and let ‖ · ‖ denote the Euclidean norm and 〈 · , · 〉 the Euclidean inner product on Rd.
Write Sd−1 := {u ∈ Rd : ‖u‖ = 1} for the unit sphere in Rd. For x ∈ Rd \ {0}, set
x̂ := x/‖x‖; also set 0̂ := e1, for convenience. For definiteness, vectors x ∈ Rd are viewed
as column vectors throughout.

We now define X = (Xn, n ∈ Z+), a discrete-time, time-homogeneous Markov process
on a (non-empty, unbounded) subset X of Rd. Formally, (X,BX) is a measurable space,
X is a Borel subset of Rd, and BX is the σ-algebra of all B ∩ X for B a Borel set in Rd.
Suppose X0 is some fixed (i.e., non-random) point in X. Write

∆n := Xn+1 −Xn (n ∈ Z+)

for the increments of X. By assumption, given X0, . . . , Xn, the law of ∆n depends only
on Xn (and not on n); so often we ease notation by taking n = 0 and writing just ∆ for
∆0. We also use the shorthand Px[ · ] = P[ · | X0 = x] for probabilities when the walk is
started from x ∈ X; similarly we use Ex for the corresponding expectations.

We make the following moments assumption:

(A0) There exists p > 2 such that supx∈X Ex[‖∆‖p] <∞.

The assumption (A0) ensures that ∆ has a well-defined mean vector µ(x) := Ex[∆], and
we suppose that the random walk has zero drift :

(A1) Suppose that µ(x) = 0 for all x ∈ X.

3



The assumption (A0) also ensures that ∆ has a well-defined covariance matrix, which
we denote by M(x) := Ex[∆∆>], where ∆ is viewed as a column vector. To rule out
pathological cases, we assume that ∆ is uniformly non-degenerate, in the following sense.

(A2) There exists v > 0 such that tr(M(x)) = Ex[‖∆‖2] ≥ v for all x ∈ X.

Note that assumption (A2) is weaker than uniform ellipticity, which in this context
usually means, for some ε > 0, Px[∆ · u ≥ ε] ≥ ε for all u ∈ Sd−1 and all x.

Our main interest is in a recurrence classification. First, we state the following basic
‘non-confinement’ result.

Proposition 2.1. Suppose that X satisfies assumptions (A0), (A1) and (A2). Then

lim sup
n→∞

‖Xn‖ = +∞, a.s. (2.1)

We give the proof of Proposition 2.1 in Section 4; we actually prove more, namely that
the hypotheses of Proposition 2.1 ensure that a version of Kolmogorov’s ‘other’ inequality
holds. The fact (2.1) ensures that questions of the escape of trajectories to infinity are
non-trivial. Indeed, we will give conditions under which one or other of the following two
behaviours (which are not a priori exhaustive) occurs:

• limn→∞ ‖Xn‖ = +∞, a.s., in which case we say that X is transient ;

• lim infn→∞ ‖Xn‖ ≤ r0, a.s., for some constant r0 ∈ R+, when we say X is recurrent.

If X is an irreducible time-homogeneous Markov chain on a locally finite state-space,
these definitions reduce to the usual notions of transience and recurrence; in general
state-spaces, our approach allows us to avoid unnecessary technicalities concerning irre-
ducibility.

In dimension d = 1, it is a consequence of the classical Chung–Fuchs theorem (see
[4] or Chapter 9 of [9]) that a spatially homogeneous random walk with zero drift is
necessarily recurrent. However, this is not true for a spatially non-homogeneous random
walk: as observed by Rogozin and Foss [19], a counterexample is provided by a version
of the ‘oscillating random walk’ of Kemperman [10] in which the increment law is one of
two distributions (with mean zero but infinite second moment) depending on the walk’s
present sign. Our conditions exclude these heavy-tailed phenomena, so that in d = 1
recurrence is assured in our setting.

Theorem 2.2. Suppose that d = 1. Suppose that X satisfies assumptions (A0), (A1),
and (A2). Then X is recurrent.

Theorem 2.2 is essentially contained in a result of Lamperti [12, Theorem 3.2]; we give
a self-contained proof below. Theorem 2.2 shows that in d = 1, under mild conditions,
the classical Chung–Fuchs recurrence classification for homogeneous zero-drift random
walks extends to zero-drift non-homogeneous random walks. The purpose of the present
paper is to demonstrate a natural family of examples in dimension d ≥ 2 where this
extension fails, and hence exhibit the following.

Fact. There exist spatially non-homogeneous random walks whose increments are non-
degenerate, have uniformly bounded second moments, and have zero mean, which are

• transient in d = 2;
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• recurrent in d ≥ 3.

Although certainly appreciated by experts, this fact is perhaps not as widely known
as it might be. Zeitouni (pp. 91–92 of [20]) describes an example of a transient zero-drift
random walk on Z2, and states that the idea “goes back to Krylov (in the context of
diffusions)”. Peres, Popov and Sousi [18] investigate the minimal number of different
increment distributions required for anomalous recurrence behaviour.

We now introduce our family of non-homogeneous random walks. Write ‖ · ‖op for the
matrix (operator) norm given by ‖M‖op = supu∈Sd−1 ‖Mu‖. The following assumption
on the asymptotic stability of the covariance structure of the process along rays is central.

(A3) Suppose that there exists a positive-definite matrix function σ2 with domain Sd−1
such that, as r →∞,

ε(r) := sup
x∈X:‖x‖≥r

‖M(x)− σ2(x̂)‖op → 0.

A little informally, (A3) says that M(x) → σ2(x̂) as ‖x‖ → ∞; in what follows, we will
often make similar statements, formal versions of which may be cast as in (A3).

Note that (A2) and (A3) together imply that tr(σ2(u)) ≥ v > 0; next we impose a
key assumption on the form of σ2 that is considerably stronger. To describe this, it is
convenient to introduce the notation 〈 · , · 〉u that defines, for each u ∈ Sd−1, an inner
product on Rd via

〈y, z〉u := y> · σ2(u) · z = 〈y, σ2(u) · z〉, for y, z ∈ Rd.

(A4) Suppose that there exist constants U and V with 0 < U < V < ∞ such that, for
all u ∈ Sd−1,

〈u,u〉u = U, and tr(σ2(u)) = V.

Informally, V quantifies the total variance of the increments, while U quantifies the
variance in the radial direction; necessarily U ≤ V . The assumption that 0 6= U 6= V
excludes some degenerate cases. As we will see, one possible way to satisfy condition (A4)
is to suppose that the eigenvectors of σ2(u) are all parallel or perpendicular to the vector
u, and that the corresponding eigenvalues are all constant as u varies; the level sets of
the corresponding quadratic forms qu(x) := 〈x,x〉u for u ∈ Sd−1 are then ellipsoids like
those depicted in Figure 2.

