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Abstract. In this expository paper we describe the pathwise behaviour of the integral functional
∫

t

0
f(Yu) du for any t ∈ [0, ζ], where ζ is (a possibly infinite) exit time of a one-dimensional diffusion

process Y from its state space, f is a nonnegative Borel measurable function and the coefficients of

the SDE solved by Y are only required to satisfy weak local integrability conditions. Two proofs of

the deterministic characterisation of the convergence of such functionals are given: the problem is

reduced in two different ways to certain path properties of Brownian motion where either the Williams

theorem and the theory of Bessel processes or the first Ray-Knight theorem can be applied to prove

the characterisation.

1. Introduction

The Engelbert–Schmidt zero-one law states that for a Brownian motion B and any nonnegative

Borel function f the following statements are equivalent:

(a) P

(∫ t

0 f(Bs)ds < ∞ for all t ∈ [0,∞)
)
> 0;

(b) P

(∫ t

0 f(Bs)ds < ∞ for all t ∈ [0,∞)
)
= 1;

(c) the function f is locally integrable on R.

This important property has a plethora of applications. For example it constitutes an important step

in the Engelbert–Schmidt construction of weak solutions of one-dimensional SDEs. The proof of the

zero-one law can be found in monograph [14, Ch. 3] or original article [7]. Note that the equivalences

between (a), (b) and (c) do not contain any information about the behaviour of the integral when

local integrability of the function f fails on a subset of R. The precise description of the explosion

time of this integral functional was given in [8, Lem. 1].

In this paper we investigate a related problem of the convergence of the integral functional
∫ t

0
f(Yu) du, t ∈ [0, ζ],
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of a one-dimensional J-valued diffusion Y that solves an SDE up to an exit time ζ. The coefficients

of the SDE are required to satisfy only some weak local integrability conditions on the open interval

J (see (2.2) and (2.3) for the precise form of the Engelbert–Schmidt conditions satisfied by the co-

efficients) and the function f : J → [0,∞] is assumed to be Borel measurable. The main results in

this paper (see Theorems 2.7, 2.11 and 2.12) study the integral functional as a process, identify the

stopping time after which the integral explodes, and give a deterministic criterion for the convergence

of the integral functional at this stopping time. It turns out that this stopping time is the first time

the process Y hits the set where the local integrability condition, analogous to (c) above, fails.

The proof of the results consists of two steps. The first step, which uses only basic properties

of diffusion processes and their local times, reduces the original problem to a question about the

convergence of an integral functional of Brownian motion. In the second step we give two proofs for

the characterisation of the convergence of this integral functional of Brownian motion: (i) Williams’

theorem (see [16, Ch. VII, Cor. 4.6]) and the result on integral functionals of Bessel processes from

Cherny [4] are applied; (ii) a direct approach based on the first Ray-Knight theorem (see [16, Ch. XI,

Th. 2.2]) is followed.

In [12] Engelbert and Tittel investigate the convergence of the integral functionals of the form∫ t

0 f(Xs) ds, where f is a nonnegative Borel function and X a strong Markov continuous local martin-

gale. The analytic condition that characterises the convergence of the integral functionals is given in

terms of the speed measure of X. The diffusion Y considered in this paper is not necessarily a local

martingale. However, the process s(Y ), where s is the scale function of Y , is and our characterisation

theorems can be deduced from the ones in [12]. The proofs of the main results in [12] are based on

Lemma 3.1 in [12], attributed to Jeulin [13], which, together with the Ray-Knight theorem, implies a

version of a zero-one law for Brownian local time integrated in the space variable against a measure on

R (see also Assing [1]). This zero-one law for Brownian local time is closely related to key Lemma 4.1.

The result in Lemma 4.1 first appeared implicitly in the paper of Engelbert and Schmidt [9, p. 225–

226] and was stated explicitly by Assing and Senf [3, Lem. 2]. The proofs in [9] and [3] rest on

an application of the Ray-Knight theorem and Shepp’s [17] dichotomy result for Gaussian processes.

