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Abstract. This paper defines an approximation scheme for a solution of the Poisson equation

of a geometrically ergodic Metropolis-Hastings chain Φ. The approximations give rise to a

natural sequence of control variates for the ergodic average Sk(F ) = (1/k)
∑k
i=1 F (Φi), where

F is the force function in the Poisson equation. The main result of the paper shows that the

sequence of the asymptotic variances (in the CLTs for the control-variate estimators) converges

to zero. We apply the algorithm to geometrically and non-geometrically ergodic chains and

present numerical evidence for a significant variance reduction in both cases.

1. Introduction

A Central Limit Theorem (CLT) for an ergodic average Sk(F ) = 1
k

∑k
i=1 F (Ψi) of a Markov

chain (Ψk)k∈N, evolving according to a transition kernel P on a general state space X , is well-

known to be intimately linked with the solution F̂ of the Poisson equation

(PE(P, F )) PF̂ − F̂ = π(F )− F

with a force function F : X → R (see [MT09, Sec.17.4]), where π is the invariant probability

measure of Ψ on X , π(F ) =
∫
X F (x)π(dx) and PG(x) = Ex[G(Ψ1)] for any G : X → R. In fact,

the Poisson equation in (PE(P, F )) is of fundamental importance in many areas of probability,

statistics and engineering (see [MT09, Sec.17.7, p.459]). However, solving Poisson’s equation

for the chains arising in most applications, even for very simple functions F , is for all practical

purposes impossible (see e.g. relevant comments in [Hen97]).

This paper develops a novel approximation scheme for the solution F̂ of (PE(P, F )) for the

class of Metropolis-Hastings chains and (possibly discontinuous) force functions F satisfying

certain general assumptions. This class of Markov chains is of great importance in statistics

and other areas of science, see e.g. review papers [RR04, Tie94] and the references therein. In

this context, the main motivation for building approximations to F̂ is to reduce the asymp-

totic variance in the CLT of the Markov Chain Monte Carlo (MCMC) estimators based on

the Metropolis-Hastings algorithm. The remainder of the introduction is structured as follows:

Section 1.1 states our approximation algorithm, Section 1.2 describes the convergence criterion,

based on the asymptotic variance in the CLT, and states our main result and Section 1.3 relates

our result to the relevant literature and describes the structure of the paper.
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1.1. Algorithm. A potential direct approximation approach for computing F̂ , based on the

Poisson equation (PE(P, F )) itself, would suffer from at least two problems: (1) in discrete

time, the transition kernel P is typically non-local, implying that the value of the solution

F̂ at any point in the state space X may depend on the values of F̂ at all other points of

the state space (rather than only on the points near by), and (2) the value of the constant

π(F ) is a priori unknown. Our proposed algorithm circumvents these issues by exploiting the

probabilistic structure underpinning the Poisson equation in (PE(P, F )). More precisely, the

approximation of F̂ is based on the weak approximation of the chain Ψ by a sequence of “simpler”

Markov chains (converging in law to Ψ), such that the solutions of the Poisson equations for the

approximating chains can be characterised algebraically. Our approximation of F̂ is expressed in

terms of the numerical solution of these linear-algebraic equations. The finite state Markov chain

underpinning our algorithm mimics the behaviour of Ψ as follows: its state space is a partition

{J0, J1, . . . , Jm} of the state space X and its transition matrix consists of the probabilities of Ψ

jumping from an element in Ji into the set Jj .

Algorithm

Data: Transition kernel P, function F , partition {J0, J1, . . . , Jm} of X and a

representative aj ∈ Jj for each j ∈ {0, 1, . . . ,m}.
Result: Approximate solution F̃ to the Poisson equation in (PE(P, F )).

(I) Define a matrix A ∈ R(m+1)×(m+1) with entries Aij , where i, j ∈ {0, 1, . . . ,m} and

Aij :=

P(ai, Jj), if i 6= j;

−
∑

k∈{0,...,m}\{i} P(ai, Jk), if i = j;

(II) Replace the first column of A by a column of ones: Ai0 := 1 , i = 0, . . . ,m;

(III) Define a vector f ∈ Rm+1 with entries fj := F (aj), j = 0, . . . ,m;

(IV) Solve Af̂ = −f to find f̂ ∈ Rm+1;

(V) Define F̃ :=
∑m

j=1 f̂j1Jj ;

This approximation algorithm is naturally phrased for a general transition kernel P, with

f̂ in step (IV) being the solution of the Poisson equation for the approximating chain. The

convergence analysis under the precise assumptions on the partition of the state space, stated

in Section 2, will be carried out for the Metropolis-Hastings kernel P (see (MH(q, π)) below).

Numerical examples and the implementation of the algorithm are discussed in Section 5 below.

1.2. Convergence. In order to specify the convergence criterion for the successive approxima-

tions of F̂ produced by the Algorithm, assume that the random sequence (Sk(F ))k∈N satisfies

the law of large numbers (LLN), limk→∞ Sk(F ) = π(F ) a.s., and the CLT

(CLT(Ψ, F ))
√
k (Sk(F )− π(F ))

d−→ σF ·N(0, 1) (as k →∞)

where N(0, 1) is a standard normal distribution and σ2
F is a positive constant known as the

asymptotic variance. Put differently, the variance of the estimator Sk(F ) is approximately

equal to σ2
F /k. It is hence intuitively clear that if σ2

F is large, which occurs in applications
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particularly when F has super-linear growth (as σ2
F ∝ Varπ(F ), see e.g. [RR04, Sec.5] and

the references therein), the variance of the estimator Sk(F ) will also be big, requiring a large

number of steps k for convergence. In contrast, imagine we knew the solution F̂ of the Poisson

equation (PE(P, F )) and could evaluate the function PF̂ − F̂ . Then the estimator given by the

ergodic average Sk(F+PF̂−F̂ ) (for any k ∈ N) would be equal to the constant π(F ) for any (not

necessarily stationary) path of the chain Ψ, i.e. its variance vanishes for a deterministic starting

point π-a.e. and a π-integrable F in (PE(P, F )). As mentioned above, solving (PE(P, F ))

is not feasible, but a good approximate solution F̃ to (PE(P, F )) could lead to a significantly

reduced asymptotic variance (σ2
F+U � σ2

F ) in the CLT(Ψ, F + U), where U = PF̃ − F̃ (and

hence π(F + U) = π(F )). This would reduce the error of the estimator Sk(F + U) (cf. figures

in the examples of Section 5).

This method of variance reduction is well-known and has been developed in various Markovian

settings [AHO93, Hen97, HG02, HMT03]. Its applications in stochastic networks theory are

described in [Mey08, Ch. 11], while applications in statistics for the random scan Gibbs sampler

were developed in [DK12]. However, to the best of our knowledge, no systematic approach

capable of (at least theoretically) reducing the asymptotic variance arbitrarily for a general

class of discrete-time (e.g. Metropolis-Hastings) Markov chains has been developed so far.

For example, [DK12] guesses the function G that solves (PE(P, F )) in the special case of the

random scan Gibbs sampler with a multivariate normal target distribution and the force function

F (x) = x. It then constructs control variates of the form PG̃− G̃, where G̃ is releated to G, for

other target distributions and the same F without specifying a procedure to arbitrarily reduce,

algorithmically improve or otherwise analyse the achieved variance reduction.

The main contribution of the present paper is to prove that successive applications of the Al-

gorithm can produce approximations F̃ to the solution of the Poisson equation for a Metropolis-

Hastings chain Φ on Rd (with an invariant measure π and a transition kernel P in (MH(q, π))),

such that the asymptotic variance in the CLT(Φ, F + PF̃ − F̃ ) is arbitrarily small for a large

class of π-a.e. continuous functions F : Rd → R. By [GM96, Thm 2.3], the Poisson equation

in (PE(P ,F )) possesses a solution if we assume that P satisfies a geometric drift condition with

a drift function V (see Assumptions A1-A3 below for the precise formulation) and that the

force function F is globally bounded by a positive multiple of V . A drift function V in this

context is by definition strictly positive and typically “bowl” shaped, i.e. it takes “uniformly”

large values on the complements of large compact sets. In order to improve arbitrarily the

quality of the approximate solution produced by the Algorithm, assume we have a sequence(
Jn = {Jn0 , . . . , Jnmn}

)
n∈N of partitions of Rd, such that the set Rd \ Jn0 = ∪mnj=1J

n
j is bounded

for every n ∈ N. Moreover, assume that the diameter of Jnj (for any 1 ≤ j ≤ mn) tends to zero

and infx∈Jn0 V (x) tends to infinity, as n → ∞. The following theorem gives the main result of

the paper (for the precise formulation of the assumptions see Theorem 2.4 in Section 2):

Theorem 1.1. For each n ∈ N, let F̃n : Rd → R be the function obtained by the Algorithm with

input: P , F , Jn and representatives (anj )0≤j≤mn (i.e. anj ∈ Jnj ) chosen appropriately. Let σ2
n

denote the asymptotic variance in CLT(Φ, F + PF̃n − F̃n). Then it holds that limn→∞ σ
2
n = 0.
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It is clear that the Algorithm does not require the chain Φ to be reversible. We stress here

that, likewise, the proof of the main result relies only on the weak approximation of the kernel

P in (MH(q, π)) and does not use its reversibility. The precise condition on the choice of

representatives in Theorem 1.1 is given in Section 2.2 (see Definition 2.2) and is, by Remark 2.4,

a mild technical requirement easily satisfied in applications. The proof of our main result

depends crucially on two ingredients: (i) the uniform (in n ∈ N) convergence to stationarity of

the approximating Markov chains, a fact based on the deep results [MT94, Th. 2.3] and [Bax05,

Th. 1.1] in the theory of general Markov chains, and (ii) an a priori bound of the solution

of (PE(P, F )) given in [GM96, Thm 2.3]. For an overview of the proof see Section 3.1.

A natural question arising from Theorem 1.1 is about the rate of decay of the sequence

of asymptotic variances σ2
n → 0. Theorem 4.1 below gives an upper bound on this rate. It

transpires that, under certain general integrability conditions, the decay is governed by the

greater of the two quantities: the mesh of the partition {Jn1 , . . . , Jnmn} of the bounded set Rd\Jn0
and the integral π(V 21Jn0 ). This result, which we hope is of independent interest, can be used

in applications as a guide for balancing the size of the bounded set Rd \ Jn0 and the mesh of

its partition {Jn1 , . . . , Jnmn}. Furthermore, in the case of random walk Metropolis chains studied

in [RT96a, JH00], Theorem 4.1 yields the rate of decay expressed in terms of the target density

π under easier to check sufficient conditions involving π only (see Proposition 4.2).

1.3. Literature overview. The construction of control variates using the function PG − G,

where G is an approximation of the solution to the Poisson equation, goes back to the PhD

thesis [Hen97]. This approach, extended in [HG02, HMT03] and applied in the context of

stochastic networks [Mey08], is in spirit close to ours as the construction of G depends on solving

Poisson’s equation for a related Markov process. The definition of the related Markov process in

these contexts relies on the particular model under consideration and it is not immediately clear

how to transfer the construction to a more general setting. In contrast, the Algorithm, based

on the weak approximation by simple Markov chains, can be applied at least in principle to any

discrete time Markov chain with very little modification. Analogous weak approximation ideas

have been applied in continuous time in the context of Brownian motion [Mij07], Lévy [MVJ14]

and Feller [MP13] processes.

When approximately solving Poisson’s equation, one typically chooses basis functions, either

by picking a commonly used basis (e.g. [DK12]) or using insight into the structure of the un-

derlying problem (e.g. [Hen97]), and then seeks to represent the solution to Poisson’s equation

as a linear combination of these basis functions (see [DK12] and the relevant references for a

description of this general methodology). In all cases known to us, thus obtained control variates

depend in some way on the quantities they are supposed to estimate (recall that π(F ) features

in (PE(P, F ))), therefore having to rely on their estimation by more basic methods using the

sampled path of the chain. Hence, even though they are typically consistent, the resulting es-

timators introduce a bias even if the chain is started from stationarity. Our method is based

purely on the weak approximation of the Metropolis-Hastings chain and does not require an a



ON THE POISSON EQUATION FOR METROPOLIS-HASTINGS CHAINS 5

priori estimate of π(F ) in order to construct the control variate, as all the necessary information

is contained in the transition matrix approximating the kernel P in (MH(q, π)) (cf. Remark 5.2

in Section 5). As a consequence, when the chain is started in stationarity, the method based on

the Algorithm remains unbiased.

