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Abstract A time-dependent double-barrier option is a derivative security that deliv-
ers the terminal value φ(ST ) at expiry T if neither of the continuous time-dependent
barriers b± : [0, T ] → R+ have been hit during the time interval [0, T ]. Using a prob-
abilistic approach, we obtain a decomposition of the barrier option price into the
corresponding European option price minus the barrier premium for a wide class of
payoff functions φ, barrier functions b± and linear diffusions (St )t∈[0,T ]. We show
that the barrier premium can be expressed as a sum of integrals along the barriers b±
of the option’s deltas Δ± : [0, T ] → R at the barriers and that the pair of functions
(Δ+,Δ−) solves a system of Volterra integral equations of the first kind. We find
a semi-analytic solution for this system in the case of constant double barriers and
briefly discus a numerical algorithm for the time-dependent case.
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1 Introduction

Barrier options play an important role in modern financial markets. They are a less
expensive alternative to European options and trade in large volumes particularly in
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foreign exchange. A knock-out double-barrier contract is nullified if either of the two
barriers is breached by the underlying asset price process during the life of the option,
and delivers φ(ST ), for some predefined payoff function φ, otherwise. A knock-in
option becomes a European option with payoff φ if one of the barriers is hit by the
asset price process before time T , and expires worthless otherwise. Since simple
parity relations exist for the prices of knock-in and knock-out contracts, we shall
concentrate only on examining the later.

The main result of this paper is given by the representation formula

V (0, S0) = ϕ(0, S0)

− 1

2
e−rT

(∫ T

0
Δ−(t)qt

(
S0, b−(t)

)
dt −

∫ T

0
Δ+(t)qt

(
S0, b+(t)

)
dt

)
,

(1.1)

where V (0, S0) is the current time-dependent barrier option price, ϕ(0, S0) is the
current price of the corresponding European payoff and the function qt is closely
related to the transition density of the process (St ) (see formula (2.7)), which is a
local volatility process given by the stochastic differential equation (SDE) in (2.1).
The functions Δ−,Δ+ : [0, T ] → R can be interpreted as the limiting values of the
option’s deltas ∂V

∂S
(t, St ) as the asset price process (St ) approaches either of the two

barriers b−(t), b+(t) at time t (see Theorem 2.5 for more details). Note that, since the
option’s payoff is nonnegative, the delta at the lower (resp. upper) barrier is positive
(resp. negative) making the barrier premium in the above formula negative, as one
would expect. By Theorems 2.5 and 2.7 the pair of functions (Δ+,Δ−) exists and
solves a system of two Volterra integral equations of the first kind given by (2.11).

An important feature of the representation (1.1) is that it can be used for hedg-
ing time-dependent barrier options. Once the system of Volterra integral equations
in (2.11) is solved (numerically or otherwise), the barrier option price can be obtained
by computing the one-dimensional integral in formula (1.1), which, from a numerical
point of view, can be done very efficiently. Therefore an entire “spot-ladder” of op-
tion prices (i.e., a vector of values V (0, S0), where S0 ranges over a discrete subset in
some interval) can be obtained with little numerical effort, for we are only solving the
system of Volterra integral equations once. Moreover, since the function qt is avail-
able in semi-analytic form in most models used in practice, spot-ladders of deltas and

gammas (i.e., vectors with coordinates ∂V
∂S

(0, S0) and ∂2V

∂S2 (0, S0), respectively, where
S0 takes values in a “discrete” interval), can be found by differentiating formula (1.1),
once we have obtained the solution (Δ+,Δ−) of the system in (2.11). This feature
of our pricing algorithm is critical for the risk management of barrier option port-
folios because spot-ladders are one of the most important tools used by traders for
understanding their exposure to adverse movements in the underlying market.

Hedging a down-and-out call, when the barrier level is below the strike, is not
dissimilar to hedging the corresponding European option, because the presence of
the barrier does not destroy the convexity of the payoff function, and hence the delta
∂V
∂S

(t, St ) remains bounded throughout the life of the option. In the case of a double-
barrier knock-out call option, the situation is radically different since the barrier op-
tion price is nonconvex close to the upper barrier at any time t before expiry. As
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mentioned earlier, the value Δ+(t), where Δ+ is the function in (1.1), is a good ap-
proximation for the delta ∂V

∂S
(t, St ), when St is close to the upper barrier, and can

hence be used for hedging. We should stress here that in practice the pair of func-
tions (Δ+,Δ−) arises as a solution of a nonsingular system of linear equations (see
Sect 3.3 and [41, p. 179, (4.1)]) obtained by discretising the Volterra integral equa-
tions from (2.11), rather than from a numerical scheme for partial differential equa-
tions, where the first derivative is approximated by a difference quotient that can be
unstable close to the boundary since the value function in that region changes at a
very rapid pace.

Time-dependent barriers arise naturally in financial markets even if the barriers in
the option’s contract are constant. Let St denote the foreign exchange rate, and let
the functions Rd,Rf : [0, T ] → R describe the deterministic term structures of in-
terest rates in domestic and foreign markets, respectively. The assumption that term
structures of interest rates are deterministic is very common in the foreign exchange
markets as the majority of barrier option contracts are short dated (with maturities
up to one year) and have little dependence on the stochasticity of interest rates. The
forward process Ft := St exp(−t (Rd(t) − Rf (t))), which must be a martingale since
it is proportional to an asset divided by the domestic bond, is often modelled di-
rectly instead of the FX rate St . It is clear that the original barrier option’s contract
with constant barriers translates into a contract with time-dependent barriers for Ft .
Furthermore, by modelling the forward process directly we can extend the represen-
tation in (1.1) to the case of time-dependent interest rates. Note that the process (St )

studied in Sect. 2 (see (2.1)) has a constant drift. But if the functions Rd,Rf are
in C2([0, T ]), as they usually are since market participants do not like to see kinks
in their term structures, we can model the forward Ft by dFt = Ftσ (Ft )dWt and
price the equivalent derivative with barriers bF±(t) := b±(t) exp(−t (Rd(t) − Rf (t)))

using (1.1).
A feature frequently encountered in barrier option markets is the existence of dis-

continuous barriers. The barriers are usually step functions or simply stop being ac-
tive at a certain time before expiry. Since formula (1.1) works for discontinuous pay-
offs, it can be applied to noncontinuous barriers by “backward integration”. Time
steps would in this case be determined by the intervals of continuity of the barriers.
The procedure starts at the end of the last such interval where the payoff is known and
uses Theorem 2.7 to determine the payoff function at the beginning of that interval.
This produces an equivalent problem with a smaller number of time intervals, so the
same procedure can be reapplied until we obtain the option value at the current time.

The key idea behind the proof of Theorem 2.5, which yields the representa-
tion (1.1), is in some sense analogous to that used for finding the integral equation for
the optimal exercise boundary in the American put problem (see Theorem 4.1 in [31]
for a survey account and [21] for one of the original derivations). The smooth-fit prin-
ciple in the American option problem implies that the value of the first derivative of
the option price at the exercise boundary is known, which allows us to obtain a non-
linear integral equation for the exercise boundary by applying Itô’s lemma and taking
expectations. In the case of barrier options, the boundary of the region is specified
in advance, but the first derivative (i.e., the option’s delta) at the barrier is clearly
unknown. By judiciously applying Peskir’s change-of-variable formula (see Appen-
dix A and [35] for more details) and taking expectations as in the previous case it is
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possible to obtain a Volterra integral equation of the first kind for the first derivative.
Unlike with the American put option, where the integral equation is nonlinear in the
exercise boundary, in the case of barrier options we obtain a linear equation which,
when discretised, yields an upper-triangular linear system for the unknown function
that can be solved directly (see Sect. 3 and [41] for more details).

The literature on continuously monitored barrier options is vast and varied. It ap-
pears that two general approaches have been formed. In the first one, which mainly
deals with constant barriers, one tries to find a pathwise (i.e., robust) hedging strat-
egy with European derivatives that either uniquely determines or provides an ad-
missible range for the barrier option price. A model-independent approach of this
kind is exemplified in [3]. In the case of the Black–Scholes model, and more gen-
erally for models with symmetric smiles, this approach has been applied to a num-
ber of path-dependent derivatives including constant double-barrier options (see [4]
and [5]). The second approach consists of calculating directly the expectation in a
risk-neutral measure of the path-dependent barrier payoff. A probabilistic approach
using Laplace transforms for constant double-barrier call and put options in the
Black–Scholes model is described in [17]. A method using the joint density of the
stock, its maximum and its minimum to find the price of time-dependent barrier op-
tions in the Black–Scholes model was pioneered in [27]. Boundary crossing proba-
bilities for Brownian motion have been used in [32] to price single-barrier options
where the underlying asset price process has deterministic time-dependent drift and
volatility. In [40] it is shown that the time-dependent double-barrier option problem
for geometric Brownian motion can be reduced to the constant barriers case by first
transforming the state space and then time. A static hedge using calls and puts for
a time-dependent single-barrier option is described in [1]. The result applies to lin-
ear diffusions with compound Poisson jumps, but the hedging strategy depends on
knowing the values of the barrier contract one is trying to hedge at certain times be-
fore expiry. This deficiency was also noted in [22] (see p. 106), where a simplified
derivation of the main result from [1] is given in the case of diffusion processes. More
recent work on time-dependent double-barrier options for the same kind of asset price
process using analytic tools such as Fourier transforms, Green’s functions and com-
plex integration can be found in [11, 18], and [19] and [34], respectively. Spectral
methods are applied to find constant double-barrier option prices in the class of CEV
models in [8]. Laplace transforms and Wiener–Hopf factorization are used in [24]
to obtain prices and Greeks for constant barrier options where the logarithm of the
underlying asset price process is a generalised hyper-exponential Lévy process. This
class of processes contains VG, NIG, CGMY and other models that are of relevance
in finance. Chapter 12 in [29] contains a wealth of analytic methods for pricing a
variety of barrier options (time-dependent double barriers with and without rebate)
in specific modelling frameworks (GBM, CEV, Heston) using the theory of partial
differential equations. A local-time approach has been pursued for the study of the
static superhedging of barrier options (see [26]) and the decomposition of European
options with convex payoff functions (see [6]).

In this paper we address the question of pricing time-dependent single- and
double-barrier options where the underlying asset price process is a linear diffusion
with mild regularity conditions on its volatility function. Our approach is entirely
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probabilistic and combines the two approaches discussed in the previous paragraph.
We do not make use of first passage time distributions, which are prohibitively com-
plicated in the class of models we are considering. Instead we employ a pathwise
analysis of the option price, which yields the representation (1.1). The paper is or-
ganised as follows. Section 2 contains statements and proofs of our main results. In
Sect. 3 we propose a semi-analytic solution (using Laplace transforms) of the sys-
tem of Volterra integral equations that arises in Theorems 2.5 and 2.7 in the case of
constant double barriers. We also discuss discretisation methods for the general time-
dependent barrier case. Section 4 considers briefly some open questions related to
our results and concludes the paper.

2 Integral equations for time-dependent barrier options

In this section our goal is to find the integral equations that characterise the deltas
at the barriers and consequently the price of any time-dependent barrier option. Be-
fore defining precisely the class of exotic options we shall consider, let us specify
the underlying model that provides uncertainty in our economy. The dynamics of the
underlying risky security are given by a possibly weak solution (in the sense of Defi-
nition 5.5.1 in [25]) of the one-dimensional stochastic differential equation (SDE)

St = S0 +
∫ t

0
μSu du +

∫ t

0
Suσ(Su) dWu, S0 ∈ (0,∞), (2.1)

where the function σ : R+ → R+ satisfies σ(x) > 0 for all x ∈ (0,∞) and is locally
Lipschitz-continuous in the interval (0,∞) (i.e., for any compact set C ⊂ (0,∞),
there exists a positive constant KC such that |σ(x) − σ(y)| < KC |x − y| for all
x, y ∈ C). These two assumptions are the only regularity conditions applied to the
function σ throughout the paper. The constant μ := r − δ is the risk-neutral drift
given by the interest rate r and the dividend yield δ.

The assumptions on σ imply that the volatility function x �→ xσ(x) is also locally
Lipschitz-continuous in the interval (0,∞) but may vanish at the boundary x = 0.
Under these hypotheses, Theorem 5.5.15 in [25] yields a filtered probability space
(Ω, (Ft )t∈[0,T ],Q) with a filtration (Ft )t∈[0,T ] that satisfies the usual conditions, and
processes S = (St )t∈[0,T ] and W = (Wt )t∈[0,T ] defined on Ω such that W is a stan-
dard one-dimensional Brownian motion with respect to (Ft )t∈[0,T ] and the process S

solves the SDE (2.1) up to an explosion time. Furthermore Theorem 5.5.15 guaran-
tees the uniqueness in law of the solution S.