Our main result is the following, which shows that both transience and recurrence are
possible for any d ≥ 2, depending on parameter choices; as seen in Theorem 2.2, this pos-
sibility of anomalous recurrence behaviour is a genuinely multidimensional phenomenon
under our regularity conditions.

Theorem 2.3. Suppose that X satisfies (A0)–(A4), with constants 0 < U < V as defined
in (A4). The following recurrence classification is valid.

(i) If 2U < V , then X is transient.

(ii) If 2U > V , then X is recurrent.

(iii) If 2U = V and (A3) holds with ε(r) = O(r−δ0) for some δ0 > 0, then X is recurrent.

Moreover, we show that in any of the above cases, X is null in the following sense.
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Theorem 2.4. Suppose that X satisfies (A0)–(A4), with constants 0 < U < V as defined
in (A4). Then, in any of the cases (i)–(iii) in Theorem 2.3, for any bounded A ⊂ Rd,

lim
n→∞

1

n

n−1∑
k=0

1{Xk ∈ A} = 0, a.s. and in Lq for any q ≥ 1. (2.2)

Remark 2.5. Theorems 2.3 and 2.4 both remain valid if we permit V = U > 0 in (A4);
indeed, the condition U < V is not used in the proof of Theorem 2.3 given below, so
this case is recurrent, by Theorem 2.3(ii). The condition U < V is used at one point to
simplify the proof of Theorem 2.4 given below, but a small modification of the argument
also works in the case U = V .

The remainder of the paper is organised as follows. In Section 3 we describe a specific
family of examples called elliptic random walk models that satisfy assumptions (A0)–(A4)
and exhibit both transient and recurrent behaviour dependent on the parameters of the
model. We also present some simulated data that depicts the random walks in both cases.
In Section 4 we prove a d-dimensional martingale version of Kolmogorov’s other inequality
and use that to prove the non-confinement result (Proposition 2.1). In Section 5 we prove
the recurrence classification (Theorem 2.3), and in Section 6 we prove Theorem 2.4. In
the appendix we prove recurrence in the one-dimensional case (Theorem 2.2).

Finally, we remark that in work in progress we investigate diffusive scaling limits for
random walks of the type described in the present paper; the diffusions that appear as
scaling limits possess certain pathologies from the point of view of diffusion theory that
make them interesting in their own right.

3 Example: Elliptic random walk model

Let d ≥ 2. We describe a specific model on X = Rd where the jump distribution at
x ∈ Rd is supported on an ellipsoid having one distinguished axis aligned with the vector
x. The model is specified by two constants a, b > 0. Construct ∆ as follows. Given
X0 = x, take ζ uniform on Sd−1 and set

∆ = Qx̂Dζ (3.1)

for Qx̂ an orthogonal matrix representing a transformation of Rd mapping e1 to x̂, and
D =

√
d diag (a, b, . . . , b). See Figure 3.

ζ

Dζ
∆

x

0

Figure 3: Definition of ∆ = Qx̂Dζ.
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(Recall that 0̂ = e1, so for X0 = 0 we can take Qx̂ = I and ∆ = Dζ.) Thus ∆ is a
random point on an ellipsoid that has one distinguished semi-axis, of length a

√
d, aligned

in the x̂ direction, and all other semi-axes of length b
√
d. Note that the law of ∆ is well

defined owing to the spherical symmetry of the uniform distribution on Sd−1 and the fact
that only one axis of the ellipsoid is distinguished (for this reason it is enough to take
any Qx̂ satisfying Qx̂e1 = x̂ in order to define ∆; see also Remark 3.1 below).

Note also that ∆ is not chosen to be uniformly distributed on the surface of the
ellipsoid; this does not affect the range of asymptotic behaviour exhibited by the family
of walks as a and b vary, but it does simplify the calculation of M(x). Indeed, we have

M(x) = Ex[∆∆>] = E[Qx̂Dζζ>DQ>x̂] = Qx̂DE[ζζ>]DQ>x̂ =
1

d
Qx̂D

2Q>x̂,

by linearity of expectation, and using the fact that E[ζζ>] = 1
d
I for ζ uniformly distrib-

uted on Sd−1. Also, a calculation similar to the above confirms that µ(x) = 0 for all
x ∈ Rd, since E[ζ] = 0.

Since ‖∆‖ is bounded above by
√
dmax{a, b}, assumption (A0) holds. Clearly (A1)

and (A3) hold, with σ2(u) = 1
d
QuD

2Q>u for u ∈ Sd−1. It is also a simple matter to check
that (A2) and (A4) hold: the matrix σ2(u) represented in coordinates for the orthonormal
basis {Que1 = u, Que2, . . . , Qued} is diagonal with entries a2, b2, . . . , b2. Indeed,

σ2(u) =
1

d
QuD

2Q>u = Qu[b2I + (a2 − b2)e1e
>
1 ]Q>u

= a2uu> + b2(I − uu>),

and therefore 〈u,u〉u = 〈u, σ2(u) · u 〉 = a2 > 0 for all u ∈ Sd−1, and tr (M(x)) =
tr (σ2(x̂)) = a2 + (d− 1)b2 > 0 for all x ∈ Rd.

Remark 3.1. The seeming ambiguity in the definition of ∆ due to the choice of Qx̂ can
be resolved by noting that ∆ can be rewritten as

∆ = Qx̂DQ
>
x̂Qx̂ζ = Qx̂DQ

>
x̂ ζ̃,

where ζ̃ = Qx̂ζ is also uniform on Sd−1 (this follows from the spherical symmetry of
the uniform distribution on Sd−1). Moreover, the symmetric matrix Hx̂ := Qx̂DQ

>
x̂ is

determined explicitly in terms of x̂:

Hx̂ = Qx̂DQ
>
x̂ = Qx̂(b

√
dI + (a− b)

√
de1e

>
1 )Q>x̂

= b
√
dI + (a− b)

√
dx̂x̂>.

Consequently, we could choose to specify ∆ explicitly as

∆ = Hx̂ζ̃ = b
√
dζ̃ + (a− b)

√
dx̂〈x̂, ζ̃〉,

with ζ̃ taken to be uniform on Sd−1. As before, we find that Ex[∆] = Hx̂ E[ζ̃] = 0 and

Ex[∆∆>] = Hx̂ E[ζ̃ζ̃>]Hx̂ = 1
d
H2

x̂ = a2x̂x̂> + b2(I − x̂x̂>).