The reminder of the paper is organised as follows. Section 2 describes our assumptions, gives

examples of widely used Metropolis-Hastings chains satisfying these assumptions and formulates

the full version of our main result (Theorem 2.4). In Section 3 we prove Theorem 2.4. The

structure of the proof is given in Section 3.1, while Sections 3.2, 3.3, 3.4 and 3.5 carry out the

steps. Section 4 formulates and establishes an upper bound on the rate of decay of the asymptotic

variance for the Algorithm. Section 5 applies the Algorithm to specific geometrically and non-

geometrically ergodic chains and quantifies numerically the variance reduction. It also discusses

the construction of the matrix A in the Algorithm. Section 6 concludes the paper.

2. Assumptions and the main result

2.1. Setting. Let π be a density function of a probability measure on Rd with respect to the

Lebesgue measure µLeb and let q : Rd × Rd → R be a transition density function, i.e. for every

x ∈ Rd, the function y 7→ q(x, y) is a density on Rd. The idea behind the dynamics of a

Metropolis-Hastings chain is to propose a move from a density q(x, ·) to a new location, say y,

and accept it with probability

α(x, y) :=

min
(

1, π(y)q(y,x)
π(x)q(x,y)

)
, π(x)q(x, y) > 0,

1, π(x)q(x, y) = 0.

The Markov transition kernel P (x, dy) for this dynamics is given by the formula

(MH(q, π)) P (x, dy) := α(x, y)q(x, y)dy +

(
1−

∫
Rd
α(x, z)q(x, z)dz

)
δx(dy),

where δx is Dirac’s measure centred at x, and the Markov chain (Φk)k∈N generated by it is known

as the Metropolis-Hastings chain (see [MRR+53, Has70]). In this context, π is termed a target

density and q a proposal density. It is easy to see that the chain Φ is reversible (i.e. it satisfies

π(x)dxP (x, dy) = π(y)dyP (y, dx)) and hence stationary (i.e.
∫
Rd P (x, dy)π(x)dx = π(y)dy)

with respect to π. The measure π(x)dx is also known as the invariant probability measure for

the chain Φ. Throughout the paper we assume that the kernel P in MH(q, π) satisfies the

following assumptions:

A1: There exists a compact set CV ⊂ Rd, positive constants λV < 1, κV and a π-integrable

function V : Rd → [1,∞) mapping bounded sets to bounded sets, having bounded sub-

level sets (i.e. V −1 ([0, c]) is bounded ∀c ∈ R) and satisfying

PV (x) ≤ λV V (x) + κV 1CV (x), ∀x ∈ Rd.

A2: The target density π : Rd → (0,∞) is continuous and strictly positive.

A3: The proposal density q : Rd ×Rd → (0,∞) is continuous, strictly positive and bounded.
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Remark 2.1. (i) The inequality in A1 is known as the geometric drift condition and is our

most important assumption. Under A1, we may without loss of generality assume that the

drift function V satisfies π(V 2) <∞, as we may work with
√
V instead of V . Indeed, the

geometric drift condition and Jensen’s inequality imply the inequalities

P (
√
V ) ≤

√
PV ≤

√
λV V + κV 1CV ≤

√
λV
√
V +

√
κV 1CV .

(ii) Assumptions A2 and A3 guarantee that Metropolis-Hastings chain Φ driven by P

in MH(q, π) is π-irreducible (i.e µLeb-irreducible), strongly aperiodic and positive Har-

ris recurrent (see [MT96, Lemmas 1.1, 1.2] and [Tie94, Thm 1, Cor. 2]). We refer the

reader to the monograph [MT09] for the definitions of these notions and the theory of

Markov Chains based on them. In our setting, their main relevance lies in the fact that,

since π is invariant for Φ, they imply the LLN for any π-integrable F [MT09, Thm 17.1.7]

and the CLT for any F with modulus bounded by a positive multiple of V (assuming

π(V 2) <∞) [MT09, Thm 17.4.4].

(iii) Assumptions A2 and A3 can be relaxed somewhat (their current form is chosen to simplify

the arguments in Sections 3 and 4). If the state space is an open subset of Rd, q, π
continuous µLeb-a.e., ∃εq > 0 such that q(x, y) > εq for all x, y in a neighbourhood of CV

(CV is the set in the drift condition in A1) and π bounded away from zero on compact

sets, then the main result, Theorem 2.4 below, remains valid. The only difference may be

that F̃n are well-defined only for all sufficiently large integers n.

(iv) Even if π is known only up to a normalising constant, the kernel P in (MH(q, π)) (and

hence the chain Φ) is uniquely defined, as it depends only on the ratio π(y)/π(x). As a

consequence the Algorithm may be applied even if only an unnormalised version of π is

known. Furthermore, Theorem 2.4 remains valid in this case.

2.2. Main result. Let the drift function V be as in A1 and define the function space

(1) L∞V :=
{
G : Rd → R; G measurable and ||G||V <∞

}
, where ||G||V := sup

x∈Rd

|G(x)|
V (x)

.

Note that L∞V equipped with the norm || · ||V is a Banach space (see [HLL99, Proposition 7.2.1]).

Remark 2.2. Since we are assuming π(V 2) < ∞ (cf. Remark 2.1), Assumption A1 implies

that every G ∈ L∞V satisfies the following: π(G2) < ∞, PG(x) is well defined for any x ∈ Rd

(where the transition kernel P is given in MH(q, π)), PG ∈ L∞V and π(PG − G) = 0. In

particular, for any F ∈ L∞V the LLN (for the chain Φ driven by P ) and the CLT(Φ,F ) hold

(see [MT09, Thms 17.1.7 and 17.4.4] respectively). Hence, for an arbitrary G ∈ L∞V , the CLT(Φ,

F + PG − G) holds with the same mean π(F ) as in CLT(Φ,F ), but a possibly (substantially)

different asymptotic variance σ2
F+PG−G. This motivates the following general definition.

Definition 2.1. Let Ψ be a Markov chain with a transition kernel P and F a measurable

function on its state space X . Let (Gn)n∈N be a sequence of measurable functions on X , such

that the CLT(Ψ, F + PGn − Gn) holds with the asymptotic variance σ2
n. We call (Gn)n∈N a

sequence of approximate solutions of Poisson’s equation PE(P, F ) if limn→∞ σ
2
n = 0.
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Remark 2.3. The function PGn − Gn does not change, if we shift Gn by a constant. Hence,

if (Gn)n∈N is a sequence of approximate solutions of Poisson’s equation PE(P, F ), then so is

(Gn + cn)n∈N for any sequence (cn)n∈N of real numbers. This observation will be useful in the

proof of Theorem 2.4, as solutions of Poisson’s equation are unique only up to a constant shift.

The remainder of the section is devoted to defining a sequence of approximate solutions for

the Metropolis-Hastings chain generated by P in MH(q, π). This requires the following concepts.

Definition 2.2. (a) Let J be a partition of Rd into measurable sets J0, J1, . . . , Jm, such that

∪mj=1Jj is bounded and µLeb(Jj) > 0 holds for all 0 ≤ j ≤ m. Let X = {a0, a1, . . . , am}
be a set of represntatives: aj ∈ Jj for all 0 ≤ j ≤ m. The pair X := (J, X) is called an

allotment and let m be the size of the allotment X.

(b) Let W : Rd → [1,∞) be a measurable function and X an allotment. W -radius and

W -mesh of the allotment X are, respectively, defined by

rad(X,W ) := inf
y∈J0

W (y),(2)

δ(X,W ) := max

(
max

1≤j≤m
sup
y∈Jj
|y − aj |, max

0≤j≤m
sup
y∈Jj

(W (aj)/W (y)− 1)

)
,(3)

where |x| denotes the Euclidean norm of any x ∈ Rd.
(c) A sequence of allotments (Xn)n∈N is exhaustive with respect to the function W if the

following limits hold: limn→∞ rad(Xn,W ) =∞ and limn→∞ δ(Xn,W ) = 0.

Remark 2.4. An allotment X is a partition of Rd, together with representative points (one in

each set), and J0 is the only unbounded set in the partition. For the W -radius of X to be large,

the union ∪mj=1Jj of all the bounded sets in the partition has to cover the part of Rd where W is

small. The W -mesh is a maximum of two quantities: the first is a standard mesh of the partition

{J1, . . . , Jm} of the bounded set R \ J0 = ∪mj=1Jj . The second quantity in (3) implies that for

the W -mesh to be small, representatives aj have to be chosen so that W (aj) and infy∈Jj W (y)

are close to each other, relative to size of W on Jj . Intuitively, if W (a0) is close to infy∈J0 W (y)

and W is continuously differentiable, then the second term in (3) is roughly equal to

max
1≤j≤m

sup
y∈Jj

(
(∇ logW (y))>(y − aj)

)
.

Thus, if W does not exhibit super-exponential growth, the representatives a1, . . . , am can be

chosen arbitrarily.

Proposition 2.3. Let W : Rd → [1,∞) be a continuous function with bounded sublevel sets.

Then an exhaustive sequence of allotments with respect to W exists.

Remark 2.5. The idea behind the proof of Proposition 2.3 is to use the uniform continuity of

W on the set W−1
(
(−∞, rn)

)
(for a sequence rn ↑ ∞) to define the n-th partition and its

representatives. For a detailed proof see Appendix A below.



8 ALEKSANDAR MIJATOVIĆ AND JURE VOGRINC

Given the transition kernel P in MH(q, π) and an allotment X = (J, X), we define a stochastic

matrix pX with entries (0 ≤ i, j ≤ m):

(4) (pX)ij := P (ai, Jj) =


∫
Jj
α(ai, y)q(ai, y)dy if i 6= j

1−
∫
Rd\Ji α(ai, y)q(ai, y)dy if i = j.

Remark 2.6. Assumptions A2, A3 and Definition 2.2(a) (µLeb(Jj) > 0 for all 0 ≤ j ≤ m) imply

that all entries of pX are strictly positive. Hence the chain on the state space X, driven by pX, is

irreducible, recurrent, aperiodic and admits a unique invariant probability measure. Moreover,

Poisson’s equation for pX and any force function on X possesses a solution, unique up to the

addition of a constant function (see [MS02, Theorem 9.3]).

We can now state our main result.

Theorem 2.4. Let the transition kernel P in MH(q, π) satisfy A1-A3 for a drift function V

with π(V 2) <∞. Let F ∈ L∞V be continuous π-a.e. and let (Xn = (Jn, Xn))n∈N be an exhaustive

sequence of allotments with respect to V . For each n ∈ N define pn := pXn and let fn : Xn → R
be the restriction of F to Xn. Take f̂n to be the unique solution of Poisson’s equation PE(pn,

fn), which satisfies f̂n(an0 ) = 0. For each n ∈ N define a function F̃n : Rd → R by the formula

F̃n(x) :=

mn∑
j=1

f̂n(anj )1Jnj (x) ∀x ∈ Rd.

Then, (F̃n)n∈N is a sequence of approximate solutions of Poisson’s equation PE(P ,F ) and, for

every n ∈ N, the output of the Algorithm with input P , F and Xn is well defined and equals F̃n.

We conclude this section by recalling well-known classes of examples of Metropolis-Hastings

chains that satisfy Assumptions A1–A3 of Theorem 2.4.

Example 2.1. Random walk Metropolis in R: the proposal density takes the form q(x, y) =

q∗(y − x) for some density q∗ : Rd → R. In [MT96] it is shown that geometric ergodicity of Φ

(see [RR04, Sec. 3.4] for definition and properties) is essentially equivalent to the tails of the

target π being exponential or lighter. More precisely, in [MT96] the following class of target

densities on R was introduced: π is log-concave in tails if it is positive everywhere and there exist

positive constants β and c such that π(y)
π(x) ≤ e−β|y−x| for all y > x > c or y < x < −c. If π1 is

log-concave in tails and q∗1 : R→ (0,∞) a positive, continuous, symmetric (i.e. q∗1(x) = q∗1(−x))

density satisfying q∗1(x) ≤ be−βx (for some constant b > 0 and all x ∈ R), then [MT96, Thm 3.2]

implies that for any 0 < s < β, the transition kernel P1 in MH(q1, π1) (with the proposal

q1(x, y) = q∗1(y−x)) satisfies A1 with the drift function V (x) = es|x|. Hence, P1 satisfies A1-A3.