For some models given by the SDE (2.1), the solution S can reach the boundary
point zero of the domain (0,∞) in finite time with strictly positive probability (e.g.,
the CEV process, given by σ(x) = xρ−1, can reach zero if the parameter ρ is in
the interval (0,1), see [10]). In such cases the absorbing boundary condition for the
process S at zero is assumed in Theorem 5.5.15 of [25]. Our aim is to use the measure
Q as an equivalent local martingale measure for our economy in the sense of [9].
The absorbing boundary condition at zero is therefore very natural because any other
boundary behaviour would in general introduce arbitrage (an arbitrage strategy would
be to buy the asset when it is worth zero and hold it).
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The solution S of the SDE (2.1) behaves differently at the other boundary point of
its domain.

Lemma 2.1 The process S does not reach infinity in finite time Q-almost surely.

For the precise definition of explosion at infinity, see [25, p. 343]. Note that
Lemma 2.1 implies that the integrals in (2.1) are defined on the entire probability
space Ω for any fixed time t , because the solution process S is Q-almost surely finite
during the time interval [0, t]. For the proof of Lemma 2.1, see Appendix C.

A continuous time-dependent barrier b : [0, T ] → (0,∞) is by definition a
continuous function of finite variation. In this paper we shall mainly be con-
cerned with double-barrier options. In order to define them we need two functions
b± : [0, T ] → (0,∞) which satisfy b−(t) < b+(t) for all t ∈ [0, T ]. For any fixed
time s ∈ [0, T ], let the stopping time τs be given by

τs := inf
{
v ∈ [0, T − s]; Ss+v ∈ R+ \ (

b−(s + v), b+(s + v)
)}

, (2.2)

where R+ := [0,∞). Note that by definition we have s + τs ≤ T , {s + τs ≤ t} ∈ Ft

for all t ∈ [0, T ], and the property s + τs ≤ t + τt holds for s < t ≤ T .
Let t ∈ [0, T ] be the current time. By definition the fundamental price Vt of the

discounted contract for the barrier option with a nonnegative measurable payoff func-
tion φ : [0,∞) → [0,∞) that started at time 0 is given by Vt = E[φ(Sτ0)I{τ0=T }|Ft ],
where I{τ0=T } is the indicator function on Ω (see [23, Definition 7]). Since our mar-
ket is complete, by Theorem 6 in [23] (see also Theorem 3.3 in [7]), the fundamental
price of a derivative security is the smallest initial cost of financing a replicating port-
folio of that security.

It was shown in [23] (see Sect. 1.5.4) that the market price of a derivative security
equals its fundamental price when, in addition to the standard NFLVR assumption
of [9], we also stipulate the no-dominance assumption of Merton [30]. No-dominance
intuitively says that, all things being equal, market participants prefer more to less,
and is only violated if there exists an agent who is willing to buy a dominated security
at a higher price (for the mathematical formulation of the no-dominance assumption,
see [23, Assumption 3]). No-dominance is shown to imply that there are no bubbles in
the price of the underlying asset or in the price of a barrier option that is dominated by
a call or a put (see [23, Proposition 1, and Lemma 8 and Theorem 7]). The assumption
is consistent with a subclass of models given by SDE (2.1), namely those that have an
equivalent martingale measure. For example in the CEV framework (σ(x) = xρ−1,
where ρ ∈ (0,1]), which is known to have a unique equivalent martingale measure
(see [10]), the no-dominance assumption can be made, and the fundamental price
given by Theorem 2.7 is the market price. However the no-dominance assumption
cannot be made when the discounted asset price process (exp(−μt)St )t∈[0,T ] is a
strict local martingale (i.e., there is a bubble in the underlying economy), which
has been shown to be the case for some of the models in our framework (see [30]
and [13]). In this case the market price of the derivative can exceed the fundamen-
tal price given by Theorem 2.7. In other words the market price of the derivative is
strictly larger than the price of the replicating portfolio, and little can be said about
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its dynamics (see [23, Sect. 1.5.3, Example 5]). It is not an easy task to obtain gen-
eral necessary and sufficient conditions for the existence of an equivalent martingale
measure for the solution of the SDE (2.1), a topic that merits further research. In
this paper the process (Vt ) denotes the fundamental price of the barrier option in the
economy given by (2.1), referred to simply as the “price” in all that follows.1

Our aim is to find the price Vt at any time t ∈ [0, T ] of a time-dependent double-
barrier contract initiated at time zero. In order to do this we consider the process

Zt := E
[
φ(St+τt )I{t+τt=T }|Ft

]
, (2.3)

which equals the discounted value of an equivalent time-dependent barrier contract
initiated at time t . Unlike (Vt ), which is a martingale under the pricing measure Q,
the process (Zt ) is not a discounted price process of a security in our economy, since
at each time t it represents the price of a different security and hence need not be a
martingale (see Lemma 2.2). This is somewhat similar to the well-known observation
in interest rate theory that the short rate (i.e., the rate at which funds can be borrowed
for an infinitesimal period of time—also known as the instantaneous interest rate)
corresponds to a different asset at each time t and therefore need not satisfy any no-
arbitrage drift restrictions. Unlike in the case of the instantaneous interest rate, the
drift of (Zt ) can be determined uniquely and, as we shall soon see, contains all the
information needed to obtain the current price of the barrier option. Before exploring
some basic properties of the process Z in the next lemma, note that definitions (2.2)
and (2.3) also apply to single-barrier options with obvious modifications.

Lemma 2.2

(a) Let the times s, t ∈ [0, T ] satisfy s ≤ t . Then the inequality E[Zt |Fs] ≥ Zs holds
almost surely in (Ω,Q). If either the upper barrier b+ is present or the random
variable φ(ST ) is in L1(Ω,Q), the process (Zt ) is a nonnegative submartingale.

(b) Assume that the payoff function φ : R+ → R+ is continuous on the complement
of a finite set of points where it is right-continuous with left limits and that, if b+
is not present, the payoff φ(ST ) is in L1(Ω,Q). Let the log-normal volatility σ

be locally Lipschitz-continuous in the interval (0,∞) and assume that it satisfies
σ(S) > 0 for all S ∈ (0,∞). Then the process (Zt ) has a continuous modification
of the form Zt = Z(t, St ), where the continuous function Z : [0, T ] × R+ → R+
is given by Z(t, S) := Et,S[φ(St+τt )I{t+τt=T }]. Let

C := {
(t, S) ∈ [0, T ) × R+; b−(t) < S < b+(t)

}
,

B+ := {
(t, S) ∈ [0, T ) × R+; S > b+(t)

}
,

B− := {
(t, S) ∈ [0, T ) × R+; S < b−(t)

}

1Thanks are due to the anonymous referee for raising the issue of bubbles and their implications for the
pricing of options.
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be open subsets of the domain [0, T )×R+. Then Z vanishes on the set B− ∪B+,
is of order C1,2(C) and satisfies the partial differential equation

Zt(t, S) + μSZS(t, S) + S2σ 2(S)

2
ZSS(t, S) = 0

for all (t, S) ∈ C with terminal condition Z(T ,S) = φ(S) for S ∈ (b−(T ), b+(T ))

and boundary conditions Z(t, b±(t)) = 0 for all t ∈ [0, T ]. The same is true for
a single-barrier option price with appropriately modified boundary conditions.

From now on we shall assume that we are working with the modification of the
process (Zt ) given in (b) of Lemma 2.2, i.e., we shall assume that the process (Zt )

is a continuous submartingale. Note also that the statement in (a) of Lemma 2.2 is
intuitively clear. If the underlying asset price is between the barriers, the process (Zt )

is a true martingale up to the first time (St ) hits a barrier, because before that stopping
time Zt equals the discounted barrier option price. Since (Zt ) is nonnegative, if it
were a martingale, it would have to stay at zero from that moment onwards. But
as soon as the stock returns to the interval between the barriers, the process (Zt )

assumes again a strictly positive value. Such behaviour makes its mean drift upwards
with time. We now give a straightforward but rigorous proof of this fact.

Proof of Lemma 2.2 Pick s, t ∈ [0, T ] such that s < t . Note that s + τs ≤ t + τt for
all paths in Ω , and therefore we have the inclusion {s + τs = T } ⊂ {t + τt = T } and
the identity I{s+τs=T } = I{s+τs>t}I{t+τt=T }. We can now rewrite Zs , using the tower
property and the fact that {s + τs > t} ∈ Ft , as

Zs = E
[
E

[
φ(St+τt )I{s+τs>t}I{t+τt=T }

⏐⏐Ft

]⏐⏐Fs

]
= E[ZtI{τs>t−s}|Fs] ≤ E[Zt |Fs].

The last inequality holds because φ, and hence Zt , is nonnegative. If either of the two
integrability conditions in (a) of Lemma 2.2 are satisfied, we get E[Zt ] < ∞ for all
t ∈ [0, T ], which implies that (Zt ) is a submartingale. This proves (a). Part (b) in the
lemma is a well-known fact about barrier options. It suffices to note that statement
(b) is a special case of Theorem B.1 in Appendix B. �

Part (b) of Lemma 2.2 implies that the partial derivative ZS is a continuous func-
tion in the open region C, but the lemma says nothing about the behaviour of ZS

at the boundary of C. A key step in obtaining the integral representation for the
double-barrier option price (see (2.10) in Theorem 2.5) will be the application of
Theorem A.1 to the function Z : [0, T ] × R+ → R+ given in (b) of Lemma 2.2. This
step requires a certain regularity of the function Z and its first derivative ZS close to
the boundary of C. In principle the limit of the delta of the double-barrier option price
need not exist as the underlying asset St approaches the boundary of the region C. It
does not come as a surprise that additional hypotheses on the regularity of the payoff
function φ : R+ → R+ as well as of the barriers b± : [0, T ] → R+ are required for
the function Z to satisfy the assumptions of Theorem A.1. Lemma 2.3 gives sufficient
conditions for the functions φ and b± that guarantee that the first spatial derivative
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of the solution Z of the PDE problem in (b) of Lemma 2.2 does not blow up at the
boundary of the region C.

Lemma 2.3 Let the continuous barriers b± : [0, T ] → R+ be twice differen-
tiable and assume that the payoff function φ : [b−(T ), b+(T )] → R+ satisfies
φ(b−(T )) = φ(b+(T )) = 0 and is twice differentiable with the second derivative
φ′′ : (b−(T ), b+(T )) → R which is Hölder-continuous of order α ∈ (0,1). If only
the lower barrier b− is present, we additionally assume that the random variable
φ(ST ) is in L1(Ω,Q). Then the following hold:

(a) The limits

Δ+(t) := lim
ε↘0

ZS

(
t, b+(t) − ε

)
and Δ−(t) := lim

ε↘0
ZS

(
t, b−(t) + ε

)

exist for all t ∈ [0, T ], and this holds uniformly in the sense that ZS(·, b−(·) ± ε)

converge uniformly to Δ± on [0, T ].
(b) For some δ > 0, we have both sup0<ε<δ V (Z(·, b+(·) − ε))(T ) < ∞ and

sup0<ε<δ V (Z(·, b−(·) + ε))(T ) < ∞, where V (g)(T ) denotes the total varia-
tion of a function g : [0, T ] → R.

Properties (a) and (b) hold in the time-dependent single-barrier case with obvious
modifications.

Lemma 2.3 is a consequence of Schauder’s boundary estimates for parabolic par-
tial differential equations. For the proof, see Appendix C. Note also that the uniform
convergence in the lemma, together with Theorem B.1, implies that the delta at the
barrier Δ±(t) is a continuous function of time for all t ∈ [0, T ] if the barrier functions
b± and the payoff φ satisfy the assumptions in Lemma 2.3. This should be contrasted
with the known behaviour of the delta of an up-and-out call option which goes to
minus infinity if, close to expiry, the underlying asset approaches the barrier level.

The task now is to understand the pathwise behaviour of the process (Zt )t∈[0,T ].
For this we need the important concept of local time. Recall that the local time (at
level a ∈ R) of any continuous semimartingale X = (Xt )t∈[0,T ] on the probability
space (Ω,Q) can be defined as the limit

La
t (X) := lim

ε↘0

1

ε

∫ t

0
I[a,a+ε)(Xu)d〈X,X〉u

almost surely in Q (see [38, p. 227, Corollary 1.9]), where 〈X,X〉t is the quadratic
variation process as defined in [38, Chap. IV, Theorem 1.3 and Proposition 1.18].
Notice that this definition can be easily extended to a local time of X along any
continuous curve b : [0, T ] → R with finite variation by Lb

t (X) := L0
t (X − b),

since the process X − b is still a continuous semimartingale and the equality
〈X − b,X − b〉t = 〈X,X〉t holds for all t . For times 0 ≤ t < v ≤ T , we denote the
local time of X between t and v by La

t,v(X) := La
v(X)−La

t (X). It is well known that
the map t �→ La

t (X) is almost surely a nondecreasing continuous function. With this
nondecreasing process, one can associate a random measure dLa

t (X) on the interval
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[0, T ] the support of which is contained in the set {t ∈ [0, T ]; Xt = a} (see [38,
p. 222, Proposition 1.3]).

