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Abstract. In this paper we prove that the probability kernel of a random walk on a trinomial

tree converges to the density of a Brownian motion with drift at the rate O(h4), where h is

the distance between the nodes of the tree. We also show that this convergence estimate is

optimal in that the density of the random walk cannot converge at a faster rate. The proof is

based on an application of spectral theory to the transition density of the random walk. This

yields an integral representation of the discrete probability kernel that allows us to determine

the convergence rate.
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1. Introduction

Binomial models, introduced in (Cox, Ross & Rubinstein 1979), play a central role in the

theory and practice of derivatives pricing. They are widely used to obtain algorithms for deter-

mining the numerical value of options with general payoffs and provide a flexible framework that

can accommodate a variety of models (see for example (Hull & White 1988), (Madan, Milne &

Shefrin 1991), (Rubinstein 1994) and (Derman, Kani & Chriss 1996)). The equivalence between

binomial and trinomial trees has been established in (Rubinstein 2000). The present paper will

focus on the convergence properties of the latter.

It is known that the prices obtained from binomial and trinomial models converge to the prices

given by continuous-time and -space models (see e.g. (He 1990) and (Amin & Khanna 1994)).

The question of the rate at which the discrete option price converges to its continuous limit has

been examined in (Heston & Zhou 2000). The authors show that the convergence rate of a call

option is at least of the order O(1/
√
n), where n is the number of time-steps in the binomial

model. When expressed in terms of the lattice spacing h, this convergence rate is equivalent

to O(h) (the relationship between the number of steps n and the distance h between the state

nodes is given by n = 3σ2T
h2
, see equation (4) in section 2). In addition the authors show that for

twice continuously differentiable functions on a bounded interval in R the prices converge at the

rate O(h2). They propose to improve the convergence rate for non-differentiable payoffs by using

smoothing strategies and applying the convergence result for smooth functions. This approach

is well-suited to general vanilla payoffs since they are continuous and non-differentiable only at

a single point. It is less applicable to functions characterized by a higher degree of irregularity

such as the payoffs of European double digitals and butterfly spreads.

I would like to thank Prof. Eckhard Platen for useful comments.
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The probability density function of a random process can be viewed, in terms of pricing

theory, as a forward value of an option whose payoff is the Dirac delta function. The singular

nature of this function has hindered efforts to address the question of the convergence rate of

the probability density function of a discrete model to the probability density of a continuous

model, which is an interesting problem both theoretically and in practice.

In this paper we address the question of the convergence of the probability density function of

a random walk on a commonly used trinomial tree (see section 2 for definition) to its continuous

counterpart, a Brownian motion with drift. The main result, contained in theorem 3.1, states

that the probability density of the random walk on a trinomial tree converges to the density of

the Brownian motion with drift at the rate O(h4), where the parameter h represents the distance

between the nodes of the tree at any time-step. Furthermore we show that the convergence of

the probability density functions is uniform in the state-space (i.e. the same rate applies to any

pair of starting and terminal points in the state-space) and that it is of the order O(h4) and no

faster. This result can be compared with the rate of convergence of the probability density of a

continuous-time Markov chain to a Brownian motion with drift which has been shown to be of

the order O(h2) (see (Albanese & Mijatović 2006)).

Related results dealing with the convergence rate of density functions of a sum of independent

identically distributed random variables to the density of the limiting variable, known as local

limit theorems, have been developed in mathematical statistics (see for example (Kolassa 2006)

and chapter XVI in (Feller 1971)). The proofs are based on Edgeworth expansions which use

Hermite polynomials to approximate the density of the sum. See also (Ibragimov & Linnik 1971)

for applications of Fourier methods to the same problem.

The paper is organised as follows. In section 2 we give a definition of a widely used random

walk on the trinomial tree using natural moment matching conditions and find the spectral

representation of its probability kernel. Section 3 contains the statement and proof of our main

result (theorem 3.1). Section 4 concludes the paper.

2. Probability kernel of the random walk

A general idea behind multinomial lattice models is to approximate a stochastic process on a

continuous state-space by a random walk on a discrete state-space. A very natural question for

such an approximation is that of the convergence rate of the probability kernel of the random

walk to the probability density function of the initial stochastic process. In this section we

shall first recall a well-known approximation of the Brownian motion with drift1 by a discrete-

time Markov chain (i.e. a random walk) on a trinomial tree. Once we have established the

probability kernel of the chain, we will find its spectral representation as defined in appendix A.

This representation will allow us to prove our main result, contained in theorem 3.1.

Let Yt := x+µt+σWt denote a Brownian motion with a real drift µ and a positive volatility

σ, which started at some point x in R. As usual Wt denotes the standard Brownian motion. Let

1This process is at the heart of the Black-Scholes model (see (Black & Scholes 1973)) since an exponential of

it is a geometric Brownian motion.
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us fix a time horizon T . The basic idea of a trinomial tree is to divide the time interval [0, T ]

into n small time-steps ∆t, i.e. n = T
∆t
, and approximate YT with a sum

Y hT := x+

n
∑

i=1

Xi,(1)

where the random variables Xi, for i = 1, . . . , n, are independent identically distributed with a

domain {−h+µ∆t, µ∆t, h+µ∆t}.At any fixed time-step i ∈ {1, . . . , n} the parameter h denotes
the distance between the consecutive nodes in the tree. In other words the variable Xi is used

to approximate the evolution of the process µt + σWt in the short time interval of length ∆t.