Recall that we assume our random walk to be time-homogeneous, so that equa-
tion (3.1) in fact determines the distribution of ∆n for all n ≥ 0. Formally, we define
ζ0, ζ1, . . . a sequence of independent random variables uniformly distributed on Sd−1, and
for each n ≥ 0 we define ∆n conditional on {Xn = x} via

∆n = Qx̂Dζn. (3.2)

7



We call X = (Xn, n ∈ Z+) defined in this way an elliptic random walk.
As a corollary to Theorems 2.3 and 2.4, we get the following recurrence classification

for the elliptic random walk model. For this model the ε(r) in (A3) is identically zero so
we get a complete classification that includes the boundary case.

Corollary 3.2. Let d ≥ 2 and a, b ∈ (0,∞). Let X be an elliptic random walk on Rd.
Then X is transient if a2 < (d− 1)b2 and null-recurrent if a2 ≥ (d− 1)b2.

In two dimensions we can explicitly describe the random walk as follows. For x ∈ R2,
x 6= 0 with x = (x1, x2) in Cartesian components, set x⊥ := (−x2, x1). Fix a, b ∈ (0,∞).
Let Ex(a, b) denote the ellipse with centre x and principal axes aligned in the x, x⊥

directions, with lengths 2
√

2a, 2
√

2b respectively, given in parametrized form by

Ex(a, b) :=

{
x +
√

2a
x

‖x‖
cosφ+

√
2b

x⊥

‖x‖
sinφ : φ ∈ (−π, π]

}
, (3.3)

and for x = 0 set

E0(a, b) :=
{√

2a e1 cosφ+
√

2b e2 sinφ : φ ∈ (−π, π]
}
.

The parameter φ in the parametrization (3.3) should be interpreted with caution: it is
not, in general, the central angle of the parametrized point on the ellipse.

Given Xn = x ∈ R2, Xn+1 is taken to be distributed on Ex(a, b), ‘uniformly’ with
respect to the parametrization (3.3). Precisely, let φ0, φ1, . . . be a sequence of independent
random variables uniformly distributed on (−π, π]. Then, on {Xn 6= 0},

Xn+1 = Xn +
√

2a
Xn

‖Xn‖
cosφn +

√
2b

X⊥
n

‖Xn‖
sinφn, (3.4)

while, on {Xn = 0},
Xn+1 = (

√
2a cosφn,

√
2b sinφn). (3.5)

Figure 4 shows two sample paths of a simulation of the elliptic random walk in R2 in
the two cases of recurrence and transience. In each picture the walk starts at the origin
at the centre of the picture; time is represented by the variation in colour (from red to
yellow, or from dark to light if viewed in grey-scale).

Remarks 3.3. (a) The process X reduces to the classical PRRW when a = b: in that
case it is spatially homogeneous, i.e., the distribution of the increment Xn+1 − Xn

does not depend on Xn. For a 6= b the random walk is not spatially homogeneous,
and the jump distribution depends upon the projection onto the unit sphere of the
walk’s current position.

(b) As mentioned earlier, we choose to take increments as defined at (3.4), rather than
increments that are uniform on the ellipse with respect to one-dimensional Lebesgue
measure on Ex(a, b), purely for computational reasons. In fact, in two dimensions,
since the Lebesgue measure on Ex(a, b) coincides with the measure induced by taking
φ uniformly distributed on (−π, π] when a = b, and the case a = b is critically
recurrent, the qualitative behaviour will be the same in either case: the walk will be
transient for a < b and recurrent for a ≥ b. For higher dimensions, taking increments
that are uniform with respect to the Lebesgue measure on Ed

x(a, b) := {Qx̂Du :
u ∈ Sd−1} will still specify a family of models that exhibit a phase transition, from
transience (for a/b small) to recurrence (for a/b large) but the exact shape of the
ellipsoid in the critical case (i.e., the smallest ratio a/b for which the walk is recurrent)
may be different.
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Figure 4: Simulation of the elliptic random walk in R2 for the recurrent case a > b (left)
and the transient case a < b (right).

(c) It follows from (3.2) that

‖Xn+1‖2 = ‖Xn‖2 + 2‖Xn‖〈X̂n,∆n〉+ ‖∆n‖2

= ‖Xn‖2 + 2‖Xn‖〈e1, Dζn〉+ 〈ζn, D2ζn〉
= ‖Xn‖2 + 2a

√
d‖Xn‖〈e1, ζn〉+ (a2 − b2)d〈e1, ζn〉2 + b2d. (3.6)

In particular, for this family of models (‖Xn‖, n ∈ Z+) is itself a Markov process,
since the distribution of ‖Xn+1‖ depends only on ‖Xn‖ and not Xn; however, in the
general setting of Section 2, this need not be the case.

One-dimensional processes with evolutions reminiscent to that given by (3.6) have
been studied previously by Kingman [11] and Bingham [2]. Those processes can
be viewed, respectively, as the distance from its start point of a random walk in
Euclidean space, and the geodesic distance from its start point of a random walk on
the surface of a sphere, but in both cases the increments of the random walk have
the property that the distribution of the jump vector is a product of the independent
marginal distributions of the length and direction of the jump vector. In contrast, for
the elliptic random walk the laws of ‖∆n‖ and 〈X̂n, ∆̂n〉 are not independent (except
when a = b).

(d) The theory equally applies to the case where the ellipsoid specifying the jump dis-
tribution is oriented with some fixed angle α ∈ [0, π) with respect to the radial
direction. If we define ∆ = Qα

x̂Dζ, where Qα
x̂ is an orthogonal matrix that maps

eα := e1 cosα + e2 sinα to x̂, then we find that transience of X is equivalent to

(a2 − b2) cos 2α < (d− 2)b2.

Note that for d = 2, Qα
x̂ and therefore ∆ are well defined, but this is not so for higher

dimensions. Nevertheless, for any collection of matrices (Qα
u; u ∈ Sd−1) satisfying
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Qα
ueα = u for all u ∈ Sd−1 we get the same recurrence classification. This is because

the distribution of ‖Xn+1‖ given Xn is determined through the angle α via

‖Xn‖2 + 2
√
d‖Xn‖(a〈e1, ζn〉 cosα + b〈e2, ζn〉 sinα) + (a2 − b2)d〈e1, ζn〉2 + b2d,

and therefore assumption (A4) holds with U = a2 cos2 α+b2 sin2 α and V = a2 +(d−
1)b2.

4 Non-confinement

In this section we prove that the assumptions (A0), (A1), and (A2) imply that
lim supn→∞ ‖Xn‖ = +∞, a.s. We first present a general result for martingales on Rd

satisfying a “uniform dispersion” condition; the result can be viewed as a d-dimensional
martingale version of Kolmogorov’s other inequality (see e.g. [5, pp. 123, 502]).