By Lemma 2.2 we know that the process Z = (Zt )t∈[0,T ] is a nonnegative continu-
ous semimartingale. Therefore we are at liberty to apply the Tanaka formula (see [38,
p. 222, Theorem 1.2]) at level 0 to the nonnegative process (Zt )t∈[0,T ], thus obtaining
the pathwise representation

Zv = Zt +
∫ v

t

I{Zu>0} dZu + 1

2
L0

t,v(Z) for 0 ≤ t < v ≤ T . (2.4)

Using the representation in (2.4), we can prove the following proposition, which will
play a central role in all that follows.

Proposition 2.4 Assume that the payoff function φ and the barriers b± satisfy the
assumptions of Lemma 2.3, and let t, v be two elements in the interval [0, T ] such
that t ≤ v. If the upper barrier b+ is present, the process (

∫ v

t
I{Zu>0} dZu)v∈[t,T ]

is a continuous martingale, and hence the representation (2.4) is the Doob–Meyer
decomposition of the submartingale (Zv)v∈[t,T ]. Therefore we have almost surely the
equality

Zt = E[Zv|Ft ] − 1

2
E

[
L0

t,v(Z)
⏐⏐Ft

]
. (2.5)

Assuming that φ(ST ) is in L2(Ω,Q), the representation (2.5) holds also in the case
where only the lower barrier b− is present.

If time v equals expiry T and time t equals the current time, the equality in Propo-
sition 2.4 yields a representation of the barrier option price at t as a sum of the cur-
rent value of the European payoff ZT and the expectation of the local time from
now until expiry. The former quantity is usually available in most models in a semi-
analytic closed form, and the latter will be obtained in Theorem 2.5 by applying the
change-of-variable formula from [35]. Note also that intuitively the stochastic inte-
gral (

∫ v

t
I{Zu>0} dZu) is a martingale because the integrator (Zu) equals on the set

{Zu > 0} a discounted double-barrier option price, which is a martingale.

Proof of Proposition 2.4 Let C denote the domain between the barriers as defined in
(b) of Lemma 2.2. Recall that Zv = Z(v,Sv), where the function Z : C → R+ is the
solution of the PDE in (b) of Lemma 2.2. By Lemma 2.3 we are at liberty to apply
Theorem A.1 to the function Z. In differential form we obtain

dZu = I{b−(u)<Su<b+(u)}ZS(u,Su)Suσ (Su) dWu

+ 1

2

(
I{Su=b−(u)}Δ−(u) dL

b−
u (S) − I{Su=b+(u)}Δ+(u) dL

b+
u (S)

)
,

where ZS denotes the first derivative of Z with respect to S. Definition (2.3) implies
the inclusion {Zu > 0} ⊆ {b−(u) < Su < b+(u)} for all u ∈ [0, T ], and therefore

∫ v

t

I{Zu>0} dZu =
∫ v

t

I{Zu>0}ZS(u,Su)Suσ (Su) dWu. (2.6)
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The function ZS is bounded on the domain C by Lemma 2.3, which implies that the
stochastic integral on the right-hand side is a continuous martingale starting at zero.
By taking expectation on both sides of (2.4) we conclude the proof in the double-
barrier case. However, the same argument can be applied if only the upper barrier
b+ is present. This is because the integrand on the right-hand side of (2.6) is still
bounded, making the stochastic integral in (2.6) a true martingale.

In the single-barrier case with only b− present, the argument above does not
work because the integrand in (2.6) is no longer necessarily bounded. However
the same reasoning shows that the identity in (2.5) holds for the stopped process
Zv∧τn = Z(v ∧ τn, Sv∧τn), where the stopping time τn is the first passage time of
the diffusion S into the interval [n,∞) after time t , because the integrand in (2.6)
is bounded. Jensen’s inequality for conditional expectations and the definition of the
process Z given in (2.3) imply the inequality

max
{
E

[
Z2

v

∣∣Ft

]
,E

[
Z2

v∧τn

∣∣Ft

]} ≤ E
[
φ(ST )2

∣∣Ft

]
.

Our assumption on φ(ST ) implies that Zv and Zv∧τn are elements of the space
L2(Ω,Q) for all large natural numbers n.

By Lemma 2.1 we have that limn→∞ τn is infinite almost surely in Ω . In other
words we have the almost sure pathwise convergence limn→∞ Zv∧τn = Zv . The
Cauchy–Schwarz inequality implies that

E
[|Zv − Zv∧τn |

∣∣Ft

] = E
[
Iτn<v|Zv − Zv∧τn |

∣∣Ft

]
≤ E[Iτn<v|Ft ]1/2

E
[|Zv − Zv∧τn |2

∣∣Ft

]1/2

≤ 2E[Iτn<v|Ft ]1/2
E

[
φ(ST )2

∣∣Ft

]1/2
.

Since the sequence E[Iτn<v|Ft ] converges to zero Q-almost surely as n goes to infin-
ity, we obtain

E[Zv|Ft ] = lim
n→∞ E[Zv∧τn |Ft ]

= Zt − 1

2
lim

n→∞ E
[
L0

t,v∧τn
(Z)

∣∣Ft

]

= Zt − 1

2
E

[
L0

t,v(Z)
∣∣Ft

]
,

where the last equality follows by the monotone convergence theorem. This con-
cludes the proof of the proposition. �

Before we proceed to our main theorem, recall that, for any point x ∈ (0,∞) and
time t ∈ (0, T ], the density p(t;x, ·) : (0,∞) → R+ of the transition function of the
underlying asset price process S, given by the SDE in (2.1), is characterised by the
identity Qx(St ∈ A) = ∫

A
p(t;x, y) dy, where A is any measurable set in (0,∞). The

function p(t;x, ·) : (0,∞) → R+ is nonnegative but does not necessarily integrate to
one because the process can reach zero (and stay there) in finite time. The existence
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of p(t;x, y) can be deduced from [20, Sect. 4.11], where it is shown that the transi-
tion function of a diffusion is absolutely continuous with respect to the speed measure
(see [20, p. 107], for the definition of the speed measure). In the case of the process S

given by (2.1), the speed measure is absolutely continuous with respect to Lebesgue
measure on the interval (0,∞), and hence the existence follows. Furthermore it is
proved in [20, p. 149] that the function p(·; ·, y) : (0,∞) × (0, T ] → R+ satisfies
the parabolic PDE in (b) of Lemma 2.2 for any y ∈ (0,∞). This fact will play a
crucial part in the proof of Theorem 2.5 (cf. proof of Lemma 2.6). Note also that
sufficient conditions for the existence of densities of solutions of one-dimensional
SDEs, which are jointly smooth in all three variables, are given in [39]. This stronger
result requires a volatility function that is uniformly bounded away from zero and is
therefore not suited to our purpose. For most models that are of relevance in mathe-
matical finance, the densities can be obtained either in semi-analytic closed form (see
for example (2.8) and (2.9)) or numerically.

The kernels of the integral operators appearing in Theorems 2.5 and 2.7 are re-
lated to the transition function of the asset price process (St )t∈[0,T ] and will now be
specified precisely. The quadratic variation (〈S,S〉t ) is a continuous nondecreasing
adapted process and as such defines, for each path of (St ), a measure d〈S,S〉t on the
interval [0, T ]. Since the asset price process (St ) is a solution of the SDE in (2.1),
this measure is absolutely continuous with respect to Lebesgue measure on [0, T ],
and the Radon–Nikodým derivative is given by d〈S,S〉t = S2

t σ (St )
2dt . The function

qt (x, y) that appears in the kernel of the integral operators in Theorems 2.5 and 2.7
can be defined as

qt (x, y) := p(t;x, y)
d〈S,S〉t

dt

⏐⏐⏐⏐
St=y

, (2.7)

where p(t;x, y) is the density defined above. In the case of geometric Brownian
motion we have the formula

qt (x, y) = yσ√
2πt

exp

(
− (log(y/x) − (μ − σ 2/2)t)2

2σ 2t

)
, (2.8)

where the drift equals μ = r − δ, and σ 2 is the constant variance. The function
p(t;x, ·) : (0,∞) → R+ in the case of GBM is a true probability density function
because the process cannot reach zero. In the case of the CEV model, given by (2.1)
with absorbing boundary condition at zero and the log-normal volatility function
σ(x) = σ0x

ρ−1 where ρ ∈ (0,1) and σ0 ∈ (0,∞), we have for the function qt the
closed form expression

qt (x, y) = 2σ 2
0 y2ρ(1 − ρ)k1/(2−2ρ)

(
XY 1−4ρ

)1/(4−4ρ)

× exp(−X − Y)I1/(2−2ρ)

(
2
√

XY
)
. (2.9)

This expression is a consequence of (2.7) and the formula for the transition density pt ,
which can for example be obtained from Theorem 3.5 in [10]. The function z �→ Iα(z)

is the modified Bessel function of the first kind of order α and the parameters in (2.9)
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are given by

k := 2μ

2σ 2
0 (1 − ρ)(exp(2tμ(1 − ρ)) − 1)

,

X := kx2(1−ρ) exp(2tμ(1 − ρ)),

Y := ky2(1−ρ),

where μ is the drift in the SDE (2.1). We now state one of our main theorems.

Theorem 2.5 Let (St ) be the underlying process given by (2.1), and let Zt = Z(t, St )

be the discounted price of a time-dependent single- or double-barrier option con-
tract, starting at the current time t , given in (2.3). Assume further that the barriers
b± : [0, T ] → R+ and the payoff φ : R+ → R+ satisfy the assumptions of Lemma 2.3
and that the local volatility function x �→ σ(x), x ∈ R+, satisfies the assumptions
in (b) of Lemma 2.2. In the case where only the lower barrier b− is present, we as-
sume in addition that the variable φ(ST ) is in L2(Ω,Q). Let ϕ(t, x) := Et,x[φ(ST )]
denote the discounted current price of the European contract starting at time t , con-
ditional upon the asset price St being at level x, and let the function qt (x, y) be as
in (2.7). Then we have for the time-dependent double-barrier option price the integral
representation

Z(0, S0) = ϕ(0, S0) − 1

2

∫ T

0
Δ−(t)qt

(
S0, b−(t)

)
dt

+ 1

2

∫ T

0
Δ+(t)qt

(
S0, b+(t)

)
dt, (2.10)

where Δ±(t) is the limiting value of the delta of the double-barrier option price
at b±(t) as defined in (a) of Lemma 2.3. Furthermore the continuous functions
Δ+,Δ− : [0, T ] → R satisfy the following linear system of two Volterra integral
equations of the first kind:

(
ϕ(t, b+(t))

ϕ(t, b−(t))

)
= 1

2

∫ T

t

Q(t, u)

(
Δ+(u)

Δ−(u)

)
du, (2.11)

where the matrix Q(t,u), for 0 ≤ t < u ≤ T , is given by

Q(t,u) :=
(−qu−t (b+(t), b+(u)) qu−t (b+(t), b−(u))

−qu−t (b−(t), b+(u)) qu−t (b−(t), b−(u))

)
. (2.12)

In a time-dependent up-and-out (resp. down-and-out) single-barrier case, the repre-
sentation (2.10) contains a single integral along b+ (resp. b−). The integral equa-
tion that determines the function Δ+ (resp. Δ−) in the up-and-out (resp. down-and-
out) case takes the form of the Volterra equation of the first kind with ± equal to +
(resp. −), i.e.,

ϕ
(
t, b±(t)

) ± 1

2

∫ T

t

qu−t

(
b±(t), b±(u)

)
Δ±(u) du = 0. (2.13)
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Theorem 2.5 yields an integral representation for the double-barrier option price
for a wide variety of local volatility models, any pair of time-dependent barriers and
any payoff function that satisfy the assumptions in Lemma 2.3. Rather surprisingly,
knowing the values of the delta at the barriers for all future times and the current price
of the corresponding European derivative (recall that φ(b−(T )) = φ(b+(T )) = 0 for
payoffs φ satisfying the assumptions in Lemma 2.3), is enough to obtain the current
value of the time-dependent barrier option. Note also that both integrals in (2.10) are
negative since Δ−(t) > 0 (resp. Δ+(t) < 0), which intuitively follows from the fact
that the barrier option price is increasing (resp. decreasing) as the asset price moves
away from (resp. approaches) the lower (resp. upper) barrier. As expected, this makes
the barrier option cheaper than its European counterpart. The representation (2.10)
therefore decomposes the double-barrier option price into the European option price
and the barrier premium.

In order to include payoff functions φ that are of interest in applications (e.g.,
the up-and-out call option payoff φ(S) = (S − K)+I(0,b+(T ))(S) or the payoff of a
double-no-touch φ(S) = I(b−(T ),b+(T ))(S)), we must relax the smoothness require-
ments for the function φ stipulated in Lemma 2.3. This will be done in Theorem 2.7,
where we show that the integral representation for the price (2.10) and the integral
equation (2.11) for the functions Δ± continue to hold.

Before proceeding to the proof of Theorem 2.5, we need the following lemma that
bounds the growth of the function q , defined in (2.7), over short time intervals.