This dichotomy argument was later replaced by the abstract but elementary lemma of Jeulin [13] (see

Assing and Schmidt [2, Lem. A1.7]).

The emphasis in the present paper is on understanding the pathwise behaviour of the integral

functionals of one-dimensional diffusions directly from the pathwise properties of Brownian motion.

Our proofs are short and are based on a simple direct approach which reduces the problem to Brownian

motion where either the Williams theorem and Cherny’s results from [4] or an idea from Delbaen and

Shirakawa [6], which circumvents the lemma of Jeulin [13] mentioned above, and an application of the

first Ray-Knight theorem complete the task.
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The rest of the paper is organised as follows. Section 2 describes the setting and states the main

results. In Section 3 we show how to reduce the main theorems to a problem for Brownian motion.

Section 4 gives the characterisation for the convergence of integral functionals of Brownian motion.

Sections 5 and 6 give the two proofs of Lemma 4.1.

2. The Setting and Main Results

2.1. First we introduce some common notations used in the sequel. Let us consider an open interval

J = (l, r) ⊆ R.

• By J we denote [l, r].

• By L1
loc(J) we denote the set of Borel functions J → [−∞,∞], which are locally integrable on

J , i.e. integrable on compact subsets of J .

• For x ∈ J , L1
loc(x) denotes the set of Borel functions f : J → [−∞,∞] such that∫ x+ε

x−ε
|f(y)| dy < ∞ for some ε > 0.

• Let α ∈ [l, r), β ∈ (l, r]. By L1
loc(α+) we denote the set of Borel functions f : J → [−∞,∞]

such that
∫ z

α
|f(y)| dy < ∞ for some z ∈ J , z > α. The notation L1

loc(β−) is introduced

similarly.

We will need the following statement. Its proof is straightforward.

Lemma 2.1. L1
loc(J) =

⋂
x∈J L

1
loc(x).

2.2. Let the state space be J = (l, r), −∞ ≤ l < r ≤ ∞, and Y = (Yt)t∈[0,∞) be a J-valued solution

of the one-dimensional SDE

(2.1) dYt = µ(Yt) dt+ σ(Yt) dWt, Y0 = x0,

on some filtered probability space (Ω,F , (Ft)t∈[0,∞),P), where x0 ∈ J and W is an (Ft,P)-Brownian

motion. We allow Y to exit its state space J at a finite time in a continuous way. The exit time is

denoted by ζ. That is to say, P-a.s. on {ζ = ∞} the trajectories of Y do not exit J , while P-a.s. on

{ζ < ∞} we have: either limt↑ζ Yt = r or limt↑ζ Yt = l. Then we need to specify the behaviour of Y

after ζ on {ζ < ∞}. In what follows we assume that on {ζ < ∞} the process Y stays at the endpoint

of J where it exits after ζ, i.e. l and r are by convention absorbing boundaries.

Throughout the paper it is assumed that the coefficients µ and σ in (2.1) satisfy the Engelbert–

Schmidt conditions

σ(x) 6= 0 ∀x ∈ J,(2.2)

1

σ2
,
µ

σ2
∈ L1

loc(J).(2.3)

Under (2.2) and (2.3) SDE (2.1) has a weak solution, unique in law, which possibly exits J (see [8],

[11], or [14, Ch. 5, Th. 5.15]). The Engelbert–Schmidt conditions are reasonable weak assumptions:
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any locally bounded Borel function µ and locally bounded away from 0 Borel function σ on J satisfy

(2.2) and (2.3).

Finally, the reason for considering an arbitrary interval J ⊆ R as a state space, and not just R

itself, is that there are natural examples, where the Engelbert–Schmidt conditions hold only on a

subset of R. Consider for example geometric Brownian motion

(2.4) dYt = aYt dt+ bYt dWt, Y0 = x0 > 0

(a, b ∈ R, b 6= 0), with its natural state space J = (0,∞). If we were to take J = R here, both (2.2)

and (2.3) would be violated. Even though we can replace the diffusion coefficient σ(y) = by in (2.4)

by σ(y) = by + I{0}(y), which does not affect solutions of (2.4) but fixes the problem with (2.2), the

issue with (2.3) cannot be resolved in this way. On the other hand, any state space J = (l, r) with

0 ≤ l < x0 < r ≤ ∞ is a possible choice when working with SDE (2.4); however, if l > 0 or r < ∞,

the convention above implies we have a stopped geometric Brownian motion.