The local geometry of the trinomial tree is described in figure 1.

q

p

1− p− q

−h + µ∆t

h+ µ∆t

µ∆t
0

Figure 1. The local geometry of the trinomial tree. Each of the random variables Xi, for

i ∈ {1, . . . , n}, takes three possible values. The middle node is the mean, the other two are a

distance h away from the mean. It is clear that the size of h is directly related to the variance

of Xi. We will see that if the spacing h and the time-step ∆t are related by the formula in (4)

and the probabilities p and q are equal to 1
6
, then the first five moments of Xi coincide with

those of the normal distribution N(µ∆t, σ2∆t).

It is intuitively clear that the convergence rate of the probability kernel of Y hT to the probability

density of the process YT improves as we satisfy the moment matching conditions

Et

[

(Yt+∆t − Yt − µ∆t)k
]

= E[(Xi − E[Xi])k], where t = i
∆t

T
for i ∈ {1, . . . , n},(2)

for more integers k. The probabilities p and q from figure 1 can be chosen in such a way that the

first five moments of the random variable Xi coincide with the first five moments of the normal

distribution N(µ∆t, σ2∆t) of the increment Y := Yt+∆t − Yt. Recall that the moments of the
normal random variable Y − µ∆t are of the form

Et[(Y − µ∆t)k] =
{

(2n)!
2nn! (σ

2∆t)2n if k = 2n,

0 if k = 2n− 1,
(3)

for any k in N. Satisfying condition (2) for all odd integers k reduces to the equation p = q,

which guarantees that the variables Xi are symmetric around their mean.

The moment matching conditions in (2) for k equals 2 and 4, together with formula (3) yield

the following system of equations: 2ph2 = σ2∆t and 2ph4 = 3(σ2∆t)2. This system uniquely
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determines the local geometry of our trinomial tree as it implies that the relationship between

the time-step ∆t and the spacing h is given by the following key formula:

h2 = 3σ2∆t.(4)

We also find that the probabilities p and q in figure 1 have to be equal to 16 . The local geometry

of our trinomial tree is now completely determined.

Assuming that we have fixed the spacing h and the corresponding time-step ∆t, we can define

a discrete-time Markov chain Y ht as in (1), for every time t which is an integer multiple of ∆t.

It is clear that the domain of the chain Y ht , at time t, is a subset of µt + hZ if and only if the

starting point x of the random walk Y ht is an element of hZ (see figure 2).

Let us now assume that x and y are arbitrary elements in hZ. The Markov chain Y ht defined

above is time homogeneous2 and its evolution is therefore determined uniquely by the bounded

operator Ph∆t : l
2(hZ)→ l2(hZ), which can be expressed using the orthonormal basis3 (δy)y∈hZ

as follows

Ph∆t(δy)(x) := P(Y
h
∆t = µ∆t+ y|Y h0 = x).(5)

To simplify notation we introduce the coordinate expression Ph∆t(x, y) := P
h
∆t(δy)(x). In other

words definition (5) provides a way of expressing the transition probability kernel of the Markov

chain Y ht as a bounded linear operator P
h
∆t on the Hilbert space l

2(hZ). Furthermore, since the

transition probabilities P(Y h∆t = µ∆t + y|Y h0 = x) have been uniquely determined by the local
geometry of the trinomial tree, we obtain the following coordinate expression for our operator:

Ph∆t(x, y) =
1

6















1 if |y− x|= h,
4 if x = y,

0 otherwise.

(6)

Recall that the discrete Laplace operator ∆h : l
2(hZ)→ l2(hZ) can be defined in the following

way for every sequence f in l2(hZ):

∆hf(x) :=
f(x + h) + f(x − h)− 2f(x)

h2
, where x ∈ hZ.

A simple yet important observation, based on relation (4), is that the operator Ph∆t can be

expressed as a linear combination of the identity operator I on the Hilbert space l2(hZ) and the

discrete Laplace operator ∆h in the following way:

Ph∆t = I +
σ2∆t

2
∆h.(7)

2By definition this means that the following equality holds P(Y ht+∆t = µ(t+∆t) + y|Y
h
t = µt+ x) = P(Y

h
∆t =

µ∆t + y|Y h0 = x) for all elements x, y ∈ hZ. In our case this is obvious since all summands in definition (1) are

identically distributed and the left-hand side equals P(Xi = µ∆t+ y − x), for some index i, while the right-hand

side equals P(X1 = µ∆t + y − x).
3 The sequence δy in l2(hZ) takes value 1 at y and value 0 everywhere else. It is clear that such sequences

for all y ∈ hZ form a basis of the Hilbert space l2(hZ) with the inner product given by (22) in appendix A. The

measure µ in that definition assigns a weight of 1 to each element in hZ.
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The easiest way to show that (7) holds is by expressing the discrete Laplace operator in coordi-

nates, substituting it into the formula on the right-hand side, applying equation (4) and noticing

that the result matches coordinate expression (6) for the probability kernel Ph∆t. Equality (7)

will play a central role in obtaining the spectral representation of the probability kernel of the

random walk Y ht , which will be established in proposition 2.1 and applied in the proof of theo-

rem 3.1.