Lemma 2.6 Let K be a compact interval contained in (0,∞). Then there exists a
positive constant CK such that the inequality

qu−t (x, y) <
CK√
u − t

holds for all t < u ≤ T and x, y ∈ K .

The proof of Lemma 2.6 is contained in Appendix B. Note that the constant CK

in Lemma 2.6 depends only on the compact set, and the inequality therefore holds
uniformly on K . If the function σ in the SDE (2.1) were uniformly bounded away
from zero, the estimate in Lemma 2.6 would hold on the entire domain (0,∞).

Lemma 2.6 implies that the integral equations (2.11) and (2.13) have weakly
singular kernels and that the inequalities qu−t (b±(t), b±(u)) < M√

u−t
hold for all

u ∈ (t, T ], where M is a positive constant (± denotes either + or −). The linear
operator in (2.13) (resp. (2.11)) is compact on the Banach space of continuous func-
tions C([0, T ]) (resp. C([0, T ]) × C([0, T ])) with the supremum norm and, as such,
has 0 in its spectrum. Note that by construction (2.11) and (2.13) have a continuous
solution. The uniqueness of this solution is a much more subtle question, equiva-
lent to asking whether 0 in the spectrum of the operator is an eigenvalue. Since (2.11)
and (2.13) are of the first kind and the Fredholm alternative (which provides a general
answer to the question of uniqueness of solutions for integral equations of the second
kind) cannot be used, it is difficult to answer the question in general. However, for a
time-dependent single-barrier case in the Black–Scholes model, see Proposition 2.8.
Let us now proceed to the proof of Theorem 2.5.
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Proof of Theorem 2.5 Let us start by considering a time-dependent double-barrier
option. Let C be the domain between the barriers as defined in (b) of Lemma 2.2.
We begin by applying Theorems A.1 and B.1 to the process Zt = Z(t, St ), where the
function Z is the solution of the PDE from (b) of Lemma 2.2. For any pair of times
t, v ∈ [0, T ] such that t < v, we therefore obtain the pathwise representation

Zv = Z(t, St ) +
∫ v

t

I{b−(u)<Su<b+(u)}ZS(u,Su)Suσ (Su) dWu

+ 1

2

∫ v

t

Δ−(u) dL
b−
u (S) − 1

2

∫ v

t

Δ+(u) dL
b+
u (S),

where the functions Δ+ and Δ− are defined in Lemma 2.3. The random measures
dL

b±
u (S) are by definition equal to the well-defined random measures dL0

u(S − b±),
and the functions Δ± are continuous by Theorem B.1 and (a) of Lemma 2.3 and are
hence Borel-measurable. Since the function ZS : C → R+ is bounded, this equality
yields a Doob–Meyer decomposition of the submartingale (Zv)v∈[t,T ]. Since such a
decomposition is unique, Proposition 2.4 implies for the finite variation processes the
identity

L0
t,v(Z) = 1

2

∫ v

t

Δ−(u) dL
b−
u (S) − 1

2

∫ v

t

Δ+(u) dL
b+
u (S). (2.14)

The main idea for the proof of Theorem 2.5 is to use the equality in Proposition 2.4
to obtain the representation of the option price and the integral equations in the theo-
rem. We must therefore find the expectation Et,St [L0

t,v(Z)] using the identity (2.14).
Let us start by proving the following:

Claim. For any continuous function f : [0, T ] → R of finite variation and for all
t, v ∈ [0, T ] such that t < v, the equality

Et,St

[∫ v

t

f (u)dL
b±
u (S)

]
=

∫ v

t

f (u)qu−t

(
St , b±(u)

)
du

holds, where qu−t (x, y) is given in (2.7).
Recall that, since the process (S − b±)t∈[0,T ] is a continuous semimartingale,

there exists a modification of the local time La
t,v(S − b±) such that the map

a �→ La
t,v(S − b±) is right-continuous and has left limits for every v ∈ [t, T ] al-

most surely in Ω . The function is therefore Lebesgue-measurable, and the occupation
times formula (see [38, Chap. VI, Corollary 1.6]) implies

∫ v

t

I[0,ε)

(
Su − b±(u)

)
d〈S,S〉u =

∫ ε

0
La

t,v(S − b±) da

for ε > 0. By taking expectations and dividing by ε on both sides of this equality we
obtain∫ v

t

1

ε
Et,St

[
I[0,ε)

(
Su − b±(u)

)
S2

uσ (Su)
2]du = 1

ε

∫ ε

0
Et,St

[
La

t,v(S − b±)
]
da.

(2.15)
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The integrand on the left-hand side equals 1
ε

∫ b±(u)+ε

b±(u) qu−t (St , y) dy and in the limit
ε ↘ 0 we obtain qu−t (St , b±(u)) for all u ∈ (t, v]. Since for all small ε, we have the
inequality qu−t (St , y) < M√

u−t
for some constant M and y ∈ [b±(u), b±(u) + ε] (see

Lemma 2.6), we can apply the bounded convergence theorem to the left-hand side
of (2.15) to obtain

∫ v

t
qu−t (St , b±(u)) du for all values St (including St = b±(t)).

The right-hand side of (2.15) will converge to Et,St [L0
t,v(S − b±)] by the funda-

mental theorem of calculus if we can show that the function a �→ Et,St [La
t,v(S − b±)]

is continuous at a = 0. Tanaka’s formula yields for the local time the representation

1

2
La

t,v(S − b±) = Ψt,v(a) +
∫ v

t

I{Su≤b±(u)+a}Suσ(Su) dWu

+
∫ v

t

I{Su≤b±(u)+a}
(
μSu − b′±(u)

)
du,

where Ψt,v(a) := (a − (Sv − b±(v)))+ − (a − (St − b±(t)))+ and (x)+ := max{x,0}
for any x ∈ R (see [38, Chap. VI, Theorem 1.2]). Note that the variable Ψt,v(a) is
Lipschitz-continuous in a with a Lipschitz constant equal to 1 for all elements in Ω .
By taking expectation on both sides we find

Et,St

[
La

t,v(S − b±)
] = 2Et,St

[
Ψt,v(a)

]

+ 2Et,St

[∫ v

t

I{Su≤b±(u)+a}
(
μSu − b′±(u)

)
du

]
, (2.16)

since the integrand in the stochastic integral is bounded, and hence the martingale
term vanishes in expectation. The quantity Et,St [Ψt,v(a)] is continuous in a, while the
second expectation on the right-hand side can be rewritten, using Fubini’s theorem,
as

∫ v

t
F (a,u)du, where the function F is given by

F(a,u) := C0(u) +
∫ b±(u)+a

0

(
μy − b′±(u)

)
p(u − t;St , y) dy,

the function p denotes the density of the asset price process S in the interval (0,∞)

and C0(u) := −b±(u)QSt (Su = 0), is a function independent of a. The estimate
p(u − t;x, y) ≤ C√

u−t
, for a positive constant C independent of x, y in a compact

subset of (0,∞) (see Lemma 2.6), implies that the function a �→ F(a,u) possesses a
partial derivative that is bounded in the sense that | ∂F

∂a
(a,u)| ≤ D√

u−t
for all u ∈ [t, v].

Here D is some positive constant independent of St . Lagrange’s theorem now implies
that the integral

∫ v

t
F (a,u)du is a continuous function of a. We have therefore shown

that (2.16) is continuous in a and hence proved that the key identity

Et,St

[
L

b±
t,v(S)

] =
∫ v

t

qu−t

(
St , b±(u)

)
du

follows from (2.15) upon taking the limit ε ↘ 0.
For every path ω in the probability space Ω , the function v �→ L

b±
t,v(S)(ω) has

finite variation and is continuous. Since the same is true for the function f in our
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claim, we can use the integration by parts formula to obtain the equality
∫ v

t

f (u)dL
b±
u (S) = f (v)L

b±
t,v(S) −

∫ v

t

L
b±
t,u(S) dfu,

where dfu is the Radon measure on the interval [t, v] induced by f . By taking ex-
pectations on both sides of this identity and applying Fubini’s theorem to the integral
on the right, which is justified since local time is a nonnegative function, we obtain
the sequence of equalities

Et,St

[∫ v

t

f (u)dL
b±
u (S)

]

= f (v)Et,St

[
L

b±
t,v(S)

] −
∫ v

t

Et,St

[
L

b±
t,u(S)

]
dfu

= f (v)Et,St

[
L

b±
t,v(S)

] −
∫ v

t

dfu

∫ u

t

qs−t

(
St , b±(s)

)
ds

= f (v)Et,St

[
L

b±
t,v(S)

] −
∫ v

t

(
f (v) − f (s)

)
qs−t

(
St , b±(s)

)
ds

=
∫ v

t

f (s)qs−t

(
St , b±(s)

)
ds.

The third equality follows by Fubini’s theorem, and the last one is a consequence of
the formula for the expectation of local time. This proves the claim.

In order to apply the claim to the identity in (2.14), we need to approxi-
mate the continuous functions Δ± on the interval [t, v] by sequences of uni-
formly bounded continuous functions (f ±

n :[t, v]→R)n∈N with finite total varia-
tion (since the functions Δ± are bounded on [t, v], we can take piecewise lin-
ear approximations on a uniform grid in [t, v]). For each path ω ∈ Ω , the dom-
inated convergence theorem implies that the equality

∫ v

t
Δ±(u) dL

b±
u (S)(ω) =

limn→∞
∫ v

t
f ±

n (u)dL
b±
u (S)(ω) holds. Since the functions f ±

n are uniformly bounded

by some constant K , the random variables | ∫ v

t
f ±

n (u)dL
b±
u (S)| are bounded by

KL
b±
t (S), which is an integrable random variable. Another application of the

dominated convergence theorem and the above claim therefore yield the equali-
ties

Et,St

[∫ v

t

Δ±(u) dL
b±
u (S)

]
= lim

n→∞ Et,St

[∫ v

t

f ±
n (u)dL

b±
u (S)

]

=
∫ v

t

Δ±(u)qu−t

(
St , b±(u)

)
du

for any pair of times t, v ∈ [0, T ] that satisfy t < v.
We can now apply the last equality to (2.14) to find the expectation of the local

time of the time-dependent double-barrier option price. In other words, by Proposi-
tion 2.4 we have for the expectation of the double-barrier option price process the
representation
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Et,St [Zv] = Z(t, St ) + 1

2

∫ v

t

Δ−(u)qu−t

(
St , b−(u)

)
du

− 1

2

∫ v

t

Δ+(u)qu−t

(
St , b+(u)

)
du (2.17)

for all t, v ∈ [0, T ] satisfying t < v and all values of St . The representation of the
double-barrier option price (2.10) in the theorem can be obtained by taking t = 0
and v = T in (2.17). The system of integral equations (2.11) for (Δ+,Δ−) also fol-
lows from formula (2.17) by taking v = T , St = b+(t) and St = b−(t) and observing
that Z(t, b−(t)) = Z(t, b+(t)) = 0 for all t ∈ [0, T ], since the double-barrier con-
tract that is at the barrier is worth zero by definition. This completes the proof of the
double-barrier case. The single-barrier case can be obtained by making straightfor-
ward modifications to the preceding proof. �

Our next task is to relax the assumptions on the smoothness of the payoff function
φ : R+ → R+ made in Theorem 2.5. This is crucial, as we should like to be able
to apply our methodology to payoffs that arise in practice, such as the up-and-out
call option payoff φ(S) = (S − K)+I(0,b+(T ))(S) or the payoff of a double-no-touch
φ(S) = I(b−(T ),b+(T ))(S). The following theorem allows us to do precisely that.

Theorem 2.7 Let φ : R+ → R+ be a payoff function that is continuous everywhere
except at a finite set of points where it is right-continuous and has left limits. Assume
further that the barriers b± : [0, T ] → R+ satisfy the assumptions of Lemma 2.3
and that the asset price process (St )t∈[0,T ] is given by (2.1). In the case where only
the lower barrier b− is present, we assume in addition that the variable φ(ST ) is
in L2(Ω,Q). Let Zt = Z(t, St ) be the discounted price of a time-dependent single-
or double-barrier option contract, starting at the current time t given in (2.3), and
let ϕ(t, x) := Et,x[φ(ST )I(b−(T ),b+(T ))(ST )] denote the discounted price of the Eu-
ropean contract at the current time t conditional upon the asset price St being at
level x. Then there exist measurable functions Δ+,Δ− : [0, T ] → R, which are in
L1([0, T ],m±(dt)) and are not necessarily continuous or bounded, such that the
double-barrier option price has the integral representation

Z(0, S0) = ϕ(0, S0) − 1

2

∫ T

0
Δ−(t)qt

(
S0, b−(t)

)
dt

+ 1

2

∫ T

0
Δ+(t)qt

(
S0, b+(t)

)
dt. (2.18)

The measure m± is absolutely continuous with respect to Lebesgue measure, and
the Radon–Nikodým derivative is given by dm±

dt
= qt (b±(0), b±(t)). Furthermore

the functions Δ+,Δ− satisfy the linear system of Volterra integral equations of
the first kind given by (2.11). In a time-dependent up-and-out (resp. down-and-out)
single-barrier case, there exists a measurable function Δ+ (resp. Δ−), which is in
L1([0, T ],m+(dt)) (resp. L1([0, T ],m−(dt))) and is not necessarily continuous or
bounded, such that the discounted option price Z(0, S0) has the integral representa-
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tion

Z(0, S0) = ϕ(0, S0) ± 1

2

∫ T

0
Δ±(t)qt

(
S0, b±(t)

)
dt.