2.3. Now we state some well-known results about the behaviour of one-dimensional diffusions with

the coefficients satisfying the Engelbert–Schmidt conditions that will be extensively used in the sequel.

Let us also note that these results do not hold beyond the Engelbert–Schmidt conditions.

Let s denote the scale function of Y and ρ the derivative of s, i.e.

ρ(x) = exp

{
−
∫ x

c

2µ

σ2
(y) dy

}
, x ∈ J,(2.5)

s(x) =

∫ x

c

ρ(y) dy, x ∈ J,(2.6)

for some c ∈ J . In particular, s is an increasing C1-function J → R with a strictly positive absolutely

continuous derivative, while s(r) (resp. s(l)) may take value ∞ (resp. −∞).

For a ∈ J let us define the stopping time

(2.7) τYa = inf{t ∈ [0,∞) : Yt = a} (inf ∅ := ∞).

Proposition 2.2. For any a ∈ J we have P(τYa < ∞) > 0.

Even though it is assumed in Proposition 2.2 that a ∈ J , we stress that τYa is defined for any a ∈ J ,

which will be needed in Remark 2.8 below.
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Further let us consider the sets

A =

{
ζ = ∞, lim sup

t→∞
Yt = r, lim inf

t→∞
Yt = l

}
,

Br =
{
ζ = ∞, lim

t→∞
Yt = r

}
,

Cr =

{
ζ < ∞, lim

t↑ζ
Yt = r

}
,

Bl =
{
ζ = ∞, lim

t→∞
Yt = l

}
,

Cl =

{
ζ < ∞, lim

t↑ζ
Yt = l

}
.

Proposition 2.3. Either P(A) = 1 or P(Br ∪Bl ∪ Cr ∪ Cl) = 1.

Proposition 2.4. (i) P(Br ∪ Cr) = 0 holds if and only if s(r) = ∞.

(ii) P(Bl ∪ Cl) = 0 holds if and only if s(l) = −∞.

In particular, we get that P(A) = 1 holds if and only if s(r) = ∞, s(l) = −∞.

Proposition 2.5. Assume that s(r) < ∞. Then either P(Br) > 0, P(Cr) = 0 or P(Br) = 0,

P(Cr) > 0. Furthermore, we have

P

(
lim
t↑ζ

Yt = r, Yt > a ∀t ∈ [0, ζ)

)
> 0

for any a < x0.

Propositions 2.2–2.5 are well-known and follow from the Engelbert–Schmidt construction of solu-

tions (see e.g. [11] or [14, Ch. 5.5]) or can be deduced from the results in [10, Sec. 1.5].

Proposition 2.6 (Feller’s test for explosions). We have P(Br) = 0, P(Cr) > 0 if and only if

s(r) < ∞ and
s(r)− s

ρσ2
∈ L1

loc(r−).

Clearly, Propositions 2.5 and 2.6, which contain statements about the behaviour of one-dimensional

diffusions at the endpoint r, have their analogues for the behaviour at l. Feller’s test for explosions in

this form is taken from [5, Sec. 4.1]. For a different (but equivalent) form see e.g. [14, Ch. 5, Th. 5.29].

2.4. In this paper we study convergence of the integral functional

(2.8)

∫ t

0
f(Yu) du, t ∈ [0, ζ],

where f : J → [0,∞] is a nonnegative Borel function. In this subsection we reduce the study of

convergence of (2.8) in general to that of convergence of the integral

(2.9)

∫ ζ

0
f(Yu) du
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for a nonnegative Borel function f : J → [0,∞] such that f
σ2 ∈ L1

loc(J). In the next subsection we

formulate the answer to the latter problem.

Let us consider the set

D =

{
x ∈ J :

f

σ2
/∈ L1

loc(x)

}

and note that D is a closed subset in J . Let us further define the stopping time

ηD = ζ ∧ inf{t ∈ [0,∞) : Yt ∈ D} (inf ∅ := ∞).