So far we have concerned ourselves with the evolution of the chain Y ht over the short time

period ∆t. Our next task is to understand the probability kernel

phT (x, y) := P(Y
h
T = µT + y|Y h0 = x), where x, y ∈ hZ.(8)

The global geometry of the trinomial tree, for fixed values of the drift µ and volatility σ, is shown

in figure 2.

T0

x

y + µT

time

st
a
te
-s
p
a
ce

x+ T
∆t (µ∆t−σ

√
3∆t)

x+ Tµ

x+ T
∆t (µ∆t+σ

√
3∆t)

Figure 2. The global geometry of the trinomial tree. The figure corresponds to a drift µ of

0.1 and volatility sigma σ of 0.57. For convenience h (resp. ∆t) is chosen to equal one unit of

length (resp. time). Notice that the random walk Y ht , which started at x ∈ hZ, can only reach

with non-zero probability (at time T ) states in the interval [x+ n(µ∆t− h), x+ n(µ∆t + h)].

The integer n equals T
∆t
. In section 3 we shall investigate the convergence properties of the

probability kernel phT (x, y), defined in (8), for an arbitrary pair of points x, y ∈ hZ as the

spacing h goes to zero. It is clear from this figure that in the limit the set of reachable states

in the tree sweeps out the entire real line.

We now need to express probability kernel (8) in terms of the operator Ph∆t and find its

spectral representation. This is done in the following proposition.

Proposition 2.1. Let Y ht be the Markov chain defined above and let p
h
T (x, y) be its probability

kernel given by (8). Let T be a time horizon and ∆t a time-step. Then the following holds:
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(a) The transition probability phT (x, y) equals (P
h
∆t)
n(δy)(x), where δy is the element of the

orthonormal basis of l2(hZ) that corresponds to the singleton y ∈ hZ (see equation (5))
and the number of time-steps n is T∆t .

(b) The spectral representation of the probability kernel phT (x, y) is given by the integral

phT (x, y) =
h

2π

∫ π
h

−π
h

(

2

3
+
1

3
cos(hp)

)
3σ2T

h2

eip(x−y)dp,

for any pair of elements x, y in hZ.

Before proceeding to the proof of proposition 2.1, we should note that the above representa-

tion for the probability kernel phT (x, y) of the random walk Y
h
t has the property that the time

parameter t and the space parameters x, y feature independently. That is, the kernel of the

integral in proposition 2.1 (b) is a product of two functions, one depending on time T and the

other on the dislocation (x − y). This feature of the spectral representation will play a crucial
role in the proof of theorem 3.1.

Proof. Part (a) of the proposition follows from the representation in (5), which specifies the

evolution of our chain over the time-step ∆t, and an iterative application of the Chapman-

Kolmogorov equations (see chapter 6 in (Grimmett & Stirzaker 2001)).

In order to prove part (b), we need to find a spectral representation of the operator (Ph∆t)
n

in the sense of appendix A. This may be achieved in the following way: find a diagonal rep-

resentation for the discrete Laplace operator. The corresponding unitary transformations in

this representation (see appendix A for the role of unitary transformations in the definition of

the spectral representation) can also be used to define a (trivial) representation for the identity

operator I. Thus by (7) we obtain the spectral representation of Ph∆t.

The spectral representation, as defined in appendix A, for the discrete Laplace operator will

be given by a unitary transformation Fh : l2(hZ)→ L2([−πh , πh ]), also known as the semidiscrete
Fourier transform, defined by

Fh(f)(p) :=
√

h

2π

∑

m∈Z
f(hm)e−imhp ,

where an arbitrary element f of the Hilbert space l2(hZ) is viewed as a function from hZ to C.

The usual inner product on L2([−π
h
, π
h
]) with respect to the Lebesgue measure on the domain

[−π
h
, π
h
] (see appendix A for definition) makes the family of functions p 7→

√

h
2πe

−imhp, where

m ∈ Z, into an orthonormal basis of L2([−π
h
, π
h
]) (for the proof of this fundamental fact see

theorem II.9 in (Reed & Simon 1980)). In particular this implies that the mapping F−1h :

L2([−π
h
, π
h
])→ l2(hZ) given by

F−1h (φ)(hm) :=
√

h

2π

∫ π
h

−π
h

φ(p)eimhpdp

is well-defined and is an inverse of the semidiscrete Fourier transform (both of these facts follow

directly from the definition of the inner product on L2([−π
h
, π
h
]) and the fact that the functions

p 7→
√

h
2πe

−imhp form an orthonormal basis). It follows from the definitions of the respective
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inner products on Hilbert spaces l2(hZ) and L2([−π
h
, π
h
]) that Fh is a unitary transformation