Example 2.2. Random walk Metropolis in Rd: this example is based on [RT96a] and [JH00].

If the proposal density q∗2 : Rd → R is bounded away from zero in some neighbourhood of the

origin and the target π2 is positive, continuously differentiable and

(5) lim
|x|→∞

x

|x|
· ∇(log π2)(x) = −∞ and lim sup

|x|→∞

x

|x|
· ∇π2(x)

|∇π2(x)|
< 0
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hold, where ∇f denotes the gradient of a differentiable function f : Rd → R, then the transition

kernel P2 in MH(q2, π2), with q2(x, y) = q∗2(y − x), satisfies a geometric drift condition with the

drift function V (x) = cπ
−1/2
2 (x) (for some constant c that ensures V ≥ 1), see [JH00, Thms 4.1

and 4.3]. Assuming further that q∗2 is continuous, strictly positive and bounded, the transition

kernel P2 satisfies A1-A3. Intuitively, the target densities satisfying (5) decay uniformly at a

sub-exponential rate along any ray from the origin and the radial projection from the level sets

{π = ε} ⊂ Rd to the unit sphere in Rd is one-to-one for all sufficiently small ε > 0. In particular

a density proportional to e−p(x), where p = pk + pk−1 is a polynomial of order k (pk−1 is a

polynomial of degree at most k− 1 and pk consists of the k-th order terms in p) and pk(x)→∞
as |x| → ∞, satisfies (5) (see [JH00, Theorem 4.6]).

Example 2.3. Metropolis adjusted Langevin chain (MALA): the proposal process is a Markov

chain on Rd with transition density

q3(x, y) = (2πh)−d/2 exp
(
−|y − x− h

2
∇(log π3)(x)|2/2h

)
,

which incorporates information about the target π3. Put differently, starting from x the proposal

follows a normal distribution with mean x+ 1
2h∇(log π3)(x) and covariance hId for some constant

h > 0. In [RT96b], sufficient conditions for π3 are given, such that A1 is satisfied with the

drift function V (x) = es|x| (for any sufficiently small s > 0). These conditions involve the

acceptance region, where moves are accepted a.s., and the behaviour of the mean of the proposal

x+ 1
2h∇(log π3)(x) as |x| → ∞ (see [RT96b, Thm 4.1]). Hence (MH(q3, π3)) satisfies A1-A3.

Example 2.4. The Metropolis-Hastings chain in this example satisfies the generalised assump-

tions mentioned in Remark 2.1(iii), but not A1-A3. Consider an exponential target π4(x) = e−x

on (0,∞) and a proposal q4(x, y) = 1
x+1−max(0,x−1)1[max(0,x−1),x+1](y). Pick s ∈ (0, 1), define

V (x) := esx, and note that the kernel P4 in MH(q4, π4) satisfies

P4V (x) = λV (x) for any x > 1, where λ := 1− 1

2

∫ 1

0

(
1− e−sz

) (
1− e−(1−s)z

)
dz.

It is hence clear that P4V (x) ≤ λV (x) + κ1[0,1](x) holds ∀x > 0, where κ := e2s > 0 and

λ ∈ (0, 1). Furthermore, q4 is µLeb-a.e. continuous and q4(x, y) ≥ 1
2 for all x, y ∈ [0, 1].

3. Proof of Theorem 2.4

3.1. Overview of the proof. The proof of Theorem 2.4 is in two parts. In the first part we

establish sufficient conditions for a sequence of functions to form a sequence of approximate

solutions to Poisson’s equation in the sense of Definition 2.1. This part of the proof, given in

Section 3.2 below, relies on an a priori bound of the solution of the Poisson equation given in

the main result of [GM96, Thm 2.3].

The second part of the proof is more involved. It consists of verifying that functions (F̃n)n∈N,

defined in Theorem 2.4, indeed satisfy the sufficient conditions from Section 3.2 (see Sections 3.3

and 3.4 below). The key underlying fact needed for this purpose is that the family of the ap-

proximating finite state Markov chains driven by the stochastic matrices (pn)n∈N, defined in
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Theorem 2.4 (cf. (4)), converge to their respective stationary distributions (πn)n∈N uniformly

in n ∈ N. This step is made possible by the deep results in [MT94, Theorem 2.3] and [Bax05,

Theorem 1.1] for a general state space Markov chain, which show that the constants appearing

in the geometric ergodicity estimate depend only and explicitly on the constants in the drift,

minorisation and strong aperiodicity conditions for that chain (see Theorem 3.4 below for the

precise statement of this result). In Section 3.3 we establish the uniform convergence to station-

arity of the sequence of our approximating chains (see Corollary 3.5 below) by proving that they

satisfy the drift, minorisation and strong aperiodicity conditions uniformly in n ∈ N (i.e. the

constants in these inequalities do not depend on n, see Proposition 3.3) and applying [Bax05,

Theorem 1.1].

In Section 3.4 we show that the sequence (F̃n)n∈N from Theorem 2.4 satisfies Definition 2.1.

This proof relies heavily on the uniform convergence to stationarity mentioned above. However,

in order to control the asymptotic variance in the CLT(Φ, F + PF̃n − F̃n), the proof requires a

further weak approximation by a family of finite state Markov chains with stationary distribu-

tions that are explicit in the target density π (see (19) for the definition of these Markov chains

and their invariant distributions), which is not the case for the stationary laws πn of the chains

generated by the stochastic matrices pn. The introductory paragraphs of Section 3.4 describe

how this new family of chains is used in the proof of Theorem 2.4.

The final step in the proof of Theorem 2.4 consists of showing that the solution to Poisson’s

equation PE(pn,fn) coincides with the corresponding output of the Algorithm. This argument

is given in Section 3.5. We conclude this section with a remark on notation.

Remark 3.1. Throughout Section 3 we assume that the transition kernel P in MH(q, π) satisfies

Assumptions A1-A3 for a drift function V with π(V 2) < ∞ (cf. Remark 2.1(i)). In addition

to the notation used in Theorem 2.4, throughout the remainder of the section we will use the

following objects: a solution F̂ ∈ L∞V of PE(P ,F ) (which exists by Theorem 3.1), the restrictions

vn of the drift function V to the state space Xn and the unique invariant probability measure

πn of the stochastic matrix pn on Xn (see Remark 2.6).

3.2. Controlling the asymptotic variance. Let (Gn : Rd → R)n∈N be a sequence of functions

in L∞V . In this section we give sufficient conditions, in terms of the functions

(6) ∆n := PGn −Gn + F − π(F ),

for the asymptotic variance σn in the CLT(Φ, F +PGn−Gn) to converge to zero as n ↑ ∞. The

key tool we deploy is the deep result in [GM96] on the existence and uniqueness of solutions to

Poisson’s equation for general Markov chains. For ease of reference we recall [GM96, Prop. 1.1

and Thm 2.3] stated in our setting.

Theorem 3.1. Let P be a Markov kernel on X with unique invariant probability measure π.

Let V : X → [1,∞) be a measurable function, C ⊆ X a measurable set and λ < 1, κ positive

constants such that PV (x) ≤ λV (x) + κ1C(x) holds for all x ∈ X . Then there exists a positive

constant cV , such that for any force function F ∈ L∞V (defined as in (1)), Poisson’s equation
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PE(P, F ) admits a solution F̂ ∈ L∞V satisfying ||F̂ ||V ≤ cV ||F ||V . If F̂1 is any other π-integrable

solution of Poisson’s equation, then F̂ − F̂1 is a constant π-a.e.

The next result gives sufficient conditions for the functions (Gn)n∈N to form a sequence of

approximate solutions to Poisson’s equation. It is stated in the setting of Metropolis-Hastings

chains, but Proposition 3.2 holds for any Markov chain satisfying the assumptions of Theorem 3.1

with a virtually identical proof.

Proposition 3.2. Let (Gn)n∈N and F be elements of L∞V and, for ∆n in (6), assume that

lim
n→∞

π
(
∆2
n

)
= 0 and sup

n∈N
||∆n||V <∞.

Then (Gn)n∈N is a sequence of approximate solutions to PE(P , F ). Furthermore, there exists a

constant C0 > 0 such that σ2
n ≤ C0

√
π(∆2

n) for all n ∈ N.

Proof. For any n ∈ N, Remark 2.2 and the definition in (6) imply ∆n ∈ L∞V and π(∆n) = 0.

Theorem 3.1, applied to Poisson’s equation in PE(P ,−∆n), yields a function H ∈ L∞V , such that

PH −H = ∆n and ||H||V ≤ cV ||∆n||V ,

for a constant cV , which is independent of n. Note that Gn − F̂ also solves PE(P ,−∆n) by

the definition of ∆n in (6) and the fact that F̂ is a solution of PE(P ,F ). Since Gn − F̂ ∈ L∞V ,

Theorem 3.1 implies that there exists cn ∈ R such that the equality Gn − F̂ + cn = H holds

π-a.e. Note further that substituting Gn by Gn + cn in definition (6) does not alter the function

∆n. Hence, by Remark 2.3, we may assume that cn = 0. This implies the inequality∣∣(Gn − F̂ )(x)
∣∣ ≤ cV sup

n∈N
||∆n||V V (x) for all x ∈ Rd.

Squaring this inequality, integrating with respect to π, taking a supremum in n ∈ N and applying

the assumption in the proposition yields

(7) sup
n∈N

π
(

(Gn − F̂ )2
)
≤ c2

V π
(
V 2
)

sup
n∈N
||∆n||2V <∞.

The asymptotic variance σ2
G in CLT(Φ,G) can by [MT09, Theorem 17.4.4] be expressed in

terms of any solution Ĝ ∈ L∞V of Poisson’s equation PE(P ,G) as

σ2
G = π

(
Ĝ2 − (PĜ)2

)
.

Trivially, Gn − F̂ ∈ L∞V is a solution of PE(P , F + PGn −Gn). Hence it holds that

(8) σ2
n = σ2

F+PGn−Gn = π
(

(Gn − F̂ )2 − (P (Gn − F̂ ))2
)

.

Jensen’s inequality and the invariance of π imply

(9) π

((
P (Gn − F̂ )

)2
)
≤ π

(
P
(

(Gn − F̂ )2
))

= π
(

(Gn − F̂ )2
)

.

Let K := Gn − F̂ , L := P (Gn − F̂ ) and note that K − L = −∆n (by (6)), π(L2) ≤ π(K2) <∞
(by (7) and (9)) and π(K2 − L2) = σ2

n (by (8)). Furthermore, Cauchy’s inequality yields

π(K2 − L2) = π
(
(K − L)2

)
+ π(2L(K − L)) ≤ π

(
(K − L)2

)
+ 2

[
π
(
L2
)
π
(
(K − L)2

)] 1
2 ,
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which implies

σ2
n ≤ π(∆2

n) + 2

[
π(∆2

n) · sup
k∈N

π
(

(Gk − F̂ )2
)] 1

2

.

This, together with (7) and the assumption limn↑∞ π(∆2
n) = 0, concludes the proof. �

3.3. Uniform convergence to stationarity. A family of finite state Markov chains, corre-

sponding to the exhaustive sequence of allotments (Xn)n∈N (see Definition 2.2) and driven by

generator matrices pn = pXn (see (4) for definition), was introduced in the statement of The-

orem 2.4. The main aim of this section is to prove that these chains are geometrically ergodic

uniformly in n ∈ N. This constitutes a key step in the proof of Theorem 2.4 and is achieved

as follows: first, the uniform drift, minorisation and strong aperiodicity conditions in (13), (14)

and (15), respectively, are established. Second, the uniform convergence to stationarity is de-

duced from the general result on the convergence of Markov chains in [MT94, Thm 2.3] (see

also [Bax05, Thm 1.1]).