The integral equation satisfied by the function Δ+ (resp. Δ−) takes the form (2.13).

At first glance Theorems 2.5 and 2.7 look similar. The difference lies in the fact
that Theorem 2.7 applies to a much wider class of payoff functions φ that do not
satisfy the hypothesis of Lemma 2.3 and furthermore invalidate its conclusions. This
makes it impossible to apply the key local time formula from Theorem A.1, which
provided the core of the proof of Theorem 2.5. These analytical difficulties will be
circumvented by a careful approximation argument yielding the existence of L1 func-
tions Δ−,Δ+, which satisfy the integral equation (2.11) and give the desired repre-
sentation for the time-dependent barrier option price.

As an illustration of the difference between Theorems 2.7 and 2.5, consider the
following. It is well known that the delta of a short position in an up-and-out call
option becomes arbitrarily large if, close to expiry, the asset price approaches the
barrier. In particular this implies that Δ+ cannot be bounded close to expiry. A trader
trying to hedge this position would have to buy unlimited amounts of the underlying
asset. Since the gamma of the short position in the up-and-out call option is large and
positive close to the barrier, this delta hedge would be very profitable if the barrier
were not touched. However if the barrier were broken, the large accumulation of
the underlying asset would become a huge problem. This is why, in practice, such a
position close to expiry would be left unhedged. Let us now proceed to the proof of
Theorem 2.7.

Proof of Theorem 2.7 Let E ⊂ R+ be the finite set of discontinuities of the payoff
function x �→ φ(x)I(b−(T ),b+(T ))(x), which we also denote by φ for notational conve-
nience. We start by constructing a sequence of functions φn : R+ → R+ that satisfy
the assumptions of Lemma 2.3 and have the following two properties:

(1) φn(x) ≤ φn+1(x) for all x ∈ R+ and n ∈ N, and
(2) limn→∞ φn(x) = φ(x) for all x ∈ R+ \ E.

Let p, r ∈ E be two consecutive points in E such that p < r . In other words the
function φ is continuous on the interval [p, r) and has a limit at r . By the Stone–
Weierstrass theorem for each n ∈ N, there exists an element fn ∈ C3([p, r]) such
that the inequalities max{φ(x) − 1

n+1 ,0} ≥ fn(x) ≥ max{φ(x) − 1
n
,0} hold for all

x ∈ [p, r). The construction implies that the sequence (fn)n∈N satisfies property
(1) for all x ∈ [p, r] and property (2) for all x ∈ [p, r). The complement R+ \ E

consists of a finite number of open intervals with the same properties as (p, r). For
each point p ∈ E, we can choose a decreasing sequence of open intervals N

p
n such

that {p} = ⋂∞
n=1 N

p
n and E ∩ N

p
n = {p} for all n ∈ N, and N

p

1 ∩ Nr
1 = ∅ for any

r ∈ E \ {p}. Note that on the components of R+ \ E adjacent to any p ∈ E, we have
already constructed sequences (fn)n∈N and (gn)n∈N of C3 functions that converge
to φ in the required way. In the complement of the neighbourhood N

p
n , we define

φn(x) equal to either fn(x) or gn(x), depending on x being larger or smaller than p.
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We can now easily extend φn to the interval N
p
n so that the resulting function is C3

and property (1) remains true on any neighbourhood of p. Since {p} = ⋂∞
n=1 N

p
n ,

property (2) is also satisfied.
Let Zn

t = Zn(t, St ) denote the process given in (2.3) that corresponds to the payoff
function φn. It is clear that property (1) implies the inequality Zn(t, S) ≤ Zn+1(t, S)

for all points (t, S) ∈ C, where the region C is defined in (b) of Lemma 2.2, and
all n ∈ N. Since the set E is finite, properties (1) and (2) and the monotone conver-
gence theorem imply the equality limn→∞ Zn(t, St ) = Z(t, St ), where Zt = Z(t, St )

is given by (2.3). Since φn satisfies the hypotheses of Lemma 2.3, expression (2.17)
can be rewritten as

E0,S0

[
φn(ST )

] = Zn(0, S0) + 1

2

∫ T

0
Δn−(t)qt

(
S0, b−(t)

)
dt

− 1

2

∫ T

0
Δn+(t)qt

(
S0, b+(t)

)
dt (2.19)

for all n ∈ N and t, v ∈ [0, T ] such that t < v. For every n ∈ N, the deltas at the
barriers exist by Lemma 2.3 and are given by Δn±(t) := limk→∞ Zn

S(t, b±(t) ∓ εk),
where (εk)k∈N is a positive decreasing sequence accumulating at zero. Notice that,
since Zn(t, b±(t)) = 0 for all t ∈ [0, T ], Lagrange’s theorem implies the equalities

Δn+(t) = − lim
k→∞

Zn(t, b+(t) − εk)

εk

, Δn−(t) = lim
k→∞

Zn(t, b−(t) + εk)

εk

,

for each n ∈ N. Since the inequality Zn(t, b+(t) − εk) ≤ Zn+1(t, b+(t) − εk) (resp.
Zn(t, b−(t) + εk) ≤ Zn+1(t, b−(t) + εk)) holds for all n ∈ N and k ∈ N, it fol-
lows that 0 ≥ Δn+(t) ≥ Δn+1+ (t) (resp. 0 ≤ Δn−(t) ≤ Δn+1− (t)) for all t ∈ [0, T ]. In
other words the negative sequence (Δn+(t))n∈N (resp. positive sequence (Δn−(t))n∈N)
is decreasing (resp. increasing) at any time t and hence converges to its infi-
mum (resp. supremum), which is not necessarily finite. We can therefore de-
fine measurable functions Δ+ : [0, T ] → [−∞,0], Δ− : [0, T ] → [0,∞] by
Δ+(t) := limn→∞ Δn+(t), Δ−(t) := limn→∞ Δn−(t). By applying the monotone con-
vergence theorem to all the integrals in (2.19) we obtain formula (2.18) in the theo-
rem. Furthermore, formula (2.18) implies that the integrals

∫ T

0 Δ±(t)qt (S0, b±(t)) dt

are finite. Since the functions Δ+,Δ− do not change sign, they clearly define
elements in L1([0, T ],m+(dt)), L1([0, T ],m−(dt)), respectively. The system of
Volterra integral equations (2.11) for the functions (Δ+,Δ−) follows in the same
way as in the proof of Theorem 2.5. The time-dependent single-barrier case can be
treated in an analogous way. This completes the proof. �

We conclude Sect. 2 by considering the uniqueness of the solution of the Volterra
integral equation in (2.13) for a time-dependent single barrier in the Black–Scholes
model. A much more general result establishing the uniqueness of the solution of the
system of Volterra integral equations of the first kind given in (2.11), which requires
a detailed analysis of the corresponding compact operators, will be discussed in a
subsequent paper.
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Proposition 2.8 Assume that the payoff function φ and the barrier b : [0, T ] → R+
satisfy the hypotheses of Theorem 2.5 and let the asset price process (St )t∈[0,T ] fol-
low a geometric Brownian motion. Then the integral equation (2.13) has a unique
continuous solution Δ : [0, T ] → R.

Proof Since (2.13) is linear and, by Theorem 2.5, has a continuous solution, it is
enough to show that the only continuous solution f : [0, T ] → R of

∫ T

t
qu−t (b(t),

b(u))f (u)du = 0 is the obvious one, i.e., f ≡ 0. In the case of geometric Brownian
motion, the integral kernel qu−t (b(t), b(u)) is explicitly given by formula (2.8). By
Theorem 2.1 in [41] the uniqueness of the solution of the above integral equation
follows if we prove that the functions k(u, t) := √

u − tqu−t (b(t), b(u)) and ∂k
∂u

(u, t)

are continuous for all u, t ∈ [0, T ] such that u ≥ t and that k(t, t) is nonzero for all
t ∈ [0, T ].

It follows from (2.8) that the function k(u, t) can be expressed as

k(u, t) = b(u)σ√
2π

exp

(
− (B(u) − B(t) − (μ − σ 2/2)(u − t))2

2σ 2(u − t)

)
,

where B(t) := logb(t), which is clearly continuous for all u > t and, as u ap-
proaches t , has a nonzero limit equal to k(t, t) = b(t)σ√

2π
. This is a consequence of the

Lagrange theorem (i.e., B(u) − B(t) = B ′(ξu)(u − t) for some ξu ∈ (t, u)) applied
to the differentiable function B . A short calculation shows that the partial derivative
∂k
∂u

(u, t) exists for all u > t . The regularity of the function B implies that ∂k
∂u

(u, t) has
a finite limit at u = t and can therefore be extended to a continuous function for all
t, u ∈ [0, T ] such that t ≤ u. This concludes the proof of the proposition. �

3 Examples

In this section we consider some examples that illustrate the results of Theorems 2.5
and 2.7. We look at the simplest one in Sect. 3.1. In Sect. 3.2 we solve the system of
Volterra integral equations (2.11) for the case of constant barriers using Laplace trans-
forms. Section 3.3 briefly discusses numerical methods for solving the system (2.11)
in the general time-dependent case.

3.1 Model-free barrier option price

It is well known that a down-and-out call option struck at K , with a barrier at the
level B , has a unique model-independent price if B coincides with the strike K and
if both the interest rates and dividend yields are zero. Moreover the barrier option
price equals the price of a forward struck at B , as is easily seen by the following
semi-static replication argument: Since there are no interest rates or dividend yields,
when the barrier is breached for the first time, the forward contract is worth zero and
can therefore be sold at no cost (or gain). If the barrier is not breached at all, the
two payoffs clearly coincide. Since the forward has a model-independent price, the
no-arbitrage principle implies that the barrier option price must equal S − B , where
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S is the asset price at the current time. Therefore the delta of the barrier option price
is identically equal to one in any model. In particular the same must be true at the
barrier.

Let Ct(S,K) denote the call option price at time t in the Black–Scholes model.
Equation (2.13) of Theorem 2.5 tells us that we have the identity

B
(
N

(
σ
√

T − t/2
) − N

(−σ
√

T − t/2
))

= 1

2

∫ T

t

Bσ√
2π(u − t)

exp

(
−σ 2(u − t)

8

)
du

for all t ∈ [0, T ], where the left-hand side equals the Black–Scholes formula for
Ct(B,B) (the function N(x) is the cumulative normal distribution) and the integrand
on the right-hand side is given by (2.8) and the aforementioned fact Δ ≡ 1. The sub-
stitution x2 = σ 2(u − t)/4 and a short calculation show that this identity holds for
all t ∈ [0, T ]. Theorem 2.5 therefore implies for the linear function S �→ (S − B) the
integral representation

S − B = C0(S,B) − 1

2

∫ T

0

Bσ√
2πt

exp

(
− (log(B/S) + tσ 2/2)2

2σ 2t

)
dt,

where C0(S,B) is given by the Black–Scholes formula.

3.2 Constant barriers

A key distinction between the constant barrier case and a time-dependent barrier
case, which makes the former much easier to solve in a semi-analytic form, is that
the kernels of the integral operators in (2.11) and (2.13) depend only on the difference
of the arguments Q(t,u) = Q(u − t) when the barriers are constant. Therefore the
delta along the barrier can be obtained by the following two-step procedure. First one
solves an auxiliary integral equation where the right-hand side is identically equal to
one using the Laplace transform method, which can be applied precisely because the
kernel depends on the difference of the arguments, and the integral equation is there-
fore given as a convolution of two functions. In the second step an explicit integral
representation for the delta along the barrier can be constructed using the solution of
the auxiliary equation. In Sect. 3.2.1 we apply this method to single-barrier options
in the Black–Scholes model (see (3.2) for an explicit formula and [37, Sects. 8.4-1
and 8.4-4], for more details). In Sect. 3.2.2 we generalize this approach to the double-
barrier case by finding the explicit solution of the system in (2.11).

3.2.1 Single-barrier options

Let Ct(S,K) = FtN(d+) − KN(d−) denote the discounted value of the Euro-
pean call option in the Black–Scholes model, where the forward is given by
Ft := Seμ(T −t), the drift equals

μ := r − δ and d± := log

(
Ft

σ
√

T − t

)
± σ

√
T − t

2
.
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Let α := (μ−σ 2/2)2

2σ 2 be a positive constant, and let the function q : R+ → R+ equal

q(t) := e−αt√
πt

. Let B denote the lower barrier (i.e., B < K) and let Δ : [0, T ] → R+
be the delta of the option at level B . By Theorem 2.7 we need to solve the integral
equation Ct(B,K) = 1

2

∫ T

t
Δ(u)q(u − t) du on the interval [0, T ]. The substitution

x := T − u,y := T − t transforms the equation to

Ψ (y) =
∫ y

0
f (x)q(y − x)dx, y ∈ [0, T ], (3.1)

where Ψ (y) := 2
√

2
Bσ

CT −y(B,K), and the unknown function f is given by
f (x) := Δ(T − x).