(for definition see appendix A). Since F−1h is an inverse of Fh, it must also be a unitary operator.
The following calculation in the Hilbert space L2([−π

h
, π
h
]) yields a spectral representation of

the discrete Laplace operator ∆h:

Fh∆h(f)(p) =
∑

m∈Z

f(h(m + 1)) + f(h(m − 1))− 2f(hm)
h2

√

h

2π
e−imhp

=

√

h

2π

∑

m∈Z
f(hm)e−imhp

eihp + e−ihp − 2
h2

=
2(cos(hp)− 1)

h2
Fh(f)(p).

All infinite sums that feature in this calculation are well-defined elements of L2([−π
h
, π
h
]) since

the coefficients are the elements of the convergent sequence f ∈ l2(hZ).
This calculation, together with equality (7), implies that the operator (Ph∆t)

n has a spectral

representation of the form

Fh(Ph∆t)nF−1h (φ)(p) =
(

1 + σ2∆t
cos(hp)− 1
h2

)n

φ(p),(9)

where φ is any element of L2([−π
h
, π
h
]) and n equals the number of time-steps T

∆t
in the trinomial

tree.

We are now in the position to obtain the spectral representation of the probability kernel

phT (x, y) of the random walk Y
h
t at a given time horizon T , by combining equality (9) with

part (a) of the proposition. By substituting φ with Fh(δy)(p) =
√

h
2π
e−ipy in (9), we find the

following:

phT (x, y) = (Ph∆t)
n(δy)(x) = F−1h

(

(

1 + σ2∆t
cos(hp)− 1
h2

)n
√

h

2π
e−ipy

)

(x)

=
h

2π

∫ π
h

−π
h

(

1 + σ2∆t
cos(hp) − 1
h2

)
3σ2T

h2

eip(x−y)dp.

The proof of part (b) in the proposition can now be concluded by substituting equality (4) into

the formula we have just obtained.
�

3. The main theorem

In this section we shall examine the convergence of the discrete probability kernel phT (x, y) to

the conditional probability density function pT (x, y) of the Brownian motion with drift. We will

establish the precise convergence rate of phT (x, y) to pT (x, y) and prove that it is uniform in the

state variables x and y (see theorem 3.1). Before stating this result we should recall that the

probability density function pT (x, y) = P(YT = µT + y|Y0 = x) of the Brownian motion with
drift Yt = x+ µt+ σWt at a given time horizon T has a spectral representation of the form:

pT (x, y) =
1

2π

∫

R

e−
p2

2 σ
2T eip(x−y)dp.(10)
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For the proof of this standard fact see for example section 4 in (Albanese & Mijatović 2006).

Before proceeding to the statement of theorem 3.1, let us clarify the limiting procedure as

the parameter h goes to zero, which involves a passage from a discrete state-space hZ to the

continuum of R. First of all we need to fix a strictly decreasing sequence of positive real numbers

(hn)n∈N with the following two properties:

lim
n→∞

hn = 0 and
hi
hj
∈ N for all j ≥ i.

The first property enables us to study the behaviour of transition probabilities as the lattice

spacing goes to zero. The second property ensures that the lattice hjZ contains the lattice hiZ

for all j ≥ i. It is clear that there are many sequences satisfying these requirements. A very
simple example is given by hn := (

1
2 )
n.

Let us now fix a sequence (hn)n∈N which satisfies the above conditions. In all that follows we

shall assume that the distance h between two consecutive points in the lattice is equal to one

of the elements in the sequence (hn)n∈N. A limit when the spacing h goes to zero is defined as

the limit where the parameter h visits all the elements of the sequence (hn)n∈N from some index

N ∈ N onwards. It is clear that the limit as h goes to zero yields the same result for any choice
of sequence (hn)n∈N which satisfies the above conditions and is therefore a well-defined concept.

We may now state our main theorem.

Theorem 3.1. Let a positive real number T be a time horizon. Let phT be the probability kernel

of the random walk Y ht , given by (8) in section 2. For any pair of elements x, y ∈ hZ let
pT (x, y) denote the conditional probability density function of the Brownian motion with drift,

given in (10). Then the following holds

pT (x, y) =
1

h
phT (x, y) +O(h

4)

and the error term O(h4) is independent of x and y. Equivalently this means that there exist

positive constants C and δ such that the inequality |pT (x, y)− 1hphT (x, y)|≤ Ch4 holds for all h < δ
and all x, y ∈ hZ. Furthermore the probability kernel 1

h
phT (x, y) does NOT converge to the density

pT (x, y) at the rate O(h
4f(h)), for any non-constant function f such that limh→0 f(h) = 0.