Lemma 4.1. Let d ∈ N. Suppose that (Yn, n ∈ Z+) is an Rd-valued process adapted to
a filtration (Gn, n ∈ Z+), with P[Y0 = 0 | G0] = 1. Suppose that there exist p > 2, v >
0, B <∞ such that for all n ∈ Z+, a.s.,

E[‖Yn+1 − Yn‖p | Gn] ≤ B; (4.1)

E[‖Yn+1 − Yn‖2 | Gn] ≥ v; (4.2)

E[Yn+1 − Yn | Gn] = 0. (4.3)

Then there exists D < ∞, depending only on B, p, and v, such that for all n ∈ Z+ and
all x ∈ R+,

P
[

max
0≤`≤n

‖Y`‖ ≥ x
∣∣∣ G0] ≥ 1− D(1 + x)2

n
, a.s.

Proof. Let x > 0 and set τ = min{n ≥ 0 : ‖Yn‖ ≥ x}; throughout the paper we adopt the
usual convention min ∅ :=∞. In analogy with previous notation, write ∆n = Yn+1 − Yn
for the jump distribution, and let

Wn =

{
Yn if ‖Yn‖ ≤ A(1 + x),

Yn−1 + ∆̂n−1(A− 1)(1 + x) if ‖Yn‖ > A(1 + x),

where A > 1 is a constant to be specified later. Note that Wn is Gn-measurable.
Now, on {‖Yn‖ ≤ x}, Wn = Yn and

E[Wn+1 −Wn | Gn] = E[∆n | Gn]

+ E[∆̂n ((A− 1)(1 + x)− ‖∆n‖) 1{‖Yn+1‖ > A(1 + x)} | Gn].

But {‖Yn+1‖ > A(1 + x)} ∩ {‖Yn‖ ≤ x} implies that ‖∆n‖ > (A− 1)(1 + x), and by
(4.3), E[∆n | Gn] = 0. Hence, on {‖Yn‖ ≤ x},∥∥E[Wn+1 −Wn | Gn]

∥∥ ≤ E[‖∆n‖1{‖∆n‖ > (A− 1)(1 + x)} | Gn]

≤ (A− 1)−1(1 + x)−1 E[‖∆n‖2 | Gn]

≤ B′(A− 1)−1(1 + x)−1, a.s.,
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where, by (4.1) and Lyapunov’s inequality, B′ <∞ depends only on B and p. Hence we
can choose A ≥ A0 for some A0 = A0(B, p, v) large enough so that∥∥E[Wn+1 −Wn | Gn]

∥∥ ≤ (v/8)(1 + x)−1, on {‖Yn‖ ≤ x}. (4.4)

Also, on {‖Yn‖ ≤ x}, by a similar argument,

E[‖Wn+1 −Wn‖2 | Gn]
∥∥ = E[‖∆n‖2 | Gn]

+ E[
(
(A− 1)2(1 + x)2 − ‖∆n‖2

)
1{‖Yn+1‖ > A(1 + x)} | Gn]

≥ E[‖∆n‖2 | Gn]− E[‖∆n‖21{‖∆n‖ > (A− 1)(1 + x)} | Gn]

≥ v − (A− 1)2−p(1 + x)2−p E[‖∆n‖p | Gn]

≥ v/2, (4.5)

for all x ≥ 0 and A ≥ A1 for sufficiently large A1 = A1(B, p, v), using (4.1) and (4.2).
Now, set Zn = ‖Wn∧τ‖2. Then, on {n < τ}, by (4.4) and (4),

E[Zn+1 − Zn | Gn] = E[‖Wn+1‖2 − ‖Wn‖2 | Gn]

= E[‖Wn+1 −Wn‖2 | Gn] + 2
〈
Wn,E[Wn+1 −Wn | Gn]

〉
≥ v

2
− 2‖Wn‖v

8(1 + x)
≥ v

2
− vx

4(1 + x)
≥ v

4
.

Hence Zn −
∑n−1

k=0 vk is a Gn-adapted submartingale, where

vk =
v

4
1{k < τ} ≥ v

4
1{n < τ}, for 0 ≤ k < n.

By construction, 0 ≤ Zn ≤ A2(1 + x)2, so

0 = E[Z0 | G0] ≤ E[Zn | G0]−
n−1∑
k=0

E[vk | G0] ≤ A2(1 + x)2 −
n−1∑
k=0

v

4
P[n < τ | G0],

which implies n(v/4)P[n < τ | G0] ≤ A2(1 + x)2. In other words,

P
[

max
0≤`≤n

‖Y`‖ < x
∣∣∣ G0] ≤ 4A2(1 + x)2

vn
, a.s.

Now we can give the proof of Proposition 2.1.

Proof of Proposition 2.1. It is enough to show that for all x ∈ R+ the event {‖Xn‖ ≥ x}
occurs infinitely often. For a given x, we will apply Lemma 4.1 to Yn = Xm+n−Xm with
Gn = σ(X0, . . . , Xm+n); that result is applicable, since (A0), (A1) and (A2) imply (4.1),
(4.3) and (4.2), respectively. Thus Lemma 4.1 shows that, for some finite t = t(x),

P
[

max
0≤`≤t−1

‖Xm+` −Xm‖ ≥ 2x
∣∣∣ X0, . . . , Xm

]
≥ 1

2
, a.s., (4.6)

for all m ≥ 0. For k = 1, 2, . . . , define the event

Ak =
{

max
0≤`≤t−1

‖X(k−1)t+` −X(k−1)t‖ ≥ 2x
}
,

and filtration G ′k−1 = σ(X0, . . . , X(k−1)t). Then Ak ∈ G ′k, and, by (4.6), P[Ak | G ′k−1] ≥ 1
2
,

a.s., for all k. An application of Lévy’s extension of the Borel–Cantelli lemma (see,
e.g., [9, Cor. 7.20]) shows that Ak occurs infinitely often, a.s. For each k such that Ak
occurs, either

11



• ‖X(k−1)t‖ ≥ x, or

• ‖X(k−1)t‖ ≤ x and ‖Xn‖ ≥ x for some (k − 1)t < n < kt.

Since one of these cases must occur for infinitely many k, we have that {‖Xn‖ ≥ x}
occurs infinitely often, as required.

5 Recurrence classification

In this section we study the random walk Xn and give the proof of the recurrence clas-
sification, Theorem 2.3. The method of proof is based on applying classical results of
Lamperti [12] to the R+-valued radial process given by Rn := ‖Xn‖. The method rests
on an analysis of the increments Rn+1−Rn given Xn = x ∈ X; in general, Rn is not itself
a Markov process. The following notation will be useful. Given x 6= 0 and y ∈ Rd, write

yx :=
〈x,y〉
‖x‖

= 〈x̂,y〉,

so that yx is the component of y in the x̂ direction, and y−yx x̂ is a vector perpendicular
to x̂.

First we state a general result on the increments of Rn for a Markov process Xn on
X. Recall that we write ∆ = X1 − X0, and let ∆x be the radial component of ∆ at
X0 = x in accordance with the notation described above; no confusion should arise with
our notation ∆n defined previously.