Before proving the uniform drift, minorisation and strong aperiodicity conditions, we intro-

duce a function an(·), mapping x ∈ Rd to the representative (in Xn) of its partition set, and

record its basic properties. For each n ∈ N, let an : Rd → Rd be defined by

(10) an(x) :=

mn∑
j=0

anj 1Jnj (x) for every x ∈ Rd,

where {Jn0 , . . . , Jnmn} is the partition and Xn = {an0 , . . . , anmn} are the representatives of the

allotment Xn. Since the sequence of allotments is exhaustive, the following limit holds:

(11) lim
n→∞

an(x) = x for every x ∈ Rd.

The definition of a V -mesh (see (3) in Definition 2.2) implies the inequality

(12) V (an(x)) = V (an(x))− V (x) + V (x) ≤ (1 + δn)V (x) for all n ∈ N and x ∈ Rd,

where we denote δn := δ(Xn, V ).

We are now ready to establish a family of geometric drift conditions, analogous to A1, and a

family of related minorisation and strong aperiodicity conditions for transition matrices pn = pXn

(given by (4)).

Proposition 3.3. Uniform drift, minorisation and strong aperiodicity conditions.

Let (Xn)n∈N be an exhaustive sequence of allotments with respect to the drift function V from

Assumption A1. For each n ∈ N, define a function vn : Xn → R on the set of representatives of

the allotment Xn by vn(anj ) := V (anj ), j ∈ {0, . . . ,mn}. Then there exists a compact set C ⊂ Rd

such that the following statements hold.

(a) There exist positive constants λ < 1, κ, such that the uniform drift condition holds:

(13) pnvn(anj ) ≤ λvn(anj ) + κ1C(anj ) ∀n ∈ N, ∀anj ∈ Xn.
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(b) Define Cn := Xn∩C, for each n ∈ N. There exist constants γ, γ̃ ∈ (0,∞) and a measure

νn, concentrated on Xn for each n ∈ N, such that the uniform minorisation condition,

(14) (pn)ij ≥ γνn
(
{anj }

)
∀n ∈ N, ∀i, j ∈ {0, 1, . . . ,mn} satisfying ani ∈ Cn,

and the uniform strong aperiodicity condition,

(15) γνn(Cn) ≥ γ̃ ∀n ∈ N,

hold.

Proof. (a) Fix an arbitrary n ∈ N and j ∈ {0, . . . ,mn}. By definition of the function an(·)
in (10), we find

pnvn(anj )− vn(anj ) =

∫
Rd

(
V (an(y))− V (anj )

)
α(anj , y)q(anj , y)dy.

By (12) we get V (an(y))−V (anj ) ≤ V (y)−V (anj )+ δnV (y) for every y ∈ Rd. The form of kernel

P in (MH(q, π)) and this inequality imply

pnvn(anj )− vn(anj ) ≤ PV (anj )− V (anj ) + δn

∫
Rd
V (y)α(anj , y)q(anj , y)dy

≤ PV (anj )− V (anj ) + δnPV (anj ) = (1 + δn)PV (anj )− V (anj ).

Since by definition V (anj ) = vn(anj ), the geometric drift condition in A1 implies

pnvn(anj ) ≤ (1 + δn)λV vn(anj ) + (1 + δn)κV 1CV (anj ).

Since limn→∞ δn = 0, if we define C := CV , λ := 1+λV
2 and κ := κV (1 + supn∈N δn), there exists

N0 ∈ N such that the drift condition in (13) holds for all n ≥ N0. Note that if we enlarge C

and increase κ, the uniform drift condition in (13) remains valid for all n it was valid for before

the modification. Finally, if N0 > 1, we enlarge C by all the representatives of the allotments

X1, . . . ,XN0 (finitely many points) and increase κ sufficiently, so that (13) also holds for all

n ∈ {1, . . . , N0 − 1}.
(b) Recall that by Definition 2.2(c), the sequence (rn := rad(Xn, V ))n∈N tends to infinity,

though perhaps not monotonically. Let D be an open ball of radius rD > 2 supn∈N δn in Rd.
Since D is a bounded set, by the definition of V -radius (see (2)) and Assumption A1, there exists

n0 ∈ N such that D ⊆
⋂
n≥n0

V −1
(
(−∞, rn)

)
. We now enlarge the compact set C, constructed

in part (a) of this proof, to contain the bounded set

(16)
( ⋃
n<n0

Rd \ Jn0
)
∪
⋂
n≥n0

V −1
(
[0, rn)

)
.

We may assume the set C is still compact, since the set in (16) is bounded, and hence the

uniform drift condition in (13) still holds.

Define a measure ν on the Borel σ-algebra of Rd by ν(B) := µLeb(B∩C)
µLeb(C)

for any measurable

set B. For each n ∈ N, define a measure on the set of representatives Xn by νn({anj }) := ν(Jnj ).

Define the constant γ := µLeb(C) infy,x∈C×C α(x, y)q(x, y) and note that it is strictly positive

by Assumptions A2 and A3 and Definition 2.2(a). For every n ∈ N and every 0 ≤ i, j ≤ mn,
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such that ani ∈ Cn, the form of the kernel P in (MH(q, π)) implies the minorisation condition

in (14):

(pn)ij = P (ani , J
n
j ) ≥

∫
Jnj ∩C

α(ani , y)q(ani , y)dy ≥ γν(Jnj ) = γνn
(
{anj }

)
.

We now establish the strong aperiodicity condition in (15). First assume that n ≥ n0, let

D′ be an open ball of radius rD
2 , with the same centre as D, and pick y ∈ D′. The definition

of the V -radius rn = rad(Xn, V ) in (2) implies D ∩ Jn0 ⊆ V −1
(
[0, rn)

)
∩ V −1

(
[rn,∞)

)
and

hence D ∩ Jn0 = ∅. Since the radius rD of the ball D is strictly greater than 2 supn∈N δn and the

inequality |y−an(y)| ≤ supn∈N δn holds, it follows that an(y) ∈ D ⊆ C. Hence, by definition (10),

it holds that D′ ⊆ ∪{j;anj ∈C}J
n
j and

νn(Cn) = νn (Xn ∩ C) = ν
(
∪{j;anj ∈C}J

n
j

)
≥ ν(D′) =

µLeb(D′)

µLeb(C)
> 0.

If n < n0, then it holds that Cn = Xn ∩ C ⊃ {anj : j = 1, . . . ,mn}, since C contains the set

in (16) and hence Rd \ Jn0 . Therefore we find νn(Cn) ≥ µLeb(R\Jn0 )

µLeb(C)
> 0. Hence (15) holds for the

positive constant

γ̃ :=
1

γ
min

{
µLeb(D′)

µLeb(C)
, min
n<n0

µLeb(R \ Jn0 )

µLeb(C)

}
.

This concludes the proof of the proposition. �

The following result for general state space Markov chains (see [MT94, Theorem 2.3] and

[Bax05, Theorem 1.1]) is essential for establishing the uniform geometric ergodicity of the Markov

chains generated by the transition matrices pn = pXn (see (4)). We state this result because it

plays a key role in the proof of Theorem 2.4.

Theorem 3.4. Let a transition kernel P on a general state space X satisfy the assumptions

of Theorem 3.1. In particular, assume there exist κ > 0 and λ ∈ (0, 1) such that ∀x ∈ X and

a measurable C ⊆ X we have PV (x) ≤ λV (x) + κ1C(x). Assume further ∃γ, γ̃ ∈ (0,∞) such

that the inequalities P(x,B) ≥ γν(B), ∀x ∈ C and all measurable B ⊆ X , and γν(C) ≥ γ̃ hold.

Then there exist constants ζ > 0, θ ∈ (0, 1), depending only on κ, λ, γ, γ̃, such that (recall the

definitinon of the V -norm ‖ · ‖V in (1))

sup
‖G‖V ≤1

∣∣∣PkG(x)− π(G)
∣∣∣ ≤ ζV (x)θk for all x ∈ X and k ∈ N ∪ {0}.

Proposition 3.3 and Theorem 3.4 allow us to control the convergence to stationarity of the

approximating chains, with transition matrices pn = pXn (defined in (4)), uniformly in n ∈ N.

Corollary 3.5. There exist positive constants ζ and θ < 1, such that the inequality

sup
‖g‖vn≤1

∣∣∣(pkng)(b)− πn(g)
∣∣∣ ≤ ζθkvn(b), for all b ∈ Xn, k ∈ N ∪ {0} and n ∈ N,

holds, where the notation is as in Proposition 3.3, πn is the unique invariant probability measure

for the Markov chain on Xn generated by the stochastic matirx pn (cf. Remark 2.6), the supre-

mum is taken over the functions g : Xn → R with the vn-norm, ||g||vn := supb∈Xn |g(b)|/vn(b),

bounded above by one and πn(g) denotes the integral (i.e. weighted sum) of g with respect to πn.
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Proof. Pick an arbitrary n ∈ N and note that, by Remark 2.6, there exists a unique station-

ary measure πn on the state space Xn. According to Proposition 3.3, the transition matrix

pn satisfies the drift condition in (13), the minoriation condition in (14) and the strong ape-

riodicity condition (15) with the constants κ, λ, γ, γ̃, which are independent of the choice of

n. Hence, by Theorem 3.4 applied to the transition kernel pn on the state space Xn, we have

sup‖g‖vn≤1

∣∣∣(pkng)(anj )− πn(g)
∣∣∣ ≤ ζ(n)vn(anj )θ(n)k for every k ∈ N ∪ {0} and anj ∈ Xn and some

positive constants ζ(n) ∈ (0,∞) and θ(n) ∈ (0, 1), which are in fact independent of n, as they

are only a function of κ, λ, γ, γ̃ from Proposition 3.3. This concludes the proof. �

3.4. A sequence of approximate solutions of Poisson’s equation PE(P ,F ). In this sec-

tion we prove that the functions (F̃n)n∈N, defined in Theorem 2.4 by F̃n =
∑mn

j=0 f̂n(anj )1Jnj , are

a family of approximate solutions of PE(P , F ) in the sense of Definition 2.1. The function ∆n,

defined in (6), that corresponds to the sequence (F̃n)n∈N, can be expressed as

(17) ∆n = P (F̃n − F̂ )− (F̃n − F̂ ),

where F̂ is a solution to PE(P , F ) with a finite V -norm (its existence under A1-A3 is implied

by Theorem 3.1). As we are assuming π(V 2) < ∞ (cf. Remark 2.1(i)), Proposition 3.2 implies

that (F̃n)n∈N is a family of approximate solutions of PE(P , F ) if the following conditions hold:

(18) sup
n∈N
||∆n||V <∞ and lim

n→∞
∆n = 0 π-a.e.

The first condition in (18) is implied by Proposition 3.6 below, which shows that F̃n, shifted

by a constant, has its V -norm bounded uniformly in n ∈ N. This result crucially depends on

the uniform convergence to stationarity of the approximating chains (see Corollary 3.5).

The second condition in (18) requires bounding |∆n| in (17) by a sum of three non-negative

terms (see Lemma 3.8 bellow) and controlling each of them separately. The first, given by

|F (x)−F (an(x))|, tends to zero by (11) since the force function F is assumed to be continuous

π-a.e. Proposition 3.6 and the Dominated Convergence Theorem (DCT) are applied to control

the second term, which is of the form |U(x)− U(an(x))| with U := PF̃n − F̃n. Controlling the

difference |πn(fn)−π(F )|, which arises naturally as the third term in the bound on |∆n|, is more

involved (here πn is the unique invariant measure on the state space Xn of the approximating

chain generated by the stochastic matrix pn and fn is the restriction of the force function F to

Xn). It requires constructing a further approximating chain (based on the transition kernel P )

with state space Xn and a transiont matrix p∗n, whose invariant distribution can be described

analytically in terms of the density π (see equation (19) below). Proposition 3.7, whose proof

depends on the uniform convergence to stationarity of the approximating chains driven by the

transition matrices pn (see Corollary 3.5), establishes the desired limit.