Theorem 2.7. P-a.s. we have:
∫ t

0
f(Yu) du < ∞, t ∈ [0, ηD),(2.10)

∫ t

0
f(Yu) du = ∞, t ∈ (ηD, ζ].(2.11)

Remark 2.8. After Theorem 2.7 it remains only to study the convergence of the integral
∫ ηD

0
f(Yu) du.

If x0 ∈ D, then ηD ≡ 0, and the integral is clearly zero. Let us assume that x0 /∈ D and set

α = sup(l, x0) ∩D (sup ∅ := l),

β = inf(x0, r) ∩D (inf ∅ := r).

It is easy to see that ηD = τYα ∧ τYβ . Now if we consider I := (α, β) as a new state space for Y , then

τYα ∧ τYβ will be the new exit time, and we will have f
σ2 ∈ L1

loc(I) by Lemma 2.1. This concludes the

reduction of the study of the convergence of (2.8) to that of the convergence of (2.9).

In order to prove Theorem 2.7 we need some additional notation. Since Y is a continuous semi-

martingale up to the exit time ζ, one can define its local time {Ly
t (Y ); y ∈ J, t ∈ [0, ζ)} on the

stochastic interval [0, ζ) for any y ∈ J in the usual way (e.g. via the obvious generalization of [16,

Ch. VI, Th. 1.2]). It follows from Theorem VI.1.7 in [16] that the random field {Ly
t (Y ); y ∈ J, t ∈ [0, ζ)}

admits a modification such that the map (y, t) 7→ Ly
t (Y ) is a.s. continuous in t and cadlag in y.1 As

usual we always work with such a modification. Let us further recall that a.s. on {t < ζ} the function

y 7→ Ly
t (Y ) has a compact support in J and hence is bounded as a cadlag function with a compact

support.

We will need the following result.

Lemma 2.9 (Theorem 2.7 in [5]). Let a ∈ J . Then

La
t (Y ) > 0 and La−

t (Y ) > 0 P-a.s. on {τYa < t < ζ}.
1Moreover, it can be proved that for a diffusion Y driven by (2.1) under conditions (2.2) and (2.3), any such modifi-

cation is, in fact, a.s. jointly continuous in (t, y); see [15, Proposition A.1].
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Remarks 2.10. (i) By Proposition 2.2 we have P(τYa < ζ) > 0. Hence, there exists t ∈ (0,∞) such

that P(τYa < t < ζ) > 0.

(ii) Let us note that the result of Lemma 2.9 no longer holds if the coefficients µ and σ of (2.1) fail

to satisfy the Engelbert–Schmidt conditions (see Theorem 2.6 in [5]).

Proof of Theorem 2.7. By the occupation times formula, P-a.s. we have

(2.12)

∫ t

0
f(Yu) du =

∫ t

0

f

σ2
(Yu) d〈Y, Y 〉u =

∫

J

f

σ2
(y)Ly

t (Y ) dy, t ∈ [0, ζ).

Then (2.10) follows from the fact that P-a.s. on {t < ζ} the function y 7→ Ly
t (Y ) is a cadlag function

with a compact support in J .

As for (2.11), it immediately follows from (2.12) and Lemma 2.9 in the case x0 ∈ D. If x0 /∈ D, we

first observe that ηD = τYα ∧ τYβ (see Remark 2.8), and hence {ηD < ζ} = {τYα < ζ} ∪ {τYβ < ζ}. If

P(τYα < ζ) > 0, then, since D is closed we have α ∈ D (note that (l, x0) ∩D 6= ∅ in this case because

otherwise α = l and P(τYα < ζ) = 0). Thus, (2.11) on {τYα < ζ} follows from (2.12) and Lemma 2.9

applied with a = α ∈ D. Similarly we get (2.11) on {τYβ < ζ}. This concludes the proof. �

2.5. As pointed out in the previous subsection, it remains to study the convergence of the integral

(2.13)

∫ ζ

0
f(Yu) du

for a nonnegative Borel function f : J → [0,∞] satisfying

(2.14)
f

σ2
∈ L1

loc(J).