We make an important comment on notation. When we write O(‖x‖−1−δ), and similar
expressions, these are understood to be uniform in x. That is, if f : Rd → R and
g : R+ → R+, we write f(x) = O(g(‖x‖)) to mean that there exist C ∈ R+ and r ∈ R+

such that
|f(x)| ≤ Cg(‖x‖) for all x ∈ X with ‖x‖ ≥ r. (5.1)

Lemma 5.1. Suppose that X is a discrete-time, time-homogeneous Markov process on
X ⊆ Rd satisfying (A0) for some p > 2. Then, for Rn := ‖Xn‖, we have

sup
x∈X

E[|Rn+1 −Rn|p | Xn = x] <∞, (5.2)

and the radial increment moment functions satisfy

µ1(x) := E[Rn+1 −Rn | Xn = x] = Ex[∆x] +
Ex[‖∆‖2 −∆2

x]

2‖x‖
+O(‖x‖−1−δ), (5.3)

µ2(x) := E[(Rn+1 −Rn)2 | Xn = x] = Ex[∆2
x] +O(‖x‖−δ), (5.4)

as ‖x‖ → ∞, for some δ = δ(p) > 0.

Proof. By time-homogeneity, it suffices to consider the case n = 0. By the triangle
inequality, |R1 −R0| =

∣∣‖X0 + ∆‖ − ‖X0‖
∣∣ ≤ ‖∆‖, so that (5.2) follows from (A0).

We prove (5.3) and (5.4) by approximating

‖x + ∆‖ − ‖x‖ =
√
〈x + ∆,x + ∆〉 − ‖x‖

= ‖x‖

[(
1 +

2∆x

‖x‖
+
‖∆‖2

‖x‖2

)1/2

− 1

]
(5.5)
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for large x. Let Ax = {‖∆‖ ≤ ‖x‖β} for some β ∈ (0, 1) to be determined later. On the
event Ax we approximate (5.5) using Taylor’s formula for (1 + y)1/2, and on the event Ac

x

we bound (5.5) using (A0).
Indeed, for all y > −1, Taylor’s theorem with Lagrange remainder shows that

(1 + y)1/2 = 1 +
1

2
y − 1

8
y2(1 + γy)−3/2,

for some γ = γ(y) ∈ [0, 1], so on the event Ax,

‖x + ∆‖ − ‖x‖ = ‖x‖

(
∆x

‖x‖
+
‖∆‖2

2‖x‖2
− 1

8

(
2∆x

‖x‖
+
‖∆‖2

‖x‖2

)2 (
1 +O(‖x‖β−1)

))

= ∆x +
‖∆‖2

2‖x‖
− ‖x‖

8

(
4∆2

x

‖x‖2
+
‖∆‖2

‖x‖2

(
4∆x

‖x‖
+
‖∆‖2

‖x‖2

))(
1 +O(‖x‖β−1)

)
= ∆x +

‖∆‖2

2‖x‖
− ∆2

x

2‖x‖
(
1 +O(‖x‖β−1)

)
+
‖∆‖2

‖x‖
O(‖x‖β−1)

= ∆x +

(
‖∆‖2 −∆2

x

2‖x‖

)(
1 +O(‖x‖β−1)

)
, (5.6)

where the error terms follow from the fact that |∆x| ≤ ‖∆‖ ≤ ‖x‖β for β < 1.
On the other hand,∣∣‖x + ∆‖ − ‖x‖

∣∣1(Ac
x) ≤ ‖∆‖1(Ac

x) = ‖∆‖p‖∆‖1−p1(Ac
x) ≤ ‖∆‖p‖x‖β(1−p), (5.7)

by the triangle inequality and the fact that ‖∆‖ > ‖x‖β on Ac
x. Since

‖x + ∆‖ − ‖x‖ = (‖x + ∆‖ − ‖x‖)1(Ax) + (‖x + ∆‖ − ‖x‖)1(Ac
x),

we can combine (5.6) and (5.7) to give∣∣∣∣‖x + ∆‖ − ‖x‖ −
[
∆x +

(
‖∆‖2 −∆2

x

2‖x‖

)(
1 +O(‖x‖β−1)

)]∣∣∣∣
=

∣∣∣∣‖x + ∆‖ − ‖x‖ −
[
∆x +

(
‖∆‖2 −∆2

x

2‖x‖

)(
1 +O(‖x‖β−1)

)]∣∣∣∣1(Ac
x)

≤ ‖∆‖p‖x‖β(1−p) +

∣∣∣∣∆x +

(
‖∆‖2 −∆2

x

2‖x‖

)(
1 +O(‖x‖β−1)

)∣∣∣∣1(Ac
x)

≤ 2‖∆‖p‖x‖β(1−p) +
‖∆‖p

2‖x‖
(
1 +O(‖x‖β−1)

)
‖x‖β(2−p).

Therefore, taking expectations and using (A0), we obtain

µ1(x) = Ex[∆x] +
Ex[‖∆‖2 −∆2

x]

2‖x‖
+O(‖x‖β−2) +O(‖x‖β(1−p)) +O(‖x‖β(2−p)−1).

Taking β = 2/p makes all the error terms of size O(‖x‖−1−δ) for some δ = δ(p) > 0,
namely for δ = (p− 2)/p.

For the second moment, we use the identity

(‖x + ∆‖ − ‖x‖)2 = ‖x + ∆‖2 − ‖x‖2 − 2‖x‖(‖x + ∆‖ − ‖x‖)
= 2‖x‖∆x + ‖∆‖2 − 2‖x‖(‖x + ∆‖ − ‖x‖),
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so that

µ2(x) = 2‖x‖Ex[∆x] + Ex[‖∆‖2]− 2‖x‖µ1(x) = Ex[∆2
x] +O(‖x‖−δ),

as required.

With the additional assumptions (A1), (A3), and (A4), we can use Lemma 5.1 to
prove the following result.

Lemma 5.2. Suppose that X is a discrete-time, time-homogeneous Markov process on
X ⊆ Rd satisfying (A0), (A1), (A3), and (A4). Then, with µ1, µ2 defined at (5.3), (5.4),
and ε(r) defined at (A3), there exists δ > 0 such that, as ‖x‖ → ∞,

2‖x‖µ1(x) = V −U+O(ε(‖x‖))+O(‖x‖−δ), µ2(x) = U+O(ε(‖x‖))+O(‖x‖−δ). (5.8)

Proof. By definition of ε(r) at (A3) we have ‖M(x)−σ2(x̂)‖op = O(ε(‖x‖)) as ‖x‖ → ∞.
Then (A4) implies that

Ex[‖∆‖2] = tr (M(x))

= tr (σ2(x̂)) +O(ε(‖x‖))
= V +O(ε(‖x‖)),

and

Ex[∆2
x] = 〈x̂,M(x) · x̂〉

= 〈x̂, σ2(x̂) · x̂〉+O(ε(‖x‖))
= U +O(ε(‖x‖)),

and (A1) implies that Ex[∆x] = Ex[〈∆, x̂〉] = 〈µ(x), x̂〉 = 0. Using these expressions in
Lemma 5.1 yields (5.8).