As mentioned above, we first solve the auxiliary equation 1 = ∫ y

0 h(x)q(y −x)dx.
Recall that the Laplace transform of a function h is defined by

L(h)(s) :=
∫ ∞

0
e−sxh(x) dx

for all s > 0 such that the integral exists. It is obvious that L(1)(s) = 1
s
, and a short

calculation yields L(q)(s) = 1√
s+α

. By applying the Laplace transform to both sides

of the auxiliary equation we find L(h)(s) =
√

s+α
s

, since the right-hand side equals
L(h ∗ q)(s) = L(h)(s)L(q)(s) by the famous property of the Laplace transform.
The function (h ∗ q)(y) := ∫ y

0 h(x)q(y − x)dx in this formula denotes the convo-
lution of h and q . Note that (3.1) and the auxiliary equation can be represented as
Ψ (y) = (f ∗ q)(y) and 1 = (h ∗ q)(y). This simple observation will be useful in
Sect. 3.2.2.

The task now is to compute the inverse Laplace transform L−1, which is defined

as an integral along a path in the complex plane, of the function s �→
√

s+α
s

. Instead
of using the definition of L−1, we observe the elementary identities

1√
s + α

+ √
α

√
α

s
√

s + α
=

√
s + α

s
and L

(
x �→ E

(√
αx

))
(s) =

√
α

s
√

s + α
,

where E(x) := 2√
π

∫ x

0 e−v2
dv is the error function. The first identity is obvious,

and the second follows from the discussion above upon noticing that the function
x �→ E(

√
αx) can be expressed as the convolution E(

√
αx) = (

√
α ∗ q)(x). By ap-

plying the inverse Laplace transform to the first identity it follows that the solution
of the auxiliary equation is h(x) = q(x) + √

αE(
√

αx). Fubini’s theorem and the
auxiliary equation can now be used to verify that the function

f (x) := h(x)Ψ (0) + (h ∗ Ψ ′)(y) (3.2)

solves the integral equation (3.1). Since Ψ (0) = 0 and we have the formula

Ψ ′(y) = 2
√

2

σ
eμy

(
μN(d+) + σ

2
√

y
N ′(d−)

)
,
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the delta along the barrier Δ : [0, T ] → R+ can in the case of a down-and-out call
be expressed by a convolution of two explicit functions as Δ(t) = (h ∗ Ψ ′)(T − t).

It is well known that in the symmetric case where μ = 0, the down-and-out barrier

option price in the Black–Scholes model is given by C0(S,K) − K
B

P0(S, B2

K
), where

P0(S, B2

K
) is the price of a put option struck at B2

K
(see [29, p. 454, (12.3)]). The-

orem 2.7 therefore yields the equation P0(S, B2

K
) = e−r(T −t) B

K

∫ T

0 Δ(t)qt (S,B)dt,

where qt (S,B) is given in (2.8).
The key observation is that the procedure described here works for an up-

and-out call option in precisely the same way. The auxiliary equation again
takes the form 1 = (h ∗ q)(y) and hence has the same solution as before. The
function f defined in (3.2) solves the integral equation (3.1), where the func-
tion Ψ is redefined appropriately. In the case of an up-and-out call we have

Ψ (y) = − 2
√

2
Bσ

ET −y,B [(ST − K)+I{ST ≤B}], where the barrier B is larger than the
strike K . In fact the same procedure works for the class of linear diffusions consid-
ered in Theorem 2.7, as long as one is prepared to calculate (numerically or other-
wise) the inverse Laplace transform of the function s �→ L(q)(s)/s. The function
q : [0, T ] → R+ would in this case depend on the underlying diffusion through for-
mula (2.7) with x and y equal to the barrier level B .

3.2.2 Double-barrier options

Let B− and B+ denote the lower and upper barrier respectively, and let the functions
Ψ1,Ψ2 : [0, T ]→R be given by Ψ1(y):= 2ϕ(T −y,B+) and Ψ2(y):= 2ϕ(T − y,B−),
where ϕ represents the discounted value of the European payoff (see Theorem 2.5).
By introducing the change of variable x := T − u as in the previous section and
denoting f1(x) := Δ+(T − x), f2(x) := Δ−(T − x), we can write (2.11) using the
linear operator K : L1([0, T ]) × L1([0, T ]) → L1([0, T ]) × L1([0, T ]) as

(
Ψ1
Ψ2

)
= K

(
f1
f2

)
,

where K
(

f1
f2

)
(y) :=

(∫ y

0 Q11(y − x)f1(x) dx + ∫ y

0 Q12(y − x)f2(x) dx∫ y

0 Q21(y − x)f1(x) dx + ∫ y

0 Q22(y − x)f2(x) dx

)
.

(3.3)

The functions Qij : [0, T ] → R, i, j ∈ {1,2}, are the coordinates of the matrix
in (2.12) and can be expressed as functions of one variable precisely because the
barriers are constant in time.

Recall that the convolution can be used to make the Banach space L1([0, T ]) into
a commutative Banach algebra, since the function (u∗v)(y) = ∫ y

0 u(y −x)v(x) dx is
an element of L1([0, T ]) for any u,v ∈ L1([0, T ]). Using this multiplicative structure
and the definition in (3.3), we can express the linear operator K as

K
(

f1
f2

)
=

(
Q11 Q12

Q21 Q22

)
∗

(
f1
f2

)
.
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The integral equation in (3.3) can now be solved in two steps. The first step con-
sists of finding the functions hij : [0, T ] → R, i, j ∈ {1,2}, which satisfy the identity

(
1 0

0 1

)
=

(
Q11 Q12

Q21 Q22

)
∗

(
h11 h12

h21 h22

)
. (3.4)

Note that the product of any pair of coordinate functions in this expression is given
by their convolution. Note also that the solution of this auxiliary equation depends
solely on the barrier levels B+,B− and is independent of the payoff of the option we
are trying to price. By applying the Laplace transform L to each coordinate of this
equation, we obtain a linear system for the functions L(hij ), where multiplication is
defined using a point-wise product rule, namely

( 1
s

0

0 1
s

)
=

(
L(Q11)(s) L(Q12)(s)

L(Q21)(s) L(Q22)(s)

)(
L(h11)(s) L(h12)(s)

L(h21)(s) L(h22)(s)

)
.

Assuming that the determinant (L(Q11)L(Q22) − L(Q12)L(Q21))(s) is nonzero for
all s > 0, we can explicitly solve this system of equations. In order to obtain the
functions hij : [0, T ] → R, i, j ∈ {1,2}, we need to perform Laplace inversion on
each of the four coordinates of the solution of the linear system.

Once the auxiliary equation in (3.4) has been solved, we can express the solution
of the original integral equation in (3.3) as

(
f1(x)

f2(x)

)
=

(
h11(x) h12(x)

h21(x) h22(x)

)(
Ψ1(0)

Ψ2(0)

)
+

(
h11 h12

h21 h22

)
∗

(
Ψ ′

1
Ψ ′

2

)
(x).

Since in our case we have Ψ1(0) = Ψ2(0) = 0, the deltas at the upper and lower
barriers are given by the formulae Δ+(t) = (h11 ∗Ψ ′

1)(T − t)+ (h12 ∗Ψ ′
2)(T − t) and

Δ−(t) = (h21 ∗Ψ ′
1)(T − t)+(h22 ∗Ψ ′

2)(T − t), respectively. The representation (2.18)
of the double-barrier option price in Theorem 2.7 can now be applied.

3.3 Time-dependent barrier options

In the case of general time-dependent barriers not much can be said analytically about
the structure of the solutions of the system of integral equations in (2.11). However
the trapezoidal product integration method, described in [41], can be applied directly
to the single-barrier problem. The substitutions y := T − t and x := T − u, used in
Sect. 3.2, transform (2.13) into a generalised Abel equation with the weakly singular
kernel

k(y, x) := ∓
√

y − x

2
qy−x

(
b±(T − y), b±(T − x)

)
,

where the function b± : [0, T ] → R+ is either a lower or an upper barrier, and the
function q is given in (2.7). Using the notation Ψ (y) := ϕ(T − y, b±(T − y)) for the
discounted value of the European payoff (see Theorem 2.5 for the precise definition
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of ϕ) and f (x) := Δ±(T − x) for the unknown function in our integral equation, we
can rewrite (2.13) as

Ψ (y) =
∫ y

0

k(y, x)√
y − x

f (x)dx. (3.5)

It follows from the representation of the density of a linear diffusion given in [15,
Sect. 1.2, (2.8)], that k(y, y) := limx↗y k(y, x) exists and is nonzero since we are
assuming that the barrier function is differentiable. This statement is clear for geo-
metric Brownian motion when the function q is given by (2.8), and essentially the
same proof can be used for a general linear diffusion once we apply the represen-
tation given in [15]. The observation that 0 < k(y, y) < ∞ for all y ∈ [0, T ] is of
utmost importance because it makes the lower-triangular system of linear equations
in [41] nonsingular.

The main theorem of [41] says that the solution of the lower-triangular linear sys-
tem, given by (4.1) on p. 179 of the same paper, converges to the solution of the
integral equation (3.5) at the order of O(h2), where h is the distance between con-
secutive points in the discretisation of [0, T ]. This convergence result assumes some
regularity properties of the solution f , such as continuity on the entire interval [0, T ],
which are in general not satisfied in our context. The situation is improved if we work
in the domain of Theorem 2.5. In other words when faced with a discontinuous pay-
off function φ, we can first approximate it by a smooth function φn, as in the proof
of Theorem 2.7, and then solve the linear system from [41] which corresponds to the
derivative that delivers φn. This procedure introduces an additional numerical error
since we are pricing the “wrong” derivative, but improves the convergence speed of
the solution of the lower-triangular linear system from [41]. It follows from the con-
struction of φn in the proof of Theorem 2.7 that the price of the barrier option with the
payoff φn converges uniformly in (t, St ) to the price of the same barrier option with
the payoff φ. The stability of the proposed numerical algorithm will be the subject of
future research.

The double-barrier case can be dealt similarly upon noticing that the functions
qu−t (b+(t), b−(u)) and qu−t (b−(t), b+(u)), which appear “off the diagonal” in the
kernel of the system of Volterra equations given in (2.12), are smooth and bounded
for all t, u ∈ [0, T ] such that t ≤ u. In other words we can extend the n-dimensional
lower-triangular system from [41], used to solve the integral equation (3.5), to a
2n-dimensional linear system by representing the integrals against the functions
qu−t (b+(t), b−(u)) and qu−t (b−(t), b+(u)) using the standard trapezoidal method
(which can be expressed as matrix vector multiplication). By expressing the solution
vector as (Δ+(t1),Δ−(t1), . . . ,Δ+(tn),Δ−(tn))

T , where (ti)i=1,...,n is an increasing
sequence such that t1 = 0 and tn = T , the 2n-dimensional linear system we need to
solve becomes lower-triangular because of the identities

lim
u↘t

qu−t

(
b+(t), b−(u)

) = lim
u↘t

qu−t

(
b−(t), b+(u)

) = 0.

There are a number of algorithms designed to solve this kind of linear system very
quickly and accurately (see, for example, [28]). Their implementations usually rely
on numerical libraries like BLAS and LAPACK for the calculations. These numerical
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libraries are highly optimised and can be called directly from C++ (see [2] for more
information on LAPACK, also available at http://www.netlib.org/lapack/lug/). How-
ever the question of implementation and the optimal choice of algorithm for solving
our lower-triangular linear systems requires further numerical investigation.

4 Conclusion

In this paper we have obtained an integral representation of the difference between the
time-dependent double-barrier option price and the price of a European option with
the same payoff. Theorems 2.5 and 2.7 give precise formulae in terms of the double-
barrier option deltas (Δ+,Δ−) : [0, T ] → R×R at the barriers (see (a) in Lemma 2.3
for the precise definitions of these functions), which solve the system of Volterra in-
tegral equations of the first kind in (2.11). It follows by construction that the system
of integral equations in (2.11) has a solution. The most natural question concerns the
uniqueness of the solution, which is equivalent to the question of whether zero is
an eigenvalue of the compact linear integral operator with a weakly singular kernel
given in (2.12). In general, compact operators exhibit both kinds of behaviour and the
standard technique of transforming an integral equation Kf = Ψ of the first kind to
an integral equation f −Lf = Ψ of the second kind, where K and L are related inte-
gral operators (see [37, Sect. 8.3]), does not apply in our setting because of the weak
singularity of our kernel. The transformation of the problem is desirable because we
can use the Fredholm alternative to analyse the kernel of the operator I − L, where
L is compact, and I is the identity operator. In spite of this difficulty, this general
approach can be made to work in the case of (2.11) by careful inspection of the con-
struction of the functions in the integral kernel, and the uniqueness of the solution
can be proved, at least for payoff functions that satisfy the regularity conditions of
Lemma 2.3. The proof will be given in a subsequent publication.