In this theorem we are comparing the probability density functions of the family of the discrete

state-space processes Y ht , with the density of Yt whose state-space is clearly continuous. Since

the conditional probability density of the Brownian motion with drift (starting at x ∈ hZ), can
be defined by the limit pT (x, y) = limh→0

1
h
P(y − h < YT − µT ≤ y|Y0 = x), it is clear that the

density of the discrete state-space process Y ht should be given by the quotient
1
h
phT (x, y) which

is equal to 1
h
P(y−h < Y hT −µT ≤ y|Y h0 = x). Moreover this argument shows that the “discrete”

density 1
h
phT (x, y) converges to the “continuous” density pT (x, y).

Before proceeding to the proof of theorem 3.1 recall that by definition, a function k(h) is of

type O(g(h)) if and only if it is bounded above by Mg(h), for a positive constant M , on some

interval [0, ǫ) where ǫ > 0, i.e. limsuphց0

∣

∣

∣

k(h)
g(h)

∣

∣

∣ ≤M .



Spectral properties of trinomial trees 9

Proof. Let us start by choosing an arbitrary starting point x ∈ hZ and an arbitrary terminal
point y ∈ hZ (see figure 2). Our goal is to find an upper bound on the difference

D(h) := |pT (x, y) −
1

h
phT (x, y)|

of the densities for Brownian motion with drift Yt and the discrete-time Markov chain Y
h
t at a

given time horizon T . This will be achieved by comparing the spectral representation for pT (x, y),

given by (10), with the representation of the discrete probability kernel phT (x, y), specified in (b)

of proposition 2.1.

The basic idea that allows this comparison is as follows. We will start by defining a positive

function K(h) which goes to infinity “very slowly” as the distance h between the nodes of the

tree approaches 0. This will enable us to decompose the integration domains of the spectral

representations mentioned above into disjoint sets [−K(h), K(h)] and R − [−K(h), K(h)] and
study the difference D(h) by expressing it as Riemann integrals over the components of this

decomposition. This will yield the desired upper bound. A similar strategy was used in the

proof of theorem 5.1 in (Albanese & Mijatović 2006) (for more on this comparison see figure 3).

Before specifying the function K(h) let us define the function fh(p), which contains all the

essential information about the spectrum of the operator Ph∆t from (5) (see figure 3), using the

formula

fh(p) :=
3

h2
(log(2 + cos(hp))− log(3)) .(11)

Using the function fh(p) we can rewrite the representation given in proposition 2.1 (b) of the

probability kernel phT (x, y) in the following way

phT (x, y) =
h

2π

∫ π
h

−π
h

efh(p)σ
2T eip(x−y)dp.(12)

Let K(h) := 1
σ
√
T

√

10 log(1/h) be the positive function which we will use to decompose the

domain of integration. Note that since the inequalityK(h) ≤ π
h
holds for small h (i.e. the interval

[−K(h), K(h)] is contained in the domain [−π
h
, π
h
] for small h), we can bound the difference D(h)

using the integrals

A1(h) :=

∫ K(h)

−K(h)

∣

∣

∣

∣

efh(p)σ
2T − e− p

2

2 σ
2T

∣

∣

∣

∣

dp,

A2(h) :=

∫ π
h

K(h)

efh(p)σ
2Tdp,

A3(h) :=

∫ ∞

K(h)

e−
p2

2 σ
2Tdp

in the following way:

2πD(h) ≤ A1(h) + 2(A2(h) + A3(h)).(13)

The factor of 2 in front of A2(h) and A3(h) arises because the integrands in D(h) are symmetric

functions on the components of the set R − [−K(h), K(h)]. Note that in obtaining (13) we
used the well-known inequality |

∫

U
f(p)dp|≤

∫

U
|f(p)|dp for any integrable function f and any

Borel measurable set U in R. Observe also that the right-hand side of (13) is independent of
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Figure 3. Why does the discrete-time Markov chain converge to the Brownian motion

two orders of magnitude faster than the continuous-time Markov chain? The answer lies in

this figure. The spectrum of the Laplace operator L = 1
2
∆ (i.e. the Black-Scholes spectrum

p 7→ −p
2

2
), which is the generator for Brownian motion, is approximated in a much better way

by the discrete-time spectrum fh(p) defined in (11) than by the spectrum of the generator

Lh =
1
2
∆h for the continuous-timeMarkov chain given by the function p 7→

cos(hp)−1
h2

. Using

the backward Kolmogorov equation, these spectral representations can be transformed to

their respective probability densities by applying functional calculus: (i) formula (10) for the

PDF of the Brownian motion is obtained from eTL = F−1e−
p2

2
σ2TF where F denotes the

Fourier transform; (ii) proposition 2.1 implies that the probability density of the discrete-

time process is given by F−1
h
efh(p)σ

2TFh; (iii) the density of the continuous-time Markov

chain is specified by eTLh = F−1h e
cos(hp)−1

h2
σ2T
Fh (see sections 2 and 4 in (Albanese &

Mijatović 2006) for a rigorous treatment of the spectral properties of the generators L and

Lh and the respective probability kernels). These spectral representations of the probability

densities give an intuitive explanation for the difference in convergence rates. For simplicity

in this figure the volatility σ is normalized to one and time to maturity T is equal to one year.