Now we can complete the proof of Theorem 2.3.

Proof of Theorem 2.3. We apply Lamperti’s [12] recurrence classification to Rn = ‖Xn‖,
the radial process. Proposition 2.1 shows that lim supn→∞Rn = +∞, and Lemma 5.1
tells us that (5.2) is satisfied.

Because the error terms in (5.8) are uniform in x, Lemma 5.2 shows that for all η > 0
there exists C <∞ such that

2‖x‖µ1(x)− µ2(x) ∈ [V − 2U − η, V − 2U + η]

for all x ∈ X with ‖x‖ ≥ C. Therefore, it follows from Theorem 3.2 of [12] that X is
transient if V − 2U > 0 and recurrent if V − 2U < 0. For the boundary case, when
V − 2U = 0, if ε(r) = O(r−δ0) then

2‖x‖µ1(x)− µ2(x) = O(‖x‖−δ1),

for δ1 = min{δ, δ0}, which implies that X is recurrent, again by Theorem 3.2 of [12].
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6 Nullity

In this section we give the proof of Theorem 2.4. In the transient case, this is straight-
forward.

Lemma 6.1. In case (i) of Theorem 2.3, for any bounded A ⊂ Rd, as n → ∞, the null
property (2.2) holds.

Proof. It is sufficient to prove (2.2) in the case where A = Br := {x ∈ X : ‖x‖ ≤ r}.
In case (i), X is transient, meaning that ‖Xn‖ → ∞ a.s., so that 1{Xn ∈ Br} → 0, a.s.,
for any r ∈ R+. Hence the Cesàro limit in (2.2) is also 0, a.s., and the Lq convergence
follows from the bounded convergence theorem.

It remains to consider cases (ii) and (iii), when X is recurrent. Thus there exists
r0 ∈ R+ such that lim infn→∞ ‖Xn‖ ≤ r0, a.s. Let τr := min{n ∈ Z+ : Xn ∈ Br}. It
suffices to take A = Br, r > r0, so Xn ∈ Br infinitely often. We make the following claim,
whose proof is deferred until the end of this section, which says that if the walk has not
yet entered a ball of radius R (for any R > r big enough), the time until it reaches the
ball of radius r has tail bounded below as displayed.

Lemma 6.2. In cases (ii) and (iii) of Theorem 2.3, there exists a finite r1 ≥ r0 such
that for any r > r1 and R > r there exists a finite positive c such that

P[τr ≥ n+m | X0, . . . , Xn] ≥ cm−1/2, on {n < τR}, (6.1)

for all sufficiently large m.

Assuming this result, we can complete the proof of Theorem 2.4.

Proof of Theorem 2.4. In case (i), the result is contained in Lemma 6.1. So consider
cases (ii) and (iii). Fix r and R with R > r > r1, with r1 as in Lemma 6.2. Note that
lim infn→∞ ‖Xn‖ ≤ r0 ≤ r1, a.s.

Set γ1 := 0 and then define recursively, for ` ∈ N, the stopping times

η` := min{n ≥ γ` : Xn /∈ BR}, γ`+1 := min{n ≥ η` : Xn ∈ Br},

with the convention that min ∅ := ∞. Since r > r0 and lim supn→∞ ‖Xn‖ = ∞ (by
Proposition 2.1), for all ` ∈ N we have η` <∞ and γ` <∞, a.s., and

0 = γ1 < η1 < γ2 < η2 < · · · .

In particular, lim`→∞ γ` = lim`→∞ η` =∞, a.s.
We now write Fn := σ(X0, . . . , Xn). We use Lemma 4.1 to show that the process must

exit from BR rapidly enough. Indeed, if κ is any finite stopping time, set Yn = Xκ+n−Xκ

and Gn = Fκ+n. Then the assumptions (A0), (A1) and (A2) show that the hypotheses of
Lemma 4.1 are satisfied, since, for example,

E[‖Yn+1 − Yn‖p | Gn] = E[‖Xκ+n+1 −Xκ+n‖p | Fκ+n] = EXκ+n [‖∆‖p],

by the strong Markov property for X at the finite stopping time κ+ n. In particular,
another application of Lemma 4.1, similarly to (4.6), shows that we may choose n =
n(R) ∈ N sufficiently large so that

P
[

max
0≤`≤n(R)

‖Xκ+` −Xκ‖ ≥ 2R
∣∣∣ Fκ] ≥ 1

2
, a.s., (6.2)
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an event whose occurrence ensures that if Xκ ∈ BR, then X exits BR before time κ+n(R).
Fix k ∈ N. Then, an application of (6.2) at stopping time κ = γk shows that

P[ηk − γk > n(R) | Fγk ] ≤ P
[

max
0≤`≤n(R)

‖Xγk+` −Xγk‖ < 2R
∣∣∣ Fγk] ≤ 1

2
, a.s.

Similarly,

P[ηk − γk > 2n(R) | Fγk ] = E
[
1{ηk − γk > n(R)}E[1{ηk − γk > 2n(R)} | Fγk+n(R)]

∣∣ Fγk]
≤ 1

2
P[ηk − γk > n(R) | Fγk ] ≤

1

4
,

this time applying (6.2) at stopping time κ = γk +n(R) as well. Iterating this argument,
it follows that P[ηk − γk > m · n(R) | Fγk ] ≤ 2−m, a.s., for all m ∈ N. From here, it is
straightforward to deduce that, for some constant C <∞, for any k ∈ N,

E[ηk − γk | Fγk ] ≤ C, a.s. (6.3)

On the other hand, the tail estimate (6.1) implies that

P[γk+1 − ηk ≥ m | Fηk ] ≥ cm−1/2, a.s., (6.4)

for c > 0 and all sufficiently large m.
For any n ∈ N, set k(n) := min{k ≥ 2 : γk > n}, so that γk(n)−1 ≤ n < γk(n) for

k(n) ∈ {2, 3, . . .}. Note k(n) <∞ and limn→∞ k(n) =∞, a.s. Then we claim

1

n

n−1∑
k=0

1{Xk ∈ Br} ≤
∑k(n)−1

k=1 (ηk − γk)∑k(n)−2
k=1 (γk+1 − ηk)

. (6.5)

This is easiest to see by considering two separate cases. First, if ηk(n)−1 < n < γk(n),