Proposition 3.6. Let functions F̃n, n ∈ N, be as defined as in Theorem 2.4. Then there exists

a positive constant ξ and a sequence of real numbers (cn)n∈N, such that the following inequality

||F̃n + cn||V ≤ ξ

holds for all n ∈ N.
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Proof. Pick an arbitrary n ∈ N. Since the force function F is in L∞V by assumption, its restriction

fn : Xn → R (fn(b) = F (b) for any b ∈ Xn) satisfies ||fn||vn ≤ ||F ||V , where vn is itself the

restriction of the drift function V to Xn and the vn-norm, ‖ · ‖vn , is defined in Corollary 3.5. By

the same corollary, the function f̄n : Xn → R, given by

f̄n :=

∞∑
k=0

(pknfn − πn(fn)),

is well defined and satisfies the inequality
∣∣∣∣f̄n∣∣∣∣vn ≤ ζ

1−θ ||fn||vn ≤
ζ

1−θ ||F ||V . Furthermore,

by [MT09, Thm. 17.4.2], the function f̄n solves Poisson’s equation PE(pn,fn). Since f̂n : Xn → R,

in the definition of F̃n, also solves PE(pn,fn), by Remark 2.6 there exists a constant cn ∈ R such

that f̂n + cn = f̄n.

Recall that F̃n =
∑mn

j=0 f̂n(anj )1Jnj , pick an arbitrary x ∈ Rd and note that definition (10)

implies F̃n(x) = f̂n(an(x)). Hence, we obtain∣∣∣F̃n(x) + cn

∣∣∣ = |f̄n(an(x))| ≤ ζ

1− θ
||F ||V vn(an(x)) =

ζ

1− θ
||F ||V V (an(x))

≤ ξV (x), where ξ :=
ζ

1− θ
(1 + sup

k∈N
δk)||F ||V

and the last inequality follows from (12). Since both x ∈ Rd and n ∈ N were arbitrary, this

implies the proposition. �

In order to analyse the behaviour of the limit in (18), we need to define a furhter approximating

Markov chain on Xn with the transition matrix p∗n and the invariant measure π∗n, given by

(19) (p∗n)ij :=

∫
Jni

π(x)

π(Jni )
P (x, Jnj )dx and π∗n

(
{anj }

)
:= π(Jnj ), for i, j ∈ {0, . . . ,mn},

respectively. Note that (p∗n)ij = Pπ[Φ1 ∈ Jni |Φ0 ∈ Jnj ], where Φ is the Metropolis-Hastings chain

we are analysing. It is clear from the definition in (19) that the equality π∗np
∗
n = π∗n holds.

Furthermore, if we define a function hn : Xn → R by

(20) hn(anj ) :=

∫
Jnj

π(x)

π(Jnj )
F (x)dx for anj ∈ Xn, it holds that π∗n(hn) = π(F ).

Proposition 3.7. The following inequalities hold for the measure π∗n defined in (19) and the

transition matrix pn of the approximating chain defined in Theorem 2.4 (cf. (4)):

(21)
∣∣(π∗n − πn)(fn)

∣∣ ≤ ζ||F ||V
1− θ

||π∗n − π∗npn||vn ,

where the constants θ ∈ (0, 1) and ζ > 0 and the measure πn are as in Corollary 3.5, and

‖π∗n − π∗npn‖vn ≤ (1 + sup
k∈N

δk)

∫
Rd×Rd

(
V (y) + V (x)

)
Zn(x, y)dy π(x)dx,(22)

where Zn(x, y) :=
∣∣α(an(x), y)q(an(x), y) − α(x, y)q(x, y)

∣∣ for any x, y ∈ Rd and the function

an(·) is given in (10) (see Remark 3.2(I) for the definition of ‖π∗n − π∗npn‖vn). Furthermore, the

following limit holds

lim
n→∞

|πn(fn)− π(F )| = 0.
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Remark 3.2. (I) For a signed measure µ on Xn, define its vn-norm to be ‖µ‖vn :=

sup‖g‖vn≤1 |µ(g)|, where µ(g) denotes the weighted sum (i.e. the integral) of the values of a

function g : Xn → R with weights given by µ. This defines the left-hand side of the inequality

in (22), which itself plays an important role in the proof of Proposition 3.7. Furthermore, it

is natural to define the dual normed vector spaces (L∞vn , || · ||vn) (analogous to L∞V in (1)) and

(M∞vn , ||·||vn) of functions on Xn (with the norm defined in Corollary 3.5) and signed measures on

Xn (with the norm defined above). Note that since Xn is finite, the vector spaces L∞vn and M∞vn
are isomorphic to the Euclidean space of dimension given by the cardinality of Xn. Furthermore,

any linear map B : L∞vn → L∞vn , g 7→ Bg, induces a linear map on the dual B∗ : M∞vn → M∞vn ,

µ 7→ B∗µ := µB (in this definition we interpret µ as a row vector and B as a matrix).

It is well known that the oparator norms conicide ‖B‖vn = ‖B∗‖vn .1 Indeed, for any b ∈ Xn,

the measure µb(f) := |f(b)|/vn(b) satisfies ‖µb‖vn = 1 and hence it holds that ‖Bg‖vn ≤ ‖B∗‖vn ,

where g ∈ L∞vn , ‖g‖vn ≤ 1, since |Bg(b)|/vn(b) = |µb(Bg)| = |(B∗µb)(g)| ≤ ‖B∗µb‖vn ≤ ‖B∗‖vn .
Hence, ‖B‖vn ≤ ‖B∗‖vn . To get the opposite inequality, note that ‖B∗µ‖vn ≤ ‖B‖vn for any

µ ∈ M∞vn with ‖µ‖vn ≤ 1, since |B∗µ(g)| = ‖B‖vn |µ(Bg/‖B‖vn)| ≤ ‖B‖vn for all g ∈ L∞vn with

‖g‖vn ≤ 1. Hence it holds that ‖B‖vn ≥ ‖B∗‖vn , implying the stated equality of the operator

norms. This fact, which holds in a much more general Banch space setting (see e.g. [HLL99,

Section 7]), plays an important role in the proof of Proposition 3.7.

(II) The following estimate holds for any point x ∈ Rd and all n ∈ N, y ∈ Rd:

(23) α(an(x), y)q(an(x), y) ≤ q(y, an(x))

π(an(x))
π(y) ≤ ηxπ(y), where ηx :=

supz,y∈Rd q(z, y)

infn∈N π(an(x))
.

By (11) and A2 we have 0 < inf{π(z) : |z − x| ≤ supk∈N δk} ≤ π(an(x)), where δk = δ(Xk, V )

(see Definition 2.2), for all sufficiently large n ∈ N. Thus, by A2 and A3, we have ηx ∈ (0,∞)

and the inequalities in (23), which will be used in the proofs of Proposition 3.7 and Theorem 2.4,

hold.

Proof of Proposition 3.7. We can estimate the difference |πn(fn) − π(F )| using the invariant

distribution π∗n of the chain driven by the stochastic matrix p∗n and the function hn, defined

in (19) and (20) respectively, as follows

|πn(fn)− π(F )| = |πn(fn)− π∗n(fn) + π∗n(fn)− π∗n(hn)|

≤ |(πn − π∗n)(fn)|+ |π∗n(fn − hn)|.(24)

We will prove that both terms on the right-hand side converge to zero as n→∞. The definitions

of π∗n and hn (in (19) and (20) above) and the function an(·) (see (10)) imply that the second

term on the right-hand side of (24) takes the form

π∗n(fn − hn) =

mn∑
j=0

π(Jnj )

(
F (anj )−

∫
Jnj

π(x)

π(Jnj )
F (x)dx

)
=

∫
Rd

(
F (an(x))− F (x)

)
π(x)dx.

1Recall that ‖B‖vn = sup{‖Bg‖vn : g ∈ L∞vn , ‖g‖vn ≤ 1} and ‖B∗‖vn = sup{‖B∗µ‖vn : µ ∈ L∞vn , ‖µ‖vn ≤ 1}.
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Since F is continuous π-a.e., the integrand converges to zero π-a.e. by (11). Furthermore, for

any x ∈ Rd it holds that∣∣F (an(x))− F (x)
∣∣ ≤ ∣∣F (an(x))

∣∣+
∣∣F (x)

∣∣ ≤ ||F ||V (V (an(x)) + V (x))

≤ ||F ||V (2 + sup
k∈N

δk)V (x),

where the last inequality follows from (12). Therefore, by the DCT (recall that by the assumption

in A1 we have π(V ) <∞), the second term in (24) indeed converges to zero.

Establishing the convergence of the first term on the right-hand side in (24) is more involved.

We start by establishing the following representation of the signed measure π∗n − πn.

Claim. There exists a linear map Bn : L∞vn → L∞vn , with the dual B∗n : M∞vn → M∞vn , satisfying

π∗n − πn = B∗n (π∗n − π∗npn) = (π∗n − π∗npn)Bn and ‖B∗n‖vn = ‖Bn‖vn ≤
ζ

1− θ
,

where the constants θ ∈ (0, 1) and ζ > 0 are as in Corollary 3.5. For the definition of the vector

spaces L∞vn and M∞vn and the respective norms see Remark 3.2(I).

Define a transition matrix 1 ⊗ πn on the state space Xn by (1 ⊗ πn)ij := πn(anj ). The

corresponding chain is a sequence of independent rvs with the law given by πn (independently

of the starting distribution). The inequality in Corollary 3.5 can therefore be expressed as

‖pkn − 1⊗ πn‖vn ≤ ζθk, for all k ∈ N ∪ {0}, implying that Bn :=
∞∑
k=0

(
pkn − 1⊗ πn

)
is a well defined linear map on the normed space L∞vn , such that ‖Bn‖vn ≤ ζ/(1 − θ). In order

to establish the first equality in the Claim above, note that µ(1⊗ πn) = πn for any probability

measure µ ∈ M∞vn and, by Remark 3.2(I) and Corollary 3.5, the ‖ · ‖vn-norm of the linear

operator µ 7→ µ(pkn − 1 ⊗ πn) on M∞vn is bounded above by ζθk for all k ∈ N. In particular,

limk→∞ π
∗
np

k
n = πn in vn-norm since ‖π∗npkn − πn‖vn = ‖π∗n(pkn − 1⊗ πn)‖vn ≤ ζθk||π∗n||vn for all

k ∈ N. Consider the identitiy

(π∗n − π∗npn)
∑̀
k=0

(
pkn − 1⊗ πn

)
= π∗n − π∗np`+1

n ∀` ∈ N,

and note that both sides converge in the appropreate ‖ · ‖vn-norms as ` → ∞. In the limit,

the left-hand side equals (π∗n − π∗npn)Bn and the right-hand side is π∗n− πn. This concludes the

proof of the Claim.

In order to establish the inequality in (21), note that ‖fn‖vn ≤ ||F ||V and Remark 3.2(I)

imply ∣∣(π∗n − πn)(fn)
∣∣ ≤ ‖F‖V (π∗n − πn)(fn/‖fn‖vn) ≤ ||F ||V ||π∗n − πn||vn .

This inequality and the Claim imply (21).

The next task is to prove (22). Let g : Xn → R be a function satisfying ‖g‖vn ≤ 1. Recall

that mn + 1 is the cardinality of Xn and that the function an(·) is defined in (10). We apply
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the definitinons of the stochastic matrix p∗ and its stationary law π∗, given in (19), to obtain

(π∗n − π∗npn) g = π∗n (p∗n − pn) g =

mn∑
j=0

mn∑
i=0

[
π(Jni ) ((p∗n)ij − (pn)ij)

]
g(anj )

=

mn∑
j=0

[∫
Rd

(
P (x, Jnj )− P (an(x), Jnj )

)
π(x)dx

]
g(anj )

=

∫
Rd

mn∑
j=0

∫
Jnj

[
α(x, y)q(x, y)− α(an(x), y)q(an(x), y)

]
g(anj )dy

π(x)dx

+

∫
Rd

[
mn∑
j=0

[(
1−

∫
Rd
α(x, z)q(x, z)dz

)
δx(Jnj )

−
(

1−
∫
Rd
α(an(x), z)q(an(x), z)dz

)
δan(x)(J

n
j )

]
g(anj )

]
π(x)dx

=

∫
Rd

(∫
Rd
g(an(y))

[
α(x, y)q(x, y)− α(an(x), y)q(an(x), y)

]
dy

)
π(x)dx

+

∫
Rd

(∫
Rd
g(an(x))

[
α(an(x), y)q(an(x), y)− α(x, y)q(x, y)

]
dy

)
π(x)dx,

where the identity δx(Jnj )g(anj ) = δan(x)(J
n
j )g(anj ) = δan(x)(J

n
j )g(an(x)), for any x ∈ Rd and

j ∈ {0, . . . ,mn+1}, implies the final equality. Since the function g ∈ L∞vn , with ‖g‖vn ≤ 1, in the

calculation above was arbitrary and satisfies |g(an(x))| ≤ vn(an(x)) = V (an(x)) for all x ∈ Rd,
we find

||π∗n − π∗npn||vn = sup
‖g‖vn≤1

| (π∗n − π∗npn) g| ≤
∫
Rd×Rd

(
V (an(y)) + V (an(x))

)
Zn(x, y)π(x)dydx,

which, together with (12), implies (22).