We plot the spectral representation functions for the discrete- and continuous-time Markov

chains for h = 100−1. Notice that the value of the function K(h), defined at the beginning

of the proof of theorem 3.1, at h = 100−1 is less than 6.8. It is obvious that on the interval

[−6.8,6.8] the spectrum of the trinomial tree virtually coincides with the spectrum of the

Brownian motion. This observation offers some justification to our strategy for the proof of

theorem 3.1, since it is intuitively clear from the figure that the difference of the two spectral

representations remains negligible on the interval [−K(h), K(h)] for all small values of h and

that on the complement R − [−K(h), K(h)] the spectra are mapped by the exponential to

extremely small positive values.
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the coordinates x and y since they only appear in the expression eip(x−y) whose absolute value

equals one.

Our task now is to prove the inequalities Aj(h) ≤ A0jh4 for some positive constants A0j , where
the index j runs from 1 to 3. Let us start by estimating the integral A1(h) for small values of

the spacing h:

A1(h) ≤
∫ K(h)

−K(h)
e−

p2

2 σ
2T

∣

∣

∣

∣

e

(

fh(p)+
p2

2

)

σ2T − 1
∣

∣

∣

∣

dp

≤
∫ K(h)

−K(h)
e−

p2

2 σ
2T

(

e

∣

∣

∣fh(p)+
p2

2

∣

∣

∣σ
2T − 1

)

dp.(14)

The second inequality follows from the elementary relationship |ez−1|≤ e|z|−1 which is valid for
all z in the complex plane (take the absolute value of the Taylor series for the function z 7→ ez−1
and apply to it the triangle inequality: |ez − 1|= |∑∞n=1 zn|≤

∑∞
n=1|z|n= e|z| − 1). It is clear

from (14) that in order to bound A1(h) we first need to understand the asymptotic behaviour of

the expression |fh(p)+ p
2

2 |. The next claim constitutes a central step in the proof of the theorem.
Claim. The following inequality holds

∣

∣

∣

∣

fh(p) +
p2

2

∣

∣

∣

∣

≤ Ch4p6,(15)

for some positive constant C and all p in the interval [−K(h), K(h)].
To see this we need to recall that the function x 7→ log(x) has a Taylor expansion of the form

log(x) = log(3) +

∞
∑

n=1

(−1)n−1
3nn

(x− 3)n,

which converges uniformly on compact subsets of the interval (0, 6). Using this fact we can

express the function fh(p) as an infinite series

fh(p) = −
3

h2

∞
∑

n=1

1

3nn
(1− cos(hp))n,

since |cos(hp) − 1| is always strictly smaller than 3. This expression leads to the following
inequality

∣

∣

∣

∣

fh(p) +
p2

2

∣

∣

∣

∣

≤
∣

∣

∣

∣

p2

2
− 1− cos(hp)

h2
− (1− cos(hp))

2

6h2

∣

∣

∣

∣

+
3

h2

∞
∑

n=3

1

3nn
|1− cos(hp)|n.(16)

In order to obtain a bound for the infinite series in (16) we should recall that limh→0 hK(h)m = 0

for any m ∈ N, which implies that hp < 1 for p ∈ [−K(h), K(h)] and all small h. Therefore
we find that |1− cos(hp)|≤ h2p2

2 , since the error of a partial sum of an alternating series whose

elements form a monotonically decreasing sequence is bounded above by the absolute value of

the first element in the series after the partial sum. This implies the following inequalities

3

h2

∞
∑

n=3

1

3nn
|1− cos(hp)|n ≤ 3h4p6

∞
∑

n=0

(

h2p2

6

)n

≤ 6h4p6.(17)

The last inequality in (17) is valid for small values of the spacing h, which guarantees that the

geometric series is bounded above 2.
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We are now left with the task of estimating the first summand on the right-hand side of (16),

i.e. G(h) :=
∣

∣

∣

p2

2
− 1−cos(hp)

h2
− (1−cos(hp))2

6h2

∣

∣

∣. To that end we recall the following decomposition

of the cosine:

1− cos(hp) = h
2p2

2
+ (hp)4Sh(p) where Sh(p) :=

∞
∑

n=2

(−1)n−1 (hp)
2n−4

(2n)!
.

Substituting this expression into the definition of G(h) we find

G(h) =

∣

∣

∣

∣

∣

h2p4

4!
+ h4p6

∞
∑

n=3

(−1)n−1 (hp)
2n−6

(2n)!
− 1

6h2

(

h4p4

4
+ (hp)6Sh(p) + (hp)

8Sh(p)
2

)

∣

∣

∣

∣

∣

≤ h4p6





∞
∑

n=3

|hp|2n−6
(2n)!

+
1

6

∞
∑

n=2

|hp|2n−4
(2n)!

+ h2p2

( ∞
∑

n=2

|hp|2n−4
(2n)!