If we assume that the Volterra integral equation of the first kind in (2.11) has a
unique solution, then the representation (2.10) for the time-dependent double-barrier
option price from Theorem 2.5 implies that the value of this path-dependent derivative
depends only on the one-dimensional distributions in the risk-neutral measure of the
underlying process (St ). It is well known that having the vanilla option prices for
all strikes and all maturities is equivalent to having the one-dimensional distributions
of (St ). Theorem 2.5 therefore provides an explicit link between the vanilla option
prices and the barrier option prices for all reasonably smooth barriers and a wide class
of local volatility models. The fact that vanilla option prices determine uniquely the
barrier option prices in the world of local volatility models has been known since the
seminal work of Bruno Dupire [12] where, under certain regularity conditions, a PDE
for the local volatility function x �→ σ(x) is derived from the vanilla option prices.
This in turn determines the risk-neutral dynamics of (St ) and therefore the prices of
all path-dependent derivatives but does not yield an explicit relationship.

In this paper we have discussed a barrier pricing problem without rebates. In gen-
eral a barrier can pay a contract defined rebate F+(t) (resp. F−(t)) if at time t ∈ (0, T )

the asset price St equals the barrier level b+(t) (resp. b−(t)) for the first time since
inception. It is not difficult to see that under some additional technical assumptions

http://www.netlib.org/lapack/lug/
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on the functions F± : [0, T ] → R, the change-of-variable formula from [35] can be
applied and a similar technique to the one used to prove Theorem 2.5 yields an in-
tegral representation of the time-dependent double-barrier option price with rebate.
In fact the final formula is very similar to the one in (2.10), with ϕ(0, S0) replaced
by the sum of the expectation of the European payoff and certain integrals over the
time-interval [0, T ] of the rebate functions F±.

We have seen that purely probabilistic concepts such as local time and the general-
ized Itô formula proved by Peskir in [35] can be used to obtain a new structure in the
barrier option pricing problem, which can then be applied to the pricing and hedg-
ing of double-barrier options in local volatility models. This structure consists of two
deterministic functions Δ± : [0, T ] → R, which represent the deltas at the two barri-
ers. It is intuitively clear that the same structure exists in stochastic volatility models.
Since Peskir’s formula has been generalised to higher dimensions in [36] for all (pos-
sibly discontinuous) semimartingales, a generalisation of the approach presented here
might be feasible. The multidimensional change-of-variable formula in [36] is both
surprising and satisfactory, not just because it applies to all semimartingales but be-
cause, under natural deterministic conditions on the value function, the resulting for-
mula is a direct extension of the one-dimensional formula in [35]. However a direct
application of the formula in [36] is not possible in our case, because it requires the
existence of a regular extension of the value function across the boundaries of its nat-
ural domain, a question that requires some investigation. The issue of which quantity
one could represent in terms of deltas at the barriers in the higher-dimensional case
(the value function itself cannot be represented) provides in our view an additional
interesting problem for future research.

Appendix A: A change-of-variable formula with local time on curves

In this section we establish a mild generalisation of the change-of-variable formula
given in Theorem 3.1 of [35]. In fact Theorem A.1 is implicitly proved in [35]. Since
Theorem A.1 is central to our analysis, for completeness, we give a proof based on a
direct application of Theorem 3.1 and Remark 2.5 in [35].

Let X := (Xt )t∈[0,T ] be an Itô diffusion that solves the stochastic differential equa-
tion

dXt = M(Xt) dt + Σ(Xt) dWt ,

where M(x) := μx and Σ(x) := xσ(x), and let b± : [0, T ] → R be two continuous
functions of finite variation satisfying b−(t) < b+(t) for all t ∈ [0, T ]. As before, we
set

C := {
(t, x) ∈ [0, T ) × R; b−(t) < x < b+(t)

}
,

B+ := {
(t, x) ∈ [0, T ) × R; x > b+(t)

}
,

B− := {
(t, x) ∈ [0, T ) × R; x < b−(t)

}
.
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Let F : [0, T ] × R → R be a continuous function which is C1,2 on the open subset
B− ∪ C ∪ B+ of [0, T ] × R. Given a function g : [0, T ] → R of bounded variation,
let V (g)(t) denote the total variation of g on [0, t] for any t ≤ T .

Theorem A.1 Let Σ(x) > 0 for all x ∈ (0,∞) such that (t, x) ∈ C and assume that

Ft + MFx + Σ2

2 Fxx is locally bounded on B− ∪ C ∪ B+, Fx(s, b±(s) ± ε) converge
for ε ↘ 0 uniformly in s ∈ [0, t] and that sup0<ε<δ V (F (·, b±(·) ± ε))(t) < ∞ for
some δ > 0 and any combination of signs + and −. Then the following change-of-
variable formula holds:

F(t,Xt ) = F(0,X0) +
∫ t

0

(
Ft + MFx + Σ2

2
Fxx

)
(s,Xs)I{Xs �=b−(s),Xs �=b+(s)} ds

+
∫ t

0
(ΣFx)(s,Xs)I{Xs �=b−(s),Xs �=b+(s)} dWs

+ 1

2

∫ t

0

(
Fx(s,Xs+) − Fx(s,Xs−)

)
I{Xs=b−(s)} dL

b−
s (X)

+ 1

2

∫ t

0

(
Fx(s,Xs+) − Fx(s,Xs−)

)
I{Xs=b+(s)} dL

b+
s (X).

For the definition of the local time Lb
t (X) of X at the curve b, see p. 21.

Proof We start by defining continuous functions F± : [0, T ] × R → R which sat-
isfy the hypothesis of Theorem 3.1 in [35] and then apply the theorem to obtain
the formula above. Since the functions b± are continuous, the images b±([0, T ])
are disjoint compact subsets in R

2 with strictly positive distance. Hence there ex-
ists ε > 0 such that 4ε < b+(t) − b−(t) for all t ∈ [0, T ]. It is clear that there
exist smooth functions c± : [0, T ] → R that satisfy b−(t) < c−(t) < b−(t) + ε

and b+(t) − ε < c+(t) < b+(t) for all t ∈ [0, T ]. In particular it follows that
c+(t) − c−(t) > 2ε.

We now define continuous functions F+ and F−, which are C1,2 everywhere in
[0, T ] × R except along the curves b+ and b−, respectively, by the formulae

F+(t, x) :=
{

F(t, x) if x ≥ c−(t),

f +(t, x) if x < c−(t),
F−(t, x) :=

{
F(t, x) if x ≤ c+(t),

f −(t, x) if x > c+(t).

The function f + (resp. f −) is a C1,2 extension of F across the smooth boundary
c− (resp. c+), which exists because F is C1,2 by assumption on the domain C. Note
also that the functions f ± are non-unique. Given these definitions of F±, the only
discontinuities of the derivatives are the ones inherited from the original function F

along the curves b±, respectively. Since F satisfies the conditions in Theorem A.1,
the functions F± also satisfy the assumptions of Theorem 3.1 in [35], which therefore
implies for any fixed time t ∈ [0, T ], the formulae

F±(t,Xt ) = F±(0,X0) +
∫ t

0

(
F±

t + MF±
x + Σ2

2
F±

xx

)
(s,Xs)I{Xs �=b±(s)} ds
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+
∫ t

0
(ΣF±

x )(s,Xs)I{Xs �=b±(s)} dWs

+ 1

2

∫ t

0

(
F±

x (s,Xs+) − F±
x (s,Xs−)

)
I{Xs=b±(s)} dL

b±
s (X), (A.1)

where the signs ± are simultaneously equal to either + or −.
Let (Ft )t∈[0,T ] denote the filtration of the Brownian motion (Wt)t∈[0,T ] that sat-

isfies the usual conditions. Since the processes on both sides of the equality in (A.1)
have continuous paths, we can assume that they are indistinguishable and therefore
substitute the fixed time t ∈ [0, T ] with any stopping time relative to (Ft )t∈[0,T ].

We now define an increasing sequence of stopping times in the following way:
ρ1 := t ∧ inf{s;Xs = c+(s)}, ρ2 := t ∧ inf{s > ρ1;Xs = c−(s)} and inductively
ρ2n+1 := t ∧ inf{s > ρ2n;Xs = c+(s)}, ρ2n+2 := t ∧ inf{s > ρ2n+1;Xs = c−(s)}
(we are assuming without loss of generality that X0 < c+(0)). Note that for any s in
[ρ2n+1, ρ2n+2] (resp. in [ρ2n, ρ2n+1]), the value of the random variable Xs is strictly
above b−(s) (resp. below b+(s)), and therefore F(s,Xs) equals F+(s,Xs) (resp.
F−(s,Xs)). We also have limn→∞ ρn = t a.s. and, for almost all paths of X, ρn = t

for some n ∈ N (this follows from the inequality c+(s)− c−(s) > 2ε for all s ∈ [0, T ]
and the fact that the expectation of the upcrossing number of our semimartingale is
finite, cf. [25, Theorem 1.3.8(iii)]). For a fixed t ∈ [0, T ], we have the telescoping
representation

F(t,Xt ) − F(0,X0)

=
∞∑

n=0

(
F(ρ2n+2,Xρ2n+2) − F(ρ2n+1,Xρ2n+1)

+ F(ρ2n+1,Xρ2n+1) − F(ρ2n,Xρ2n
)
)

=
∞∑

n=0

(
F+(ρ2n+2,Xρ2n+2) − F+(ρ2n+1,Xρ2n+1)

)

+
∞∑

n=0

(
F−(ρ2n+1,Xρ2n+1) − F−(ρ2n,Xρ2n

)
)
,

where ρ0 := 0. We are allowed to reshuffle the summands in this pathwise identity
since, for almost all paths, the sums consist of finitely many summands. The theorem
now follows by applying formula (A.1) between the stopping times for (Ft ) to the
summands in the last expression and collecting the terms. �

Appendix B: Analyticity properties of time-dependent barrier option prices

Let φ : R+ → R+ be a payoff function that is continuous on a complement of a
finite set where it is right-continuous with left limits. In particular φ is continuous
at zero. An important example is φ(x) = (x − K)+I(B−,B+)(x) for some constants
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B− < K < B+ and x ∈ R+. The diffusion X = (Xt )t∈[0,T ], specified by the time-
homogeneous SDE dXt = M(Xt) dt +Σ(Xt) dWt with linear drift M(x) := μx and
a locally Lipschitz diffusion coefficient Σ(x) := xσ(x) > 0 for x ∈ (0,∞), is as
described in the beginning of Sect. 2. Using the notation from Appendix A, we define
a family of stopping times τt for t ∈ [0, T ] by

τt := inf
{
v ∈ [0, T − t]; Xt+v ∈ R \ (

b−(t + v), b+(t + v)
)}

,

where the boundary functions b± : [0, T ] → R are continuous and twice differen-
tiable in the interval (0, T ). We also consider the case where either b+ or b− are not
present to capture the single-barrier case. If there is no upper barrier, we assume in
addition that φ(XT ) ∈ L1(Ω,Q). The discounted barrier price process is a martin-
gale given by Vt := E[φ(Xτ0)I{τ0=T }|Ft ], where the filtration (Ft )t∈[0,T ] is as de-
scribed in the beginning of Sect. 2. The identity I{τ0=T } = I{τ0>t}I{τt=T −t}, the facts
{τ0 > t} ∈ Ft , τ0 = t + τt on the set {τ0 > t} and the Markov property of X imply for
the barrier price the pathwise representation Vt = I{τ0>t}Z(t,Xt ), where the function
Z : [0, T ] × R → R is given by

Z(t, x) := Et,x

[
φ(Xt+τt )I{t+τt=T }

]
. (B.1)

Here the process X starts at time t with value Xt = x.
It is often stated that the barrier option price satisfies a certain PDE with absorbing

boundary conditions. Such statements are in fact referring to the analyticity properties
of the function Z, which we make precise and prove in Theorem B.1.

Theorem B.1 Let Lg(t, x) := (gt + Mgx + Σ2

2 gxx)(t, x) be the infinitesimal gen-
erator of the diffusion Y = (Yt )t∈[0,T ], where Yt := (t,Xt ), and the process X is as
described above. Let the set C be as defined in Appendix A and assume that C (the
closure is taken in the space R ×[0, T ]) is contained in (0,∞)×[0, T ]. Then, under
the above hypothesis on the payoff φ and barriers b±, the function Z given by (B.1) is
continuous on the set C \ (R×{T }) and solves the parabolic boundary value problem

LZ(t, x) = 0 for (t, x) ∈ C,

Z(T , x) = φ(x) for x ∈ (
b−(T ), b+(T )

)
,

Z
(
t, b±(t)

) = 0 for t ∈ [0, T ].
In the single-barrier case, the local behaviour and the terminal condition satisfied by
the function Z remain the same, but the boundary conditions change as follows: for an
up-and-out option the boundary conditions are Z(t, b+(t)) = 0 and Z(t,0) = φ(0),
t ∈ [0, T ], and in a down-and-out case we have Z(t, b−(t)) = 0 for all t ∈ [0, T ].