This study is performed in the following two theorems, where we separately treat the cases P(A) = 1

and P(Br ∪Bl ∪Cr ∪Cl) = 1 (see Propositions 2.3 and 2.4). Below νL denotes the Lebesgue measure

on J .

Theorem 2.11. Assume that the function f : J → [0,∞] satisfies (2.14). Let s(r) = ∞ and s(l) =

−∞.

(i) If νL(f > 0) = 0, then ∫ ζ

0
f(Yu) du = 0 P-a.s.

(ii) If νL(f > 0) > 0, then ∫ ζ

0
f(Yu) du = ∞ P-a.s.

Let us also note that ζ = ∞ P-a.s. in the case s(r) = ∞, s(l) = −∞.

In the remaining case s(l) > −∞ or s(r) < ∞ we have

Ω =

{
lim
t↑ζ

Yt = r

}
∪
{
lim
t↑ζ

Yt = l

}
P-a.s.
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In the following theorem we investigate the convergence of (2.13) on {limt↑ζ Yt = r}. To this end we

need to assume s(r) < ∞ because otherwise P(limt↑ζ Yt = r) = 0 by Proposition 2.4.

Theorem 2.12. Assume that the function f : J → [0,∞] satisfies (2.14). Let s(r) < ∞.

(i) If

(s(r)− s)f

ρσ2
∈ L1

loc(r−),

then ∫ ζ

0
f(Yu) du < ∞ P-a.s. on

{
lim
t↑ζ

Yt = r

}
.

(ii) If

(s(r)− s)f

ρσ2
/∈ L1

loc(r−),

then ∫ ζ

0
f(Yu) du = ∞ P-a.s. on

{
lim
t↑ζ

Yt = r

}
.

Clearly, Theorem 2.12 has its analogue that describes the convergence of (2.13) on {limt↑ζ Yt = l}.

3. Proofs of Theorems 2.11 and 2.12

In this section we prove Theorems 2.11 and 2.12. In the latter proof we apply Lemma 4.1 below,

which will be proved in the next sections.

Let us set

(3.1) Ỹt = s(Yt), t ∈ [0, ζ).

Then

(3.2) dỸt = σ̃(Ỹt) dWt, t ∈ [0, ζ),

where

σ̃(x) = (ρσ) ◦ s−1(x), x ∈ (s(l), s(r)).

In particular, Ỹ is a continuous local martingale on the stochastic interval [0, ζ). By the Dambis–

Dubins–Schwarz theorem, there exists a Brownian motion B starting from s(x0) (possibly on an

enlargement of the initial probability space) such that

(3.3) Ỹt = B
〈Ỹ ,Ỹ 〉t

P-a.s., t ∈ [0, ζ).

Let us also introduce the function

f̃(x) = f ◦ s−1(x), x ∈ (s(l), s(r)).
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Proof of Theorem 2.11. Here s(r) = ∞ and s(l) = −∞. Hence ζ = ∞ P-a.s. and, moreover, P(A) = 1

(see Propositions 2.3 and 2.4). Then (3.1) implies that

P

(
lim sup
t→∞

Ỹt = ∞, lim inf
t→∞

Ỹt = −∞
)

= 1.

Now it follows from (3.3) that 〈Ỹ , Ỹ 〉∞ = ∞ P-a.s. We have

∫ ∞

0
f(Yu) du =

∫ ∞

0
f̃(Ỹu) du =

∫ ∞

0

f̃

σ̃2

(
B

〈Ỹ ,Ỹ 〉u

)
d〈Ỹ , Ỹ 〉u

=

∫ ∞

0

f̃

σ̃2
(Bv) dv =

∫

R

f̃

σ̃2
(x)Lx

∞(B) dx P-a.s.