)2




≤ G0h
4p6,(18)

for some constant G0 and all small h. Inequality (18) holds because the convergent geometric

series
∑∞
n=0 (hp)

2n, whose value is below 2 for small h, dominates each of the infinite series

above. Substituting inequalities (17) and (18) into (16) and defining C := G0 + 6 proves the

claim.

We can now estimate the integral A1(h). The elementary fact e
x − 1 ≤ 2x, which is valid for

small non-negative x, tells us that, for small values of h, (14) implies the following estimate

A1(h) ≤ h42σ2TC

∫ K(h)

−K(h)
p6e−

p2

2 σ
2Tdp ≤ A01h

4,(19)

for some positive constant A01.

It is clear from figure 3 that the function fh(p) is decreasing on the interval [0,
π
h
]. The

quantity A2(h) is therefore bounded above by the expression
π
h
efh(K(h))σ

2T . Recall that by

definition K(h) was set to 1
σ
√
T

√

10 log(1/h). Since our claim implies that the following holds

fh(p) ≤
∣

∣

∣fh(p) +
p2

2

∣

∣

∣− p2

2
≤ Ch4p6 − p2

2
for p ∈ [−K(h), K(h)], we can conclude that

A2(h) ≤
π

h
eCσ

2Th4K(h)6e−
K(h)2

2 σ2T ≤ π

h
2h5 = 2πh4.(20)

The second inequality in (20) follows directly from the definition of K(h) and the property

limh→0 h4K(h)6 = 0.

We are now left with the easy task of estimating the decay rate for A3(h). A straightfor-

ward application of L’Hospital’s rule implies that A3(h) is bounded above by e
−K(h)

2

2 σ2T . By

substituting the definition of K(h) we conclude that

A3(h) ≤ h5.(21)

Inequality (13), together with (19), (20) and (21), now yields the necessary convergence

estimate and thus proves the first part of the theorem.

We are now left with the task of showing that the rate of convergence cannot be faster than

O(h4). We will do this by assuming that the difference D(h) converges to zero at the rate

O(h4f(h)) for some nonconstant function f(h), such that limx→0 f(h) = 0, and then showing

that this assumption leads to contradiction.
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Note that if we redefine K(h) := 1
σ
√
T

√

12 log(1/h), the same calculation as above implies

that the integrals A2(h) and A3(h) converge to zero at least at the rate O(h
5). Under our current

assumptions this implies that the integral

A1(h) = 2

∫ K(h)

0

∣

∣

∣

∣

e

(

fh(p)+
p2

2

)

σ2T − 1
∣

∣

∣

∣

e−
p2

2 σ
2T dp

tends to zero at the rate of O(h4g(h)), where g(h) = max{f(h), h}, since it can be bounded
above by a linear combination of D(h), A2(h) and A3(h). On the other hand it is not hard to

see that the following holds

fh(p) +
p2

2
=
h4p6

1080
+ h6p8k(hp),

where k : (−ǫ, ǫ)→ R is an infinitely differentiable function defined on an interval containing zero

(i.e. ǫ > 0) and has the key property limx→0 k(x) = 0. The elementary inequality ex − 1 ≥ x,
valid for all real numbers x, implies the following

1

h4

(

e

(

fh(p)+
p2

2

)

σ2T − 1
)

≥ σ2T
(

p6

1080
+ h2p8k(hp)

)

≥ σ2T p6

2 · 1080
for all small h and p ∈ [0, K(h)]. The following calculation yields a contradiction

1

h4g(h)
A1(h) ≥

σ2T

g(h)

∫ K(h)

0

p6

2 · 1080e
− p22 σ2Tdp,

since the last integral clearly converges to a finite positive value, while the limit limh→0 g(h)

equals 0. This concludes the proof of the theorem.
�

4. Conclusion

In this paper we examined the convergence rate of the probability density function of a random

walk on a trinomial tree to the density of a Brownian motion with drift. We found that the rate

of convergence is precisely of the order O(h4) and no faster, the parameter h being the distance

between the neighbouring nodes of the tree at each time-step.

From the point of view of pricing theory, this result can be interpreted in terms of the con-

vergence of the prices of Arrow-Debreu securities. An Arrow-Debreu security is an option whose

payoff at some maturity T is the Dirac delta function concentrated at a given point of the do-

main of the underlying process. It is clear that the probability density function can be viewed

as a non-discounted value of such an option and that theorem 3.1 can therefore be viewed as a

convergence result for securities with a very singular payoff. This should be contrasted with the

well-known fact (see for example (Heston & Zhou 2000)) that the smoothness of the payoff func-

tion is crucial for proving the convergence estimates for discretization schemes such as trinomial

trees and PDE methods.

Appendix A. Spectral representations for bounded linear operators

The general references for this section are (Reed & Simon 1980) and (Huston & Pym 1980).