1

n

n−1∑
k=0

1{Xk ∈ Br} ≤
1

ηk(n)−1

ηk(n)−1∑
k=0

1{Xk ∈ Br},

which implies (6.5), since the set of k less than n for which Xk ∈ Br is contained in the

set ∪k(n)−1k=1 [γk, ηk). On the other hand, if γk(n)−1 ≤ n ≤ ηk(n)−1, using the elementary
inequality a

b
≤ a+c

b+c
for non-negative a, b, c with a/b ≤ 1, we have

1

n

n−1∑
k=0

1{Xk ∈ Br} ≤
1

ηk(n)−1

(
n−1∑
k=0

1{Xk ∈ Br}+ (ηk(n)−1 − n)

)
,

which again gives (6.5).
To estimate the growth rates of the numerator and denominator of the right-hand

side of (6.5), we apply some results from [6]. First, writing Zm =
∑m−1

k=1 (ηk − γk) and
Gm = Fγm , by (6.3) we can apply Theorem 2.4 of [6] to the Gm-adapted process Zm to
obtain that for any ε > 0, a.s., for all but finitely many m,

m−1∑
k=1

(ηk − γk) ≤ m1+ε.
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On the other hand, writing Zm =
∑m−1

k=1 (γk+1−ηk) and Gm = Fηm , by (6.4) we can apply
Theorem 2.6 of [6] to the Gm-adapted process Zm to obtain that for any ε > 0, for all m
sufficiently large,

m−1∑
k=1

(γk+1 − ηk) ≥ m2−ε.

Now (6.5) gives the almost-sure version of the result (2.2). The Lq version follows from
the bounded convergence theorem.

It remains to complete the proof of Lemma 6.2. A more general, two-sided version
of the inequality in Lemma 6.2 is proved in [7, Theorem 2.4] but under slightly different
assumptions. Because of this, we cannot apply that result directly; nevertheless, the
proof techniques naturally transfer to our setting. In doing so, the arguments become
simpler to apply, so we reproduce them here.

Proof of Lemma 6.2. By the Markov property for X it is enough to prove the statement
for n = 0, namely that there exists finite r1 ≥ r0 such that for any r > r1 and R > r
there exists a finite positive constant c such that, if X0 6∈ BR then

P[τr > m | X0] ≥ cm−1/2,

for sufficiently large m.
We outline the two intuitive steps in the proof. First we show that the probability

that max0≤k≤τr ‖Xk‖ exceeds some large x is bounded below by a constant times 1/x.
Second, we show that if the latter event does occur, with probability at least 1/2 it takes
the process time at least a constant times x2 to reach Br. Combining these two estimates
will show that with probability of order 1/x the walk takes time of order x2 to reach
Br, which gives the desired tail bound. Roughly speaking, the first estimate (reaching
distance x) is provided by the optional stopping theorem and the fact that ‖Xk‖ is a
submartingale (cf. [7, Theorem 2.3]), and the second (taking quadratic time to return)
is provided by a maximal inequality applied to an appropriate quadratic displacement
functional (cf. [7, Lemma 4.11]). A technicality required for the first estimate is that
to apply optional stopping, we need uniform integrability; so we actually work with a
truncated version of ‖Xk‖.

We now give the details. Recall that Rk = ‖Xk‖ and let Fk = σ(X0, . . . , Xk). Lem-
mas 5.1 and 5.2, with the fact that V > U by (A4), imply that

E[Rk+1 −Rk | Fk] ≥
2ε

Rk

+ o(R−1k ) ≥ ε

Rk

, (6.6)

for all Rk > r1, for sufficiently large r1 ≥ r0 and some positive constant ε. Now, suppose
that r and R satisfy R > r > r1 and fix x with x � R. Set Rx

k := min{2x,Rk} and
σx := min{k ≥ 0 : Rk > x}. Since Xk is a martingale, we have that Rk is a submartingale,
as is the stopped process Yk := Rk∧τr∧σx . In order to achieve uniform integrability, we
consider the truncated process Y x

k := Rx
k∧τr∧σx and show that this is a submartingale.

For k ≥ τr ∧ σx, we have Y x
k+1 − Y x

k = 0 so E[Y x
k+1 − Y x

k | Fk] = 0. For k < τr ∧ σx,

Y x
k+1 − Y x

k = Rk+1 −Rk + (2x−Rk+1)1{Rk+1 > 2x},

and the last term can be bounded in absolute value:

|(2x−Rk+1)1{Rk+1 > 2x}| ≤ |Rk+1 −Rk|1{Rk+1 > 2x}
≤ |Rk+1 −Rk|1{|Rk+1 −Rk| > x}
≤ |Rk+1 −Rk|px1−p,
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for p > 2 as appearing in (A0), since on {k < σx} we have Rk < x and therefore Rk+1 > 2x
implies that |Rk+1 −Rk| > x. Applying (5.2) from Lemma 5.1 we obtain

E[|(Y x
k+1 − Y x

k )− (Rk+1 −Rk)| | Fk] ≤ Bx1−p,

for some B <∞ not depending on x. Combining this with (6.6) and again the fact that
Rk < x on {k < σx}, we have that

E[Y x
k+1 − Y x

k | Fk] ≥
ε

Rk

−Bx1−p ≥ ε

x
−Bx1−p ≥ 0,

for sufficiently large x.
Hence, for sufficiently large x, Y x

k is a uniformly integrable submartingale and there-
fore, given X0 6∈ BR, by optional stopping,

R < R0 = Y x
0 ≤ E[Y x

σx∧τr | X0] = E[Y x
σx1{σx < τr} | X0] + E[Y x

τr1{τr < σx} | X0]

≤ 2xP[σx < τr | X0] + r.

In other words, given X0 6∈ BR,

P
[

max
0≤k≤τr

Rk > x
∣∣∣ X0

]
≥ R− r

2x
, (6.7)

for all sufficiently large x.
Now, consider Wk := Rσx+k −Rσx , adapted to Gk := Fσx+k. We have

W 2
k+1 −W 2

k = R2
σx+k+1 −R2

σx+k − 2Rσx(Rσx+k+1 −Rσx+k).

Using the fact that Rk is a submartingale together with the strong Markov property for
X at the stopping time σx+k yields E[Rσx+k+1−Rσx+k | Fσx+k] ≥ 0 a.s., and Lemmas 5.1
and 5.2 again with the strong Markov property imply that E[R2

σx+k+1−R2
σx+k

| Fσx+k] ≤
C a.s., for some constant C <∞; hence E[W 2

k+1 −W 2
k | Gk] ≤ C a.s., for some constant

C < ∞. Then a maximal inequality [13, Lemma 3.1] similar to Doob’s submartingale
inequality implies that, on {σx <∞},

P
[

max
0≤k≤n

W 2
k ≥ y

∣∣∣ G0] ≤ Cn

y
, for any y > 0.