The first equality above is clear (we used ζ = ∞ P-a.s.), the second follows from (3.2) and (3.3), the

third is due to the continuity of 〈Ỹ , Ỹ 〉 and the fact that 〈Ỹ , Ỹ 〉∞ = ∞ P-a.s., and the last one follows

from the occupation times formula (Lx
t (B) denotes the local time of the Brownian motion B at time t

and at level x). It remains to note that νL(f > 0) > 0 is equivalent to νL(f̃ > 0) > 0 and that for

a Brownian local time, P-a.s. it holds Lx
∞(B) ≡ ∞ ∀x ∈ R (see e.g. [16, Ch. VI, § 2]). The proof is

completed. �

Proof of Theorem 2.12. Here s(r) < ∞, i.e. P(limt↑ζ Yt = r) > 0. let us set R := {limt↑ζ Yt = r} and

observe that (3.1) and (3.3) imply

R ≡
{
lim
t↑ζ

Yt = r

}
=

{
lim
t↑ζ

Ỹt = s(r)

}
=

{
lim
t↑ζ

B
〈Ỹ ,Ỹ 〉t

= s(r)

}
.

In particular,

(3.4) 〈Ỹ , Ỹ 〉ζ = τBs(r) P-a.s. on R,

where τB
s(r) denotes the hitting time of the level s(r) by the Brownian motion B. Let us note that ζ

may be finite or infinite on R (see Propositions 2.5 and 2.6 for details), but it follows from (3.4) that

〈Ỹ , Ỹ 〉ζ is in either case finite on R. Similarly to the previous proof we get

(3.5)

∫ ζ

0
f(Yu) du =

∫ τB
s(r)

0

f̃

σ̃2
(Bv) dv P-a.s. on R.

The question of convergence of the integral in the right-hand side of (3.5) is studied in Lemma 4.1

below. It is easy to obtain from (2.14) that f̃
σ̃2 ∈ L1

loc(s(J)), which means that Lemma 4.1 can be

applied (see (4.1)). Thus, to study the convergence of the integral in the right-hand side of (3.5) we

need to check whether

(s(r)− x)
f̃

σ̃2
(x) ∈ L1

loc(s(r)−)
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(the notation “f(x) ∈ M” for a function f and a class of functions M is understood to be synonymous

to “f ∈ M”). We have
∫ s(r)

s(·)

(s(r)− x)f(s−1(x))

ρ2(s−1(x))σ2(s−1(x))
dx =

∫ r

·

(s(r)− s(y))f(y)

ρ(y)σ2(y)
dy

(recall that s′ = ρ). Now the statement of Theorem 2.12 follows from (3.5) and Lemma 4.1. �

4. The Setting and Notation in the Brownian Case

It remains to prove Lemma 4.1 below. From now on let us consider a Brownian motion B starting

from x0 ∈ R. We will extensively use the notation τBa (a ∈ R) for the stopping time defined as in (2.7).

Below we use the notation “f(x) ∈ M” for a function f and a class of functions M as a synonym for

“f ∈ M”.

Lemma 4.1. Let B be a Brownian motion starting from x0 ∈ R and x0 < r < ∞. Assume that the

function f : I → [0,∞] with I := (−∞, r) satisfies

(4.1) f ∈ L1
loc(I).

(i) If (r − x)f(x) ∈ L1
loc(r−), then

∫ τBr

0
f(Bu) du < ∞ P-a.s.

(ii) If (r − x)f(x) /∈ L1
loc(r−), then

∫ τBr

0
f(Bu) du = ∞ P-a.s.

In Sections 5 and 6 we give two different proofs of Lemma 4.1.

5. First Proof of Lemma 4.1

This method is based on Williams’ theorem (see [16, Ch. VII, Cor. 4.6]) and Cherny’s investigation

of convergence of integral functionals of Bessel processes (see [4]).

By the occupation times formula and (4.1), P-a.s. we get

(5.1)

∫ t

0
f(Bu) du < ∞, t ∈ [0, τBr ).