See also appendices in (Albanese & Mijatović 2006). Let us start with some basic definitions.
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Definition. Let H be a vector space equipped with an inner product, 〈·, ·〉H : H × H → C,

which gives rise to the norm on H defined as ‖x‖ :=
√

〈x, x〉H, for every x ∈ H. The vector
space H is a Hilbert space if every Cauchy sequence in H, with respect to this norm, has a limit
in H.
In other words this definition says that a vector space is a Hilbert space if and only if it is

complete with respect to the norm induced by the inner product. An example of a Hilbert space,

denoted by L2(R, µ), is the set of equivalence classes of measurable functions f : R → C such

that
∫

R

f(x)f(x)dµ(x) <∞,

where the integral is a Lebesgue integral over the real line with respect to the positive measure µ

(for the proof of this fundamental fact see for example section 2.5 in (Huston & Pym 1980)). If

the measure µ is concentrated on a discrete set M in R then, since the set M must be countable

(a discrete subspace of a second countable topological space cannot have cardinality larger than

the set of natural numbers N) we can represent the above integral condition as

∑

m∈M
f(m)f(m)µ(m) <∞.(22)

The Hilbert space of all sequences (f(m))m∈M , satisfying this condition, is in this case denoted

by l2(M,µ) (or simply by l2(M), if it is clear what the measure µ is).

We will now introduce another basic concept which is of use to us in sections 2 and 3. A

subset S of the Hilbert space H is called orthonormal if the following holds 〈x, y〉H = δxy for
all x, y ∈ S. Here the function δxy denotes the familiar Kronecker delta. A subset S is an
orthonormal basis for H if it is not contained, as a proper subset, in any other orthonormal set
in H.
The reason orthonormal bases are important is because they allow us to express any element

y ∈ H as sum of a convergent series

y =
∑

x∈S
〈y, x〉Hy.(23)

See theorem II.6 in (Reed & Simon 1980) for the proof of this fundamental fact. It should be

noted that the convergence of the series in (23) is in the topology induced by the inner product

on H. This point is of particular relevance if H is a function space, because in that case it would
be tempting to conclude that the series converges, say, point wise, which is not necessarily true.

A function A : N →M, mapping a Hilbert space N into a Hilbert spaceM, is called a linear
operator if it is additive and invariant under scalar multiplication. If, in addition, the operator

A preserves the inner product (i.e. 〈Ax,Ay〉M = 〈x, y〉N for all x, y ∈ N ), then A is called a
unitary operator.

Definition. Let N andM be Hilbert spaces. A linear operator A : N →M is bounded if the

inequality ‖Ax‖M ≤ C‖x‖N holds for all x ∈ N and some positive real constant C.
Bounded operators come in ample supply. For example it follows directly form the definition

that any unitary operator is a bounded linear operator. It should also be noted that, if the
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Hilbert space N is finite-dimensional, all linear operators on N are necessarily bounded and
therefore continuous.

Definition. Let A be a linear operator on a Hilbert space H. The resolvent set of A is the set of
all complex numbers λ, such that the inverse (A−λIH)−1 exists and is a bounded operator on H
(the operator IH is the identity on H). The spectrum of A, denoted by σ(A), is the complement
(in C) of the resolvent set.

If the Hilbert space H is finite-dimensional, then the spectrum of A consists solely of the set
of eigenvalues of A. If, on the other hand, H is infinite-dimensional, then the spectrum σ(A) is
no longer necessarily discrete but is still a closed subset of the complex plane. In the case of a

unitary operator it is not difficult to see directly from the definition that every element of the

spectrum must have modulus equal to 1. An effective way of understanding any operator A on

a Hilbert space H is to understand its spectrum σ(A). In order to achieve the latter one usually
resorts to some sort of spectral representation.

Definition. Let A be a linear operator on a Hilbert space H. The spectral representation of
A consists of a pair (M,µ), where M is a measure space and µ is a positive measure on M ,

together with a unitary operator U : H → L2(M,µ) and a measurable function FA : M → C

such that the following holds

(UAU−1f)(x) = FA(x)f(x)

for all functions f in the Hilbert space L2(M,µ).

It follows from this definition that the spectral representation of an operator A, defined on a

finite-dimensional space, is equivalent to diagonalizing a matrix that represents the operator A in

some basis. If we assume that the matrix for A can be diagonalized and that its eigenvalues are

all distinct, then the ingredients of the spectral decomposition can be described easily as follows:

the space M consists of a discrete set of eigenvalues (i.e. M = σ(A)), µ is a positive measure

which assigns a non-zero weight to every point inM and the function FA is a natural inclusion of

M into C. The eigenvector corresponding to an element λ of M is simply the indicator function

of the set {λ} ⊂M .
It comes as no surprise that the spectral representation of an operator, as described in the

previous definition, might not exist, since many matrices are not equivalent to diagonal trans-

formations. Nevertheless in spectral theory, much like in linear algebra, there are sufficient con-

ditions which guarantee that a bounded linear operator possesses a spectral representation (see

chapters VII and VIII in (Reed & Simon 1980) and chapters 9 and 10 in (Huston & Pym 1980)).

We make no use of these important results in this paper, because we are able to find an explicit

spectral representation of the operator Ph∆t given in (5) of section 2, which defines the probability

kernel of our random walk.
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