In particular, we may choose ε > 0 small enough so that

P
[

max
0≤k≤εx2

|Rσx+k −Rσx| ≥ x/2
∣∣∣ Fσx] ≤ 1

2
, on {σx <∞}. (6.8)

Combining the inequalities (6.7) and (6.8), we find that given X0 6∈ BR,

P
[{

max
0≤k≤τr

Rk > x
}
∩
{

max
0≤k≤εx2

|Rσx+k −Rσx| < x/2
} ∣∣∣ X0

]
= E

[
1{σx < τr}P

[
max

0≤k≤εx2
|Rσx+k −Rσx| < x/2

∣∣ Fσx] ∣∣∣ X0

]
≥ 1

2
P
[

max
0≤k≤τr

Rk > x
∣∣∣ X0

]
≥ R− r

4x
,

for sufficiently large x, where the equality here uses the fact that {σx < τr} ∈ Fσx .
If both of the events {max0≤k≤τr Rk > x} and {max0≤k≤εx2 |Rσx+k − Rσx| < x/2}

occur, then the process Xk leaves the ball Bx before time τr and takes more than εx2

steps to return to the ball Bx/2 ⊂ Br, and therefore τr > εx2. Setting m = εx2 and
c = (R− r)

√
ε/4 yields the claimed inequality.
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Remark 6.3. It is only in the proof of Lemma 6.2 that we use the condition U < V from
(A4). In the case U = V , inequality (6.6) holds only for (any) ε < 0, and not ε > 0; thus
to obtain a submartingale one should look at (Y x

k )γ for γ > 1. The modified argument
yields a weaker version of (6.1), with m−1/2 replaced by m−(1/2)−δ for any δ > 0, but, as
stated in Remark 2.5, this is still comfortably enough to give Theorem 2.4 (any exponent
greater than −1 in the tail bound will do). We omit these additional technical details,
as the case U = V is outside our main interest.

A Recurrence in one dimension

We use a Lyapunov function method with function f(x) = log(1 + |x|).

Lemma A.1. Suppose that X is a discrete-time, time-homogeneous Markov process on
X ⊆ R. Suppose that for some p > 2 and v > 0,

sup
x∈X

E[(Xn+1 −Xn)p | Xn = x] <∞;

inf
x∈X

E[(Xn+1 −Xn)2 | Xn = x] ≥ v.

Suppose also that for some bounded set A ⊂ R,

E[Xn+1 −Xn | Xn = x] = 0, for all x ∈ X \ A.

Then there exists a bounded set A′ ⊂ R for which

E[f(Xn+1)− f(Xn) | Xn = x] ≤ 0, for all x ∈ X \ A′.

Proof. Write ∆ = X1 −X0 and Ex = {|∆| < |x|}. We compute

E[f(Xn+1)− f(Xn) | Xn = x] = Ex[(f(x+ ∆)− f(x))1(Ex)]

+ Ex[(f(x+ ∆)− f(x))1(Ec
x)].

On {|∆| < |x|} we have that x and x+ ∆ have the same sign, so

Ex[(f(x+ ∆)− f(x))1(Ex)]

= Ex
[
log

(
1 + |x+ ∆|

1 + |x|

)
1(Ex)

]
= Ex

[
log

(
1 +

∆ sgn(x)

1 + |x|

)
1(Ex)

]
≤
(

sgn(x)

1 + |x|

)
Ex[∆1(Ex)]−

1

6
(1 + |x|)−2 Ex[∆21(Ex)],

using the inequality log(1 + y) ≤ y − 1
6
y2 for all −1 < y ≤ 1. Here, since Ex[∆] = 0 for

x 6∈ A,
|Ex[∆1(Ex)]| ≤ Ex[|∆|1(Ec

x)] ≤ Ex[|∆|p|x|1−p] = o(|x|−1).

Similarly,
Ex[∆21(Ex)] ≥ v − Ex[∆21(Ec

x)] ≥ v − o(1).
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(Note that here, and in what follows, our notation follows the convention as described
by (5.1); consequently, in one dimension the error terms are understood to be uniform as
either x→ +∞, or x→ −∞.) Finally we estimate the term

|Ex[(f(x+ ∆)− f(x))1(Ec
x)]| ≤ Ex [(log(1 + |∆|) + log(1 + 2|∆|)) 1(Ec

x)] .

Here,

log(1 + 2|∆|)1(Ec
x) = log(1 + 2|∆|)|∆|p|∆|−p1(Ec

x)

≤ |x|−p log(1 + 2|x|)|∆|p,

for all x with |x| greater than some x0 sufficiently large, using the fact that y 7→ y−p log(1+
2y) is eventually decreasing. It follows that

|Ex[(f(x+ ∆)− f(x))1(Ec
x)]| ≤ 2|x|−p log(1 + 2|x|)Ex[|∆|p] = o(|x|−2).

Combining these calculations we obtain

E[f(Xn+1)− f(Xn) | Xn = x] ≤
(

sgn(x)

1 + |x|

)
o(|x|−1)− 1

6
(1 + |x|)−2(v − o(1)) + o(|x|−2)

≤ −v
6

(1 + |x|)−2 + o(|x|−2),

which is negative for all x with |x| sufficiently large.

Proof of Theorem 2.2. Under assumptions (A0), (A1) and (A2), the hypotheses of
Lemma A.1 are satisfied, so that for some x0 ∈ R+,

E[f(Xn+1)− f(Xn) | Xn = x] ≤ 0, for all x ∈ X with |x| ≥ x0,

where f(x) = log(1 + |x|).
We note that assumption (A0) implies that E[|Xn|] < ∞ for all n, and therefore

E[f(Xn)] < ∞ for all n. Let n0 ∈ N and set τ = min{n ≥ n0 : |Xn| ≤ x0}. Let
Yn = f(Xn∧τ ). Then (Yn, n ≥ n0) is a non-negative supermartingale, and hence there
exists a random variable Y∞ ∈ R+ with limn→∞ Yn = Y∞, a.s. In particular, this means
that

lim sup
n→∞

f(Xn) ≤ Y∞, on {τ =∞}.

Setting ζ = sup{|x| : x ∈ X, f(x) ≤ Y∞}, which satisfies ζ <∞, a.s., since f(x)→∞ as
|x| → ∞, it follows that lim supn→∞ |Xn| ≤ ζ on {τ =∞}. However, under assumptions
(A0), (A1) and (A2), Proposition 2.1 implies that lim supn→∞ |Xn| = +∞, a.s., so to
avoid contradiction, we must have τ <∞, a.s. In other words,

P
[

inf
n≥n0

|Xn| ≤ x0

]
= 1,

and since n0 was arbitrary, it follows that

P
[ ⋂
n0∈N

{
inf
n≥n0

|Xn| ≤ x0
}]

= 1,

which gives the result.
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