Proof Assume first that both barriers are present. If in addition we assume that
φ : [b−(T ), b+(T )] → R is continuous and satisfies φ(b−(T )) = φ(b+(T )) = 0, then
by Theorems 6.3.6 and 6.5.2 in [16], the function Z defined by (B.1) is the solution
of the parabolic PDE and satisfies the required boundary conditions. In particular Z

is continuous on C.
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Assume now that the payoff φ is discontinuous. By assumption φ only has a finite
number of bounded jumps. Hence we can express it as φ = limn→∞ φn, where the
functions φn are continuous with φn(b−(T )) = φn(b+(T )) = 0 for all n ∈ N, and the
convergence is uniform on the complement of any neighbourhood of the discontinu-
ities of φ. In fact we can choose the functions φn so that there exists a decreasing
sequence of open sets Nn ⊂ R such that the intersection

⋂∞
n=1 Nn equals the set of

discontinuities of φ, and φ(x) = φn(x) on the complement of Nn for all n ∈ N. In the
obvious notation we get |Z(t, x) − Zn(t, x)| ≤ AEt,x[INn(XT )], where A is some
constant independent of n which exists since φ is a bounded function. As usual INn

denotes the indicator function of the set Nn. Since the random variable XT has a den-
sity in the set (0,∞) which is smooth in the parameter (t, x) (see the discussion pre-
ceding Theorem 2.5 in Sect. 2), the right-hand side of the last inequality goes to zero
uniformly on some neighbourhood of the point (t, x). This implies that Z is a limit
of a uniformly convergent sequence of continuous functions and is therefore contin-
uous on the complement of the finite set of discontinuities of the payoff φ. Note that
Z(t, b±(t)) = limn→∞ Zn(t, b±(t)) = 0 for all t ∈ [0, T ) and that Z(T ,x) = φ(x)

by definition.
We now need to prove that Z is in C1,2(C) and that it satisfies the PDE LZ = 0,

where L is the infinitesimal generator of the diffusion Y . These are local properties
of the function Z, and it is therefore enough to show that they hold on any bounded
neighbourhood U ⊂ C of an arbitrary point (t, x) ∈ C. We can assume without loss of
generality that the boundary ∂U is smooth. Then the parabolic boundary-value prob-
lem for g : U → R, given by Lg = 0 in U and g|∂U = Z|∂U , has a unique solution
(see [16, Theorem 6.3.6]). Let τU be the first time the process Y started at (t, x) ∈ U

hits ∂U . From Dynkin’s formula (see [33, Theorem 7.4.1]) and the fact that g is the
solution of the above Dirichlet problem we find g(t, x) = Et,x[Z(Yt+τU

)]. Since Z

satisfies the mean-value property (see [33, p. 121, formula (7.2.9)]), it follows that
g(t, x) = Z(t, x) for all (t, x) ∈ U . This proves the theorem in the double-barrier
case.

If we only have a lower barrier, we can express the function Z as a limit of double-
barrier option prices where the “artificial” upper barrier tends to infinity. Using a
similar argument as above and the fact that the maximum of the process X is finite
Q-almost surely in the time interval [0, T ] (by Lemma 2.1 the process X does not
explode to infinity in finite time), it is not hard to see that the convergence is locally
uniform, which in turn implies that the function Z is continuous on the complement
(in C) of the discontinuities of φ. Once we have established continuity, the same
“local” argument as in the paragraph above proves the theorem in the case where
there is no upper barrier.

In the up-and-out case, we introduce a constant lower barrier at some small level ε

with the boundary condition Z(t, ε) = φ(ε) for all t ∈ [0, T ]. Since the function φ is
continuous at zero, an argument similar to the one above yields continuity of the solu-
tion of the parabolic problem obtained in the limit as ε → 0. Once we have continuity
of the solution, the “local” behaviour follows as in the preceding two cases. �
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Appendix C: Proofs of Lemmas 2.1, 2.3 and 2.6

Proof of Lemma 2.1 By Feller’s test for explosions (see Theorem 5.5.29 in [25]) it is
well known that the statement of the lemma holds if for some z, x0 ∈ (0,∞),

∫ ∞

z

dx

x2σ(x)2
exp

(
B(x)

) ∫ ∞

x

exp
(−B(y)

)
dy = ∞,

where B(x) := 2μ

∫ x

x0

du

uσ(u)2
.

This is clearly true if the limit limx→∞ B(x) is finite. If this is not the case, a
simple application of L’Hôpital’s rule implies that the function x �→ exp(B(x))

× ∫ ∞
x

exp(−B(y)) dy is asymptotically equal to the function x �→ xσ(x)2. This
proves the lemma. �

Proof of Lemma 2.3 The lemma is a consequence of Schauder’s boundary es-
timates for the solutions of the initial parabolic partial differential equations
proved in [14]. Let us first consider the double-barrier case. Recall that C is
the domain of the solution of the PDE from (b) of Lemma 2.2. Denote by
F : ∂C − ({0} × (b−(0), b+(0))) → R+ the continuous function which maps the
curves b±([0, T ]) to zero and coincides with the payoff φ on the interval
[b−(T ), b+(T )]. By Theorem 3.3.7 on p. 65 in [15] the partial derivatives ZS,ZSS,Zt

of the solution Z of the PDE in (b) of Lemma 2.2 will be Hölder-continuous of order
α ∈ (0,1) on C, if we can find an extension Ψ : C → R+ of the function F , whose
partial derivatives ΨS,ΨSS,Ψt are Hölder-continuous of order α on the domain C.
Theorem 3.3.7 in [15] applies in our case because the volatility function x �→ xσ(x)

is uniformly elliptic on the domain C since it is strictly positive on the compact set C.
Before constructing an extension Ψ explicitly, let us show that the Hölder-continuity
of the partial derivatives of Z implies the lemma.

Pick a sequence (εn)n∈N of positive real numbers which converges to zero. Since
the second derivative ZSS is Hölder-continuous on a bounded domain C, its modulus
must be bounded by some constant c (i.e., |ZSS(t, x)| < c for all points (t, x) ∈ C).
Therefore, by Lagrange’s theorem, we have

∣∣ZS

(
t, b+(t) − εn

) − ZS

(
t, b+(t) − εk

)∣∣ < c|εn − εk|
for all n, k ∈ N and all t ∈ [0, T ]. Since the right-hand side of this inequality is inde-
pendent of time t , the sequence of functions (t �→ ZS(t, b+(t)− εn))n∈N is uniformly
Cauchy on the interval [0, T ] and therefore converges uniformly to the continuous
limit Δ+. The same argument can be used for the lower barrier. This implies part (a)
of the lemma.

For part (b), let us choose a real number δ > 0 such that the point (t, b+(t) − 2δ)

lies in the domain C for all t ∈ [0, T ]. Since the barrier b+ is uniformly continuous
on the interval [0, T ], there exists δ0 > 0 with the following property: if |t − s| < δ0,
then |b+(t) − b+(s)| < δ for all s, t ∈ [0, T ]. Choose any ε ∈ (0, δ) and assume that
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ti ∈ [0, T ] satisfy 0 = t0 < t1 < · · · < tn = T and max{ti − ti−1; i = 1, . . . , n} < δ0.
Note that this implies that, if b+(ti) ≥ b+(ti−1) for any i ∈ {1, . . . , n − 1}, the point
(ti , b+(ti−1) − ε) lies in the domain C. Similarly if b+(ti) < b+(ti−1), we find that
the point (ti−1, b+(ti) − ε) is in C. Using these observations, we obtain

∣∣Z(
ti , b+(ti) − ε

) − Z
(
ti−1, b+(ti−1) − ε

)∣∣
≤ ∣∣Z(

ti , b+(ti) − ε
) − Z

(
ti−1, b+(ti) − ε

)∣∣
+ ∣∣Z(

ti−1, b+(ti) − ε
) − Z

(
ti−1, b+(ti−1) − ε

)∣∣
≤ A(ti − ti−1) + D

∣∣b+(ti) − b+(ti−1)
∣∣

≤ (A + DE)(ti − ti−1),

where the constants A,D,E are upper bounds on the absolute values of the deriva-
tives Zt ,ZS, b′+, respectively. In this inequality we assumed that b+(ti) < b+(ti−1).
In case b+(ti) ≥ b+(ti−1) a similar bound with the same constants, which is also
independent of ε, can be obtained. This inequality implies that the family of func-
tions (t �→ Z(t, b+(t)− ε))ε∈(0,δ) has a uniformly bounded total variation. The lower
barrier can be dealt with in an analogous way. This proves part (b) of our lemma.

We are now left with the task of showing that the payoff φ can be extended to a
function Ψ : C → R+ with Hölder-continuous derivatives Ψt ,ΨS,ΨSS . We start by
defining the global diffeomorphism β : [0, T ] × R → [0, T ] × R, which straightens
the barriers of the region C, given by

β(t, S) := (
t,B(t, S)

)
, where B(t, S) := b+(T ) − b−(T )

b+(t) − b−(t)

(
S − b−(t)

) + b−(T ).

Note that β(t, b±(t)) = (t, b±(T )) for all t ∈ [0, T ] and β(T ,S) = (T ,S) for all
S ∈ R. We can therefore define Ψ (t, S) := φ(B(t, S)) for any point (t, S) ∈ C. A sim-
ple calculation shows that

ΨS(t, S) = φ′(B(t, S)
)b+(T ) − b−(T )

b+(t) − b−(t)
,

ΨSS(t, S) = φ′′(B(t, S)
)(b+(T ) − b−(T )

b+(t) − b−(t)

)2

,

Ψt (t, S) = −φ′(B(t, S)
)b+(T ) − b−(T )

b+(t) − b−(t)

(
b′−(t) + (S − b−(t))(b′+(t) − b′−(t))

b+(t) − b−(t)

)
.

The desired properties of the function Ψ follow directly from the assumptions in the
lemma on the payoff φ and the boundary functions b±.

Our final task is to prove the lemma in the case where there is only one barrier.
Theorem 3.3.7 on p. 65 in [15] can only be applied if the domain C is bounded.
Assume that we only have, say, a lower barrier t �→ b(t). Then by Theorem B.1 the
discounted time-dependent single-barrier option price Z(t, S) still solves the PDE
from (b) of Lemma 2.2. We can now introduce artificially a constant upper barrier at
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some large value B and formulate the parabolic initial-boundary value problem

Ut(t, S) + μSUS(t, S) + S2σ 2(S)

2
USS(t, S) = 0

on the bounded domain C′ := {(t, S) : t ∈ [0, T ], S ∈ [b(t),B]} with the payoff func-
tion φ : [b(T ),B] → R and boundary conditions U(t, b(t)) = 0,U(t,B) = Z(t,B)

for all t ∈ [0, T ]. Like in the double-barrier case, because the domain C′ is bounded,
our assumption on the volatility function σ implies that the differential operator
is uniformly elliptic. By Theorem 4 in [14] such a problem has a unique solu-
tion, and therefore U(t, S) = Z(t, S) for all (t, S) ∈ C′. Furthermore the same ar-
gument as above implies that the functions t �→ US(t, b(t) + ε) converge uniformly
to a continuous function t �→ Δ(t) defined on [0, T ] and that the total variation of
t �→ U(t, b(t) + ε) is bounded uniformly for all small positive ε. This proves the
lemma in the case of a single-barrier option with a lower barrier. The single upper
barrier case can be dealt with similarly. �

Proof of Lemma 2.6 Since the set K is compact, it follows from definition (2.1) that it
is enough to prove the lemma for the transition density p(u− t;x, y) of the process S.
As mentioned on p. 24 (see also [20, p. 149]), the function (u, x) → p(u − t;x, y)

solves the parabolic PDE problem on the bounded domain (t, T ] × K . Let the func-
tion (u, x) → v(u − t;x, y) be the solution of the same PDE satisfying the boundary
conditions v(u − t;x, y) = −p(u − t;x, y) for all u ∈ [t, T ] and x ∈ ∂K (the sym-
bol ∂K denotes the two boundary points of the interval K) and the initial condition
v(0;x, y) = 0 for all x ∈ K \ ∂K . Such a solution exists and is bounded because the
PDE is uniformly parabolic on the domain (t, T ] × K and the boundary conditions
are continuous and bounded. Furthermore, by Sect. 5 in [15], there exists a nonneg-
ative fundamental solution f for our parabolic PDE that satisfies the inequality in
Lemma 2.6. By the maximum principle (see [15, Theorem 2.1 on p. 34]), the func-
tion f dominates the solution v + p of the PDE on the entire domain (t, T ] × K .
Since v is bounded, the lemma follows. �
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