We now apply the DCT to deduce that the right-hand side in (22) converges to zero as n→∞.

The definition of Zn(x, y) in the proposition, the form of the transition kernel P in (MH(q, π)),

the drift condition in A1 and the inequality in (12) imply the estimates∫
Rd

(
V (y) + V (x)

)
Zn(x, y)dy ≤ PV (x) + PV (an(x)) + 2V (x)

≤
(
(2 + sup

k∈N
δk) (λV + κV ) + 2

)
V (x)

for all x ∈ Rd. Since, by Assumption A1, we have π(V ) < ∞, by the DCT the right-hand side

in (22) tends to zero (as n→∞) if

(25) lim
n→∞

∫
Rd

(
V (y) + V (x)

)
Zn(x, y)dy = 0 ∀x ∈ Rd.

To establish the limit in (25), pick an arbitrary x ∈ Rd and note that for every y ∈ R it holds

that limn→∞ Zn(x, y) = 0 by (11) and the assumptions in A2 and A3. Hence the integrand

in (25) converges to zero point-wise. By the estimate in (23), the integrand in (25) is bounded

above by the function

y 7→
(
V (y) + V (x)

)(
ηxπ(y) + α(x, y)q(x, y)

)
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which does not depend on n and is µLeb-integrable in y ∈ Rd. Hence the limit in (25) holds by

the DTC and, consequently, the right-hand side in (22) converges to zero as n→∞. This fact

and the estimates in (21) and (22) imply that the first term on right-hand side of (24) tends to

zero as n→∞ and the proposition follows. �

In order to prove that the limit limn→∞∆n = 0 holds π-a.e. (i.e. the second condition

in (18)), where the function ∆n is given in (17), we need the following elementary estimate.

Lemma 3.8. The function ∆n : Rd → R, given in (17), can be bounded above as follows:

|∆n(x)| ≤ |F (x)− F (an(x))|+ |πn(fn)− π(F )|

+
∣∣∣(PF̃n − F̃n) (x)−

(
PF̃n − F̃n

)
(an(x))

∣∣∣ for all x ∈ Rd.

Proof. Recall from the statement of Theorem 2.4 that F̃n(x) =
∑mn

j=0 f̂n(anj )1Jnj (x). Hence it

holds that PF̃n(x) =
∑mn

j=0 f̂n(anj )P (x, Jnj ). The following equalities hold

(26) ∆n(b) = P (F̃n − F̂ )(b)− (F̃n − F̂ )(b) = πn(fn)− π(F ) for any b ∈ Xn,

since F̂ (resp. f̂n) solves the Poisson equation in PE(P ,F ) (resp. PE(pn,fn)), the transition

matrix pn takes the form in (4) for the state space Xn and, for any anj ∈ Xn, by definitnion it

holds fn(anj ) = F (anj ). Recall that the function an(·) is defined in (10). Applying the definition

of ∆n in (17), the equalities in (26) and the fact that F̂ solves PE(P ,F ) yields

∆n(x) =
(
F̂ − PF̂

)
(x)−

(
F̂ − PF̂

)
(an(x)) +

(
F̂ − PF̂

)
(an(x))

−
(
F̃n − PF̃n

)
(an(x)) +

(
F̃n − PF̃n

)
(an(x))−

(
F̃n − PF̃n

)
(x)

= F (x)− F (an(x)) + πn(fn)− π(F ) +
(
PF̃n − F̃n

)
(x)−

(
PF̃n − F̃n

)
(an(x))

for all x ∈ Rd. The triangle inequality implies the lemma. �

Proof of Theorem 2.4: (F̃n)n∈N are an approximate solution for PE(P ,F). By

Proposition 3.2, it is sufficient to verify that the conditions in (18) hold for the sequence of

functions (∆n)n∈N in (17). By Theorem 3.1 the solution of the Poisson equation PE(P ,F )

satisfies F̂ ∈ L∞V . Hence, Proposition 3.6 implies the existance of a constant ξ′ and a real

sequence (cn)n∈N such that the following estimate holds∣∣∣F̃n(x) + cn − F̂ (x)
∣∣∣ ≤ ξ′V (x) for all n ∈ N and x ∈ Rd.

Note that by (17) we have ∆n = P (F̃n + cn − F̂ ) − (F̃n + cn − F̂ ). Hence the structure of the

transition kernel P in (MH(q, π)) implies the following bounds for all n ∈ N and x ∈ Rd:

|∆n(x)| ≤
∫
Rd

(∣∣∣F̃n(y) + cn − F̂ (y)
∣∣∣+
∣∣∣F̃n(x) + cn − F̂ (x)

∣∣∣)α(x, y)q(x, y)dy

≤
∫
Rd
ξ′V (y)α(x, y)q(x, y)dy + ξ′V (x)

∫
Rd
α(x, y)q(x, y)dy

≤ ξ′(PV (x) + V (x)) ≤ (ξ′ + ξ′λV + ξ′κV )V (x),
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where the last inequality is a consequence of the drift condition in A1. Hence, by the definition

of the V -norm in (1), we find that supn∈N ||∆n||V <∞, which is the first condition in (18).

The second condtion in (18) stipulates limn→∞∆n = 0 π-a.e. Fix an arbitrarty x ∈ Rd, such

that F is continuous at x. The first term on the right-hand side of the inequality in Lemma 3.8

therefore converges to zero by (11). The second term, which is independent of x, tends to zero

by Proposition 3.7. In order to deal with the third term on the right-hand side of the inequality

in Lemma 3.8, note that, by the definition of F̃n in Theorem 2.4, it holds that F̃n(an(x)) =

F̃n(x) for all n ∈ N. Consequently, the structure of the transition kernel P in (MH(q, π))

implies that this term equals |
∫
Rd(F̃n(y)−F̃n(x))

[
α(x, y)q(x, y)−α(an(x), y)q(an(x), y)

]
dy|. The

integrand converges to zero for every y ∈ Rd by (11) and Assumptions A2–A3. Furthermore, by

Proposition 3.6, we obtain the inequality

(27)
∣∣∣F̃n(y)− F̃n(x)

∣∣∣ =
∣∣∣F̃n(y) + cn − F̃n(x)− cn

∣∣∣ ≤ ξ (V (y) + V (x)) for every y ∈ Rd.

The inequality in (23) yields an upper bound

(28) |α(x, y)q(x, y)− α(an(x), y)q(an(x), y)| ≤ ηxπ(y) + α(x, y)q(x, y) for all y ∈ Rd.

The product of the right-hand sides in the inequalities (27) and (28) is integrable over Rd with

respect to µLeb(dy), since π(V ) < ∞ (see A1 and the definition of α in Section 2.1). Hence,

the DCT implies that the third term on the right-hand side of the inequality in Lemma 3.8

converges to zero. Therefore, limn→∞∆n(x) = 0 holds for all x ∈ Rd at which F is continuous.

It only remains to note that, by the assumption on F in Theorem 2.4, this limit holds π-a.s. �

3.5. Compatibility with the Algorithm. Let An be the matrix appearing in the Algorithm

with the input P , F and Xn. The first task is to show that An is non-singular.

Proposition 3.9. Let p be a transition matrix for an irreducible Markov chain with a unique

invariant probability measure µ on a state space with ` ∈ N elements. Then the vector 1 ∈ R`,
with all the coordinates equal to one, is not in the image of p− I (where I is the identity matrix

of size `) and any collection of `− 1 columns of p− I is linearly independent.

Remark 3.3. By Proposition 3.9 and Remark 2.6, under Assumptions A2 and A3, the Algo-

rithm produces a well-defined output for each allotment in an exhaustive sequence (Xn)n∈N (see

Definition 2.2(c)). Furthermore, Proposition 3.9 implies that the Algorithm will produce a well

defined output for a much broader class of Markov Chains with a general transition kernel P.

Proof. Interpret µ as a row vector with non-negative coordinates such that µ1 = 1 and µp = µ.

It holds that µ is a left eigenvector of p − I for the eigenvalue zero. If ∃x ∈ R`, such that

(p− I)x = 1, we would get 0 = (µ(p− I))x = µ1 = 1. Hence 1 is not in the image of p− I.

Since the chain is irreducible, all the entries of µ are strictly positive. If µ′ is another left

eigenvector of p, so is µ′+ βµ for any large β > 0. Since the invariant measure µ is unique, µ′ is

hence proportional to µ and the rank of p− I is `− 1. Moreover ker(p− I) := {x ∈ R` : px = x}
equals ker(p− I) = {λ1 : λ ∈ R} and the proposition follows. �
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Proof of Theorem 2.4: Algorithm with input P , F and Xn produces F̃n. The matrix

An in the Algorithm is equal to pn − I with the first column replaced by a column of ones,

where pn is the stochastic matrix defined in Theorem 2.4 (see also (4)) and I is the identity

matrix of dimension 1 +mn. By Remark 3.3, the Algorithm returns the unique solution vector

f̂ of the system Anf̂ = −fn, where the function fn is identified with a column vector.

Since pn is irreducible, the invariant measure πn charges all the points in Xn. Hence, by

Theorem 3.1, ∃! f̂n : Xn → R satisfying PE(pn, fn) and f̂n(an0 ) = 0 (recall Xn = {an0 , . . . , anmn}).
We need to show that f̂i = f̂n(ani ) for 1 ≤ i ≤ mn, where f̂i, i ∈ {0, . . . ,mn}, are the coordinates

of f̂ solving Anf̂ = −fn. Poisson’s equation (pn− I)f̂n = πn(fn)1−fn can be viewed as a linear

system of mn + 1 equations with mn + 1 unknowns f̂n(ani ), i ∈ {1, . . . ,mn}, and πn(fn):

−πn(fn) +

mn∑
j=1

(pn)ij f̂n(anj )− f̂n(ani ) = −fn(ani ) i ∈ {0, · · · ,mn}.

Hence ĝ ∈ R1+mn , given by ĝ0 := −πn(fn) and ĝi := f̂n(ani ), 1 ≤ i ≤ mn, satisfies Anĝ = −fn for

An from the Algorithm. Since An is non-singular (by Proposition 3.9), the proof is complete. �

4. The rate of decay of asymptotic variances

Theorem 2.4 states that, under A1-A3, the asymptotic variance σ2
n in CLT(Φ, F +PF̃n− F̃n)

tends to zero as n ↑ ∞. This section investigates the speed of this convergence. We show that,

under suitable Lipschitz and integrability conditions, the rate of decay is bounded above by the

slower of the decay rates of the sequences π(V 21Jn0 ) and δn = δ(Xn, V ) (see Remark 2.1(i) and

Equation (3) respectively). This result suggests that, when constructing an exhaustive sequence

of allotments (see Definition 2.2 above) with respect to the drift function V in A1, it is optimal

to balance the growth of the size of the bounded set Rd \ Jn0 and the mesh of the partition of

Rd \ Jn0 in such a way that δn and π(V 21Jn0 ) are comparable in size.

Theorem 4.1. Let the assumptions of Theorem 2.4 be satisfied and assume that the conditions

lim sup
n→∞

∫
Rd\Jn0

∫
Rd

(
V (x)2 + V (x)V (y)

)Zn(x, y)

δn
π(x)dydx <∞,(29)

lim sup
n→∞

∫
Rd\Jn0

V (x)
|F (x)− F (an(x))|

δn
π(x)dx <∞(30)

hold, where Zn(x, y), for x, y ∈ Rd, is defined in Proposition 3.7 and the function an(·) is given

in (10). Then there exists a constant C0 > 0 such that

σ2
n ≤ C0 max{π(V 21Jn0 ), δn} for all n ∈ N.

Theorem 4.1, proved in Section 4.1 below, holds under general conditions that may be hard

to verify in specific examples as the functions featuring in (29)–(30) depend on each other in a

rather complicated way and an appropriate drift function V is often not available in closed form.