By ρ = (ρt)t∈[0,∞) we denote a three-dimensional Bessel process starting from 0. Let us set

ξ = sup{t ∈ [0,∞) : ρt = r − x0}

(note that ξ is a finite random variable because ρt → ∞ a.s.). By Williams’ theorem,

(5.2) Law
(
r −BτBr −t; t ∈ [0, τBr )

)
= Law (ρt; t ∈ [0, ξ)) ,

where “Law” means distribution. It follows from Theorem 2.2 in [4] that, for a nonnegative function g,
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(A) xg(x) ∈ L1
loc(0+) implies that a.s. it holds

∃ε > 0

∫ ε

0
g(ρu) du < ∞;

(B) xg(x) /∈ L1
loc(0+) implies that a.s. it holds

∀ε > 0

∫ ε

0
g(ρu) du = ∞.

By (5.1), (5.2) and (A), (B), the question reduces to whether xf(r − x) ∈ L1
loc(0+), or, equivalently,

to whether (r − x)f(x) ∈ L1
loc(r−). This concludes the proof.

6. Second Proof of Lemma 4.1

We take the idea for this proof from Theorem 1.4 in Delbaen and Shirakawa [6]. The method is

based on the first Ray-Knight theorem (see [16, Ch. XI, Th. 2.2]).

By the occupation times formula,

(6.1)

∫ τBr

0
f(Bu) du =

∫ r

−∞
f(x)Lx

τBr
(B) dx P-a.s.

Since P-a.s. the mapping x 7→ Lx
τBr

(B) is a continuous function with a compact support in R, we get

from (4.1) that ∫ x0

−∞
f(x)Lx

τBr
(B) dx < ∞ P-a.s.

By (6.1), the question of whether
∫ τBr
0 f(Bu) du is finite reduces to the question of whether∫ r

x0
f(x)Lx

τBr
(B) dx is finite, or, equivalently, to

(6.2) whether

∫ r−x0

0
f(r − u)Lr−u

τBr
(B) du is finite.

Let W and W̃ be independent Brownian motions starting from 0. Let us set

(6.3) ηt = W
2
t + W̃ 2

t ,

i.e. η = (ηt)t∈[0,∞) is a squared two-dimensional Bessel process starting from 0. It follows from the

first Ray-Knight theorem that

(6.4) Law
(
Lr−u
τBr

;u ∈ [0, r − x0]
)
= Law (ηu;u ∈ [0, r − x0]) .

In what follows we prove that, for a Brownian motion W starting from 0,

(A) xf(r − x) ∈ L1
loc(0+) implies that

∫ r−x0

0
f(r − u)W 2

u du < ∞ a.s.;
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(B) xf(r − x) /∈ L1
loc(0+) implies that

∫ r−x0

0
f(r − u)W 2

u du = ∞ a.s.

Together with (6.2)–(6.4) this will complete the proof of Lemma 4.1.

By Fubini’s theorem,

E

∫ r−x0

0
f(r − u)W 2

u du =

∫ r−x0

0
f(r − u)u du,

so (A) is immediate (recall that (4.1) holds).

In order to prove (B) we assume that

(6.5) P

(∫ r−x0

0
f(r − u)W 2

u du < ∞
)

> 0.

Then there exists a sufficiently large M < ∞ such that

γ := P(R) > 0, where R :=

{∫ r−x0

0
f(r − u)W 2

u du ≤ M

}
.

Let us note that, for any positive δ and u, the probability

P(W 2
u ≥ δ2u) = P(|Wu/

√
u| ≥ δ) = P(|N(0, 1)| ≥ δ)

does not depend on u. We take a sufficiently small δ > 0 such that

P(|N(0, 1)| ≥ δ) ≥ 1− γ

2
.

Then, for any u,

E(W 2
uIR) ≥ δ2uP(R ∩ {W 2

u ≥ δ2u}) ≥ γ

2
δ2u.

By Fubini’s theorem,

E

[
IR

∫ r−x0

0
f(r − u)W 2

u du

]
=

∫ r−x0

0
f(r − u)E(W 2

uIR) du ≥ γ

2
δ2

∫ r−x0

0
f(r − u)u du.

The left-hand side is finite as on the event R the integral is not greater than M . Thus, (6.5) implies

uf(r − u) ∈ L1
loc(0+), which proves (B) and completes the proof of Lemma 4.1.
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