With this in mind we study a broad class of Metropolis-Hastings chains with the property that

V can be described in terms of the target density π and conditions (29)–(30) can be deduced
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from certain geometric properties of the level sets of π near infinity. Our approach builds on the

work in [RT96a] and [JH00], mentioned in Example 2.2 above.

More precisely, let π and q∗ be as in Example 2.2, so that the kernel P in (MH(q, π)) (with

q(x, y) = q∗(y − x) = q∗(x − y)) generates a symmetric random walk Metropolis chain in

Rd and satisfies assumptions A2 and A3, while (5) holds for the differentiable target π. The

kernel P in (MH(q, π)) hence satisfies A1-A3 with a drift function proportional to π−1/2(x)

(see [JH00, Thms 4.1 and 4.3] and Example 2.2 above). By an argument analogous to the one in

Remark 2.1(i), we can take the drift function to be Vγ(x) := cγπ
−γ(x) for any 0 < γ < β/2 and

some cγ > 0, ensuring that Vγ > 1. Assume further that the following two technical conditions

hold: (i) there exists a function Kq : Rd → R and εq > 0 such that

(31)

∫
Rd
Kq(z)dz <∞ and |q∗(z)− q∗(z̃)| ≤ |z − z̃|Kq(z) ∀z, z̃ ∈ Rd with |z − z̃| < εq;

(ii) there exist constants β ∈ (0, 1), cβ > 0 and επ > 0 such that

(32) |∇π(x̃)| < cβπ(x)β ∀x, x̃ ∈ Rd with |x− x̃| < επ.

Remark 4.1. Assumption (31) is a version of a local Lipschitz condition and holds for many

proposals q∗ used in practice, e.g. Gaussian proposals. Assumption (32) and condition (5) hold

for the target densities π proportional to e−p(x), where p is a polynomial of degree k with leading

order terms satisfying pk(x)→∞ as |x| → ∞ (see Example 2.2 for the precise definition of pk).

An application of Theorem 4.1 in this setting yields the following result.

Proposition 4.2. Let P in MH(q, π) be the transition kernel of a random walk Metropolis chain

described above, i.e. q(x, y) = q∗(y − x), q∗ is even and satisfies (31), π satisfies (5) and (32)

and A1-A3 hold. Fix γ ∈ (0, β/2) and let (Xn)n∈N be an exhaustive sequence of allotments

with respect to Vγ (cf. Definition 2.2 and paragraph above). Then the Vγ-radius in (2) equals

rad(Xn, Vγ) = infy∈Jn0 cγπ
−γ(y) and the Vγ-mesh δγ,n = δ(Xn, Vγ), defined in (3), takes the form

(33) δγ,n = max

(
sup
x/∈Jn0

|x− an(x)|, sup
x∈Rd

(π(x)/π(an(x)))γ − 1

)
,

where an(·) is defined in (10). Let F ∈ L∞Vγ be continuously differentiable function satisfying

the inequality |∇F (x̃)| < cFπ
2γ−1(x) for all x, x̃ ∈ Rd with |x − x̃| < εF (for some constants

cF , εF > 0). Let σ2
n be the asymptotic variance in the CLT(Φ, F + PF̃n − F̃n), where F̃n is

constructed by the Algorithm with input P , F and Xn. Then there exists a constant Cγ > 0 such

that

σ2
n ≤ Cγ max

(
δγ,n,

∫
Jn0

π1−2γ(x)dx

)
for all n ∈ N.

Remark 4.2. (i) Any polynomial F , and in fact any function whose gradient grows no faster

than a polynomial, satisfies assumptions of Proposition 4.2 regardless of the chosen γ ∈ (0, β/2).

Such functions for example include the mean and the variance of any coordinate.
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(ii) A natural question that arises in this context is the following: is it possible to take the limit

as γ → 0 in Proposition 4.2? Put differently, does the inequality σ2
n ≤ C0 max (δγ,n, π(Jn0 )) hold

for all n ∈ N, some positive constant C0 and a class of force functions (e.g. polynomials)? We

conjecture that the answer is negative but were unable to find such an example.

4.1. Proofs. For any two sequences of real numbers (an)n∈N and (bn)n∈N, we say that (an)n∈N

is of lesser order than (bn)n∈N if there exists a constant C0 > 0 such that an ≤ C0bn holds for

all n ∈ N. We first establish Theorem 4.1 and then apply it to prove Proposition 4.2.

Proof of Theorem 4.1. The asymptotic variance appearing in CLT(P , G) can be expressed in

terms of a solution to PE(P , G) (see [MT09, Theorem 17.4.4]). Apply this to Poisson’s equation

PE(P , F + PF̃n − F̃n) and its solution F̃n − F̂ to obtain σ2
n = π

(
(F̃n − F̂ )2 − (P (F̃n − F̂ ))2

)
.

Recall the definition of ∆n from (17) and bound σ2
n as follows (constants cn are those from

Proposition 3.6):

σ2
n = π

(
(F̃n + cn − F̂ )2 − (P (F̃n + cn − F̂ )

)2
)

= π
((

(F̃n + cn − F̂ )− P (F̃n + cn − F̂ )
)(

(F̃n + cn − F̂ ) + P (F̃n + cn − F̂ )
))

= π
(
V
(
(F̃n − F̂ )− P (F̃n − F̂ )

)(F̃n + cn − F̂ ) + P (F̃n + cn − F̂ )

V

)
≤ π(V |∆n|)(ξ + ||F̂ ||V )(1 + λV + κV ).

The equalities hold, since neither σ2
n nor ∆n change, if we perturb F̃n by a constant. The

inequality is a consequence of Proposition 3.6 and A1.

Thus, the sequence (σ2
n)n∈N is of lesser order than

(
π(V |∆n|)

)
n∈N. Express π(V |∆n|) as the

sum π(V |∆n|1Jn0 ) + π(V |∆n|1Rd\Jn0 ). Since ∆n ∈ L∞V , sequence
(
π(V |∆n|1Jn0 )

)
n∈N is clearly of

lesser order than
(
π(V 21Jn0 )

)
n∈N.

Now consider the other term, π(V |∆n|1Rd\Jn0 ). By Lemma 3.8 it is bounded by the sum of

the following three terms

T1(n) :=

∫
Rd\Jn0

V (x)
∣∣∣(PF̃n − F̃n) (x)−

(
PF̃n − F̃n

)
(an(x))

∣∣∣π(x)dx,(34)

T2(n) :=

∫
Rd\Jn0

V (x)|F (x)− F (an(x)|π(x)dx and T3(n) := |πn(fn)− π(F )|π(V ).

Assumption (30) implies, that the sequence of second terms (T2(n))n∈N in (34) is of the order

less than (δn)n∈N. Using the form of kernel P =MH(q, π) and the fact, that F̃n(x) = F̃n(an(x))

(F̃n is piecewise constant), the first term can be transformed into:∫
Rd\Jn0

V (x)

∣∣∣∣∫
Rd

(
F̃n(y)− F̃n(x)

) [
α(x, y)q(x, y)− α(an(x), y)q(an(x), y)

]
dy

∣∣∣∣π(x)dx.

This, in turn, can be bounded by a constant multiplier of∫
Rd\Jn0

∫
Rd

(
V (x)2 + V (x)V (y)

)
Zn(x, y)π(x)dydx

using F̃n ∈ L∞V , definition of Zn and triangle inequality. Hence, the sequence of first terms

(T1(n))n∈N in (34) is also of lesser order than (δn)n∈N, by assumption (29).
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The sequence (T3(n))n∈N in (34) is obviously of the same order as
(
|πn(fn)− π(F )|

)
n∈N. But

|πn(fn) − π(F )| can be bounded above by |(πn − π∗n)(fn)| + |π∗n(fn − hn)| (to recall definitions

see (19) and (20)). It is straightforward to argue π∗n(fn − hn) =
∫
Rd(F (x) − F (an(x))π(x)dx.

Use this together with triangle inequality and bounds V ≥ 1, F ≤ ‖F‖V V and (12) to conclude:

|π∗n(fn − hn)| ≤
∫
Rd
V (x)|F (x)− F (an(x))|π(x)dx

≤ ||F ||V (2 + sup
n∈N

δn)π(V 21Jn0 ) +

∫
Rd\Jn0

V (x)|F (x)− F (an(x))|π(x)dx.

Hence, by (30),
(
|π∗n(fn − hn)|

)
n∈N is of lesser order than

(
max(π(V 21Jn0 ), δn)

)
n∈N.

Similarly, using inequalities (21) and (22) from Proposition 3.7, we can argue, that

|(πn − π∗n)(fn)| is upper bounded by a constant multiplier (independent of n ∈ N) of∫
Rd
(∫

Rd
(
V (y) + V (x)

)
Zn(x, y)dy

)
π(x)dx. Again we split integration with respect to x into

parts integrating over Jn0 and Rd \ Jn0 , and then use (29), A1 and (12) to conclude, that(
|(πn − π∗n)(fn)|

)
n∈N is of lesser order than

(
max(π(V 21Jn0 ), δn)

)
n∈N.

Together this implies that the sequence of terms (T3(n))n∈N of (34) is of lesser order than(
max(π(V 21Jn0 ), δn)

)
n∈N as well, and the proof is finished. �

Proof of Proposition 4.2. Since P , F and Xn in Proposition 4.2 satisfy the assumptions of

Theorem 2.4, we need only to establish that conditions (29) and (30) in Theorem 4.1 hold for

V = Vγ and δn = δγ,n. Then, since π(V 2
γ 1Jn0 ) = c2

γ

∫
Rd π

1−2γ(x)dx, the proposition will follow

by Theorem 4.1.

We will first establish (30) in this setting. By (33) we have |x − an(x)| < δγ,n. Thus, by

Lagrange’s theorem and assumptions (32), we have, for all large enough n and some x̃n on a

line between x and an(x), the following:∫
Rd\Jn0

Vγ(x)
|F (x)− F (an(x))|

δγ,n
π(x)dx ≤

∫
Rd\Jn0

Vγ(x)
|F (x)− F (an(x))|
|x− an(x)|

π(x)dx

=

∫
Rd\Jn0

Vγ(x)|∇F (x̃n)|π(x)dx ≤ cγcF
∫
Rd
π−γ(x)π2γ−1(x)π(x)dx = cγcF

∫
Rd
πγ(x)dx.

Target π decays supper-exponentially along any ray from the origin, hence so does πγ . Thus, the

integral
∫
Rd π

γ(x)dx is finite (the same holds for any other positive exponent) and (30) follows.

Next, we show (29). As we are studying a symmetric random walk Metropolis, the acceptance

probability equals α(x, y) = min
(

1, π(x)
π(y)

)
. Denote Ax := {y ∈ Rd; π(x) ≤ π(y)}. Keep in mind,

that if y ∈ Ax, then α(x, y) = 1 and Vγ(x) ≥ Vγ(y) and that this inequality is reversed otherwise.

For a set B ⊆ Rd denote (recall Zn(x, y) =
∣∣α(x, y)q∗(y − x)− α(an(x), y)q∗(y − an(x))

∣∣)
In(B) :=

∫
Rd\Jn0

(∫
B

(
Vγ(x)2 + Vγ(x)Vγ(y)

)Zn(x, y)

δγ,n
dy

)
π(x)dx.

Condition (29) will follow, if we manage to prove lim supn→∞ In(Rd) is finite. To do that, we

split the integral with respect to y into four integrals, depending on whether or not y ∈ Ax and

y ∈ Aan(x).
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If y ∈ Bn,1x := Ax ∩ Aan(x), then we have

(35)
Zn(x, y)

δγ,n
≤
∣∣q∗(y − x)− q∗(y − an(x))

∣∣
|x− an(x)|

≤ Kq(y − x)

for all large enough n, using (31) and |x−an(x)| ≤ δγ,n. Because Vγ(x) ≥ Vγ(y) and 1−2γ > 0,

(31) and (35) imply the following:

In(Bn,1x ) ≤
∫
Rd\Jn0

2Vγ(x)2
(∫
Bn,1x

Kq(y − x)dy
)
π(x)dx(36)

≤ 2π(V 2
γ )
∫
Rd Kq(z)dz ≤ 2

∫
Rd π

1−2γ(x)dx
∫
Rd Kq(z)dz <∞.

If y ∈ Bn,2x := (Rd \ Ax)
⋂

(Rd \ Aan(x)), then bound as follows:

Zn(x, y) ≤ q∗(y − x)π(y)

∣∣∣∣ 1

π(x)
− 1

π(an(x))

∣∣∣∣+
π(y)

π(an(x))

∣∣q∗(y − an(x))− q∗(y − x)
∣∣(37)

≤ q∗(y − x)
π(y)

π(an(x))

|π(an(x))− π(x)|
π(x)

+
π(y)

π(an(x))

∣∣q∗(y − an(x))− q∗(y − x)
∣∣.

By (32) and Lagrange’s theorem we have

|π(an(x))− π(x)|
δγ,n

≤ |π(an(x))− π(x)|
|x− an(x)|

≤ |∇π(x̃n)| ≤ cβπβ(x)

for all sufficiently large n. Putting together the right inequality in (35), bound (37) and the

above yields

(38)
Zn(x, y)

δγ,n
≤ π(y)

π(an(x))

(
cβq
∗(y − x)πβ−1(x) +Kq(y − x)dy

)
.

By definition of δγ,n (see (33)), there exists cπ > 0, such that supn∈N supx∈Rd
π(x)

π(an(x)) < cπ. We

can, for instance, take cπ = (1 + supn∈N δγ,n)1/γ . We argue:

In(Bn,2x ) ≤
∫
Rd\Jn0

∫
Bn,2x

2Vγ(y)2 π(y)

π(an(x))

(
cβq
∗(y − x)πβ−1(x) +Kq(y − x)dy

)
π(x)dx

≤
∫
Bn,2x

2cπVγ(y)2

(
cβπ(y)β−1

∫
Rd
q∗(y − x)dx+

∫
Rd
Kq(y − x)dx

)
π(y)dy

≤ 2cπcβc
2
γ

∫
Rd
πβ−2γ(y)dy + 2cπc

2
γ

∫
Rd
π1−2γ(y)dy

∫
Rd
Kq(z)dz <∞.(39)

The first inequality holds by (38) and since Vγ(y) ≥ Vγ(x) for y ∈ Bn,2x . For the second we

have used Fubini’s theorem, bound π(x)
π(an(x)) < cπ and the fact, that π(y)β−1 ≥ π(x)β−1 (due to

y ∈ Bn,2x and β < 1). For the final one we have merely increased the integration domain and

taken into the account, that q∗ is a density, that β > 2γ and the definition of Vγ .

Denote Bn,3x := Ax
⋂

(Rd \ Aan(x)) and Bn,4x := Aan(x)

⋂
(Rd \ Ax). In a similar way as in

(36) and (39), we can also find finite upper bounds on In(Bn,3x ) and In(Bn,4x ). Since Rd =

Bn,1x ∪ Bn,2x ∪ Bn,3x ∪ Bn,4x , this implies lim supn→∞ In(Rd) <∞ and (29) follows.

�
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5. Applications of the Algorithm

In this section we discuss the implementation of the Algorithm and describe numerical exam-

ples. Section 5.1 gives a simple IID Monte Carlo procedure to construct the matrix A defined in

steps (I) and (II) of the Algorithm. We stress here that this procedure depends neither on the

force function F : Rd → R nor the simulated path (Φi)i=1,...,k of the Metropolis-Hastings chain

Φ. It depends only on the characteristics of the underlying Markov process Φ. In particular, the

same matrix A can be used over a family of functions F and any set of simulated paths of Φ.

In Section 5.2 we present numerical results for a variety of Metropolis-Hastings chains and

force functions. We study numerically both geometrically ergodic (Example 5.2.1) and non-

geometrically ergodic chains (Example 5.2.2), including an example where the CLT for ergodic

averages is known not to hold (Example 5.2.3). Example 5.2.4 deals with the well known

case of a slowly converging random walk Metropolis chain with a target distribution that has

irregularly (“banana”) shaped level contours. In these examples we use force functions that are

not necessarily Lipschitz and may have super-linear growth and discontinuities.

In order to compare the variances of the ergodic averages Sk(F ) and Sk(F +PF̃ − F̃ ) numeri-

cally, where F̃ and PF̃ are constructed in Section 5.1, in all the examples below we simulate 200

independent paths of the chain (started from stationarity) and report the quotient of estimated

variances (see (43)). We find that the variance of Sk(F +PF̃ − F̃ ) is between several hundred to

several thousand times smaller than that of Sk(F ) (see Section 5.2 for precise figures), including

Examples 5.2.2 and 5.2.3 where Theorem 2.4 is not applicable (A1 is violated).

5.1. Implementation. Given the Metropolis-Hastings kernel (MH(q, π)), define a partition

{J0, . . . , Jm} of the state space such that the probability π(J0) is small, e.g. of order 10−6 or

J0 is a five standard deviations event under π. This is feasible in the low dimensional examples

in this section. In practice J0 could be chosen so that the simulated path is contained in the

complement Rd \J0. For example, for the specific chains in Sections 5.2.1–5.2.3 below, we set J0

to be the complement of a large “box” and Ji, for i = 1, . . . ,m, to be small boxes decomposing

it. We pick aj ∈ Jj , for j > 0, to be the centres of the boxes and choose a0 to be close to the

boundary of J0.

Remark 5.1. The choice of “partition into boxes” in our examples below is made for illustrative

purposes only as it is very simple to specify. But it is by no means optimal, particularly in

dimensions greater than one, where it may lead to many states in the weak approximation being

redundant as the Metropolis-Hastings chain spends no or very little time in most of the sets

Ji, for i = 1, . . . ,m. A systematic investigation of the efficient constructions of allotments for

specific chains of interest in applications is left for future research. The choice of representatives

{a0, . . . , am} is arbitrary and bears little influence on the variance reduction levels in Section 5.2.

Given the allotment (X, {J0, . . . , Jm}), where X = {a0, . . . , am}, and the Metropolis-Hastings

kernel (MH(q, π)), we have the input required to construct the matrix A (steps (I)-(II) of

the Algorithm). As the precise computation of its entries is not feasible in general, we construct
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an unbiased estimate Â of A. With this in mind, let i(x) be the unique index i ∈ {0, . . . ,m},
such that x ∈ Ji(x), and define a random function P̂ : Rd ×X → R+ by the formula

(40) P̂ (x, aj) :=


1
n1

∑n1
l=1 µ

Leb(Jj)α(x, Y l
j )q(x, Y l

j ) if j /∈ {0, i(x)},
1
n2

∑n2
l=1 1J0(Zxi,l)α(x, Zxi,l) if j = 0 6= i(x),

1−
∑

k∈{0,...,m}\{j} P̂ (x, ak) if i(x) = j,

where n1, n2 ∈ N, random vectors Y l
j , l = 1, . . . , n1, are IID uniform in the set Jj for any

j ∈ {1, . . . ,m} (recall that if j 6= 0, the set Jj is bounded) and Zxi,l, l = 1, . . . , n2, are IID

random vectors distributed according to the proposal distribution q(x, z)dz in (MH(q, π)). It is

clear from this description that P̂ (x, aj) is an unbiased estimator of the transition probability

P (x, Jj). We define the estimator Â for the matrix A in the Algorithm by the formula

(41) Â := B̂ + (1− B̂e0)e>0 , where B̂ij := P̂ (ai, aj)− δij i, j ∈ {0, . . . ,m},

δij is the Kronecker delta, e0 is the column vector in R1+m with the first coordinate equal to

one and the rest zero, e>0 is its transpose and 1 is the column vector with all coordinates one.

Given a function F : Rd → R, we can execute steps (III)-(V) in the Algorithm. Constructing

the ergodic average estimator Sk(F +PF̃ − F̃ ) requires the evaluation of the function PF̃ along

the simulated path (Φi)i=1,...,k of the Metropolis-Hastings chain. We use the form of F̃ and the

formula in (40) to find an unbiased estimate

(42) P̂ F̃ (x) :=
m∑
j=0

f̂jP̂ (x, aj)

for PF̃ (x) for any x ∈ Rd, where f̂ is the solution of the system in step (IV) of the Algorithm.

Remark 5.2. (I) There of course exist other unbiased estimators for P (x, Jj), different from the

one in (40). The choice made here works well with small random samples: in all the examples

below we use n1 = 1 and n2 = 10. Note also that, in the construction of the ergodic average

estimator Sk(F + PF̃ − F̃ ), the function P̂ F̃ is used in the evaluation of PF̃ along the path

of the chain. In this context it is important that the uniform vectors Y l
j in the formula above

do not depend on the value of the argument x and can be reused. In the case of random walk

Metropolis, i.e. q(x, y) = q∗(y − x), we have Zxi,l = x + Zi,l for any x ∈ Rd and Zi,l are also

simulated only once. This is clearly more efficient than simulating IID random vectors from the

distributions P (x, dz) in (MH(q, π)), which would also lead to an unbiased estimate of PF̃ (x),

as the random variates cannot be reused at distinct values x taken by the chain.

(II) Neither Theorem 2.4 nor the implementation of the Algorithm depend on the simulated

path (Φi)i=1,...,k. This should be contrasted with the approach to variance reduction based on

the Poisson equation (PE(P, F )), where the estimator Sk(F ) of π(F ) is essential in constructing

a guess for the solution of (PE(P, F )) and hence the control variate itself (see e.g. [DK12] for

this approach applied to random scan Gibbs samplers). This produces a consistent but biased

estimator Sk(F + PF̃ − F̃ ), even if the chain is started in stationarity, as the control variate

is a non-linear function of the estimate Sk(F ) of π(F ). The bias can be avoided by splitting
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the path (Φi)i=1,...,k into two parts, using the first part to construct the control variate and the

second for the estimation. But this approach requires additional simulation and was not used

in [DK12] (the level of variance reduction in the examples of [DK12] increases with k, likely due

to the reduction in the bias). Our implementation of the Algorithm does not depend on the

simulated trajectory. Hence using the entire path yields an unbiased estimator.

5.2. Examples. In order to analyse numerically the level of variance reduction produced by

the implementation of the Algorithm in Section 5.1, let

(43) rk,n :=

∑n
i=1(Sik(F )− π(F ))2/n∑n

i=1(Sik(F + U)− π(F ))2/n
,

where n is the number of simulated paths of the chain (started in stationarity at independent

starting points) and k is the length of each path. The random vectors (Sik(F ), Sik(F + U)),

for i = 1, . . . , n, are IID samples of the pair of ergodic average estimators (Sk(F ), Sk(F + U))

evaluated on the simulated paths, where U := P̂ F̃−F̃ with P̂ F̃ and F̃ computed as in Section 5.1.

Put differently, since the numerator (resp. denominator) of rs,n is an unbiased IID estimator of

the variance of Sk(F ) (resp. Sk(F + U)), the quotient rs,n specifies the factor of the variance

reduction achieved by the Algorithm. In the examples below we start the chain in stationarity,

thus eliminating the bias of (Sk(F ), Sk(F + U)) and allowing us to focus on the variance.

5.2.1. Bimodal normal distribution. Let the target law be π := ρN(µ1, σ
2
1) + (1 − ρ)N(µ2, σ

2
2),

where the parameters take the values µ1 = −3, σ1 = 1, µ2 = 4, σ2 = 1/2, ρ = 2/5. In this

example the target density π(·) is a mixture of two normal densities with the modes at −3 and

4. Moreover, π(·) takes values close to zero in the neighbourhood of the origin. Let F (x) := x3,

x ∈ R, be the force function and let the proposal density q(x, ·) be N(x, 1). Construct Â, F̃ and

P̂ F̃ by the formulae in (40)–(42) as in the previous example (decompose R \ J0 := [−8, 7) into

700 subintervals of equal lengths and use n1 = 1, n2 = 10).

The assumptions of Theorem 2.4 are satisfied in this example and the chain is geometrically

ergodic. However, the estimator Sk(F ) struggles to converge as the chain tends to get “stuck”

under one of the modes for a long time, sampling values of F far away from π(F ). The variance

of the estimator Sk(F + U) is thousands of times smaller than that of Sk(F ) as the function U

takes into account the existence of both modes (see Figure 1 for the evolution of the estimators):

path length k of the chain (n = 200 stationary paths) 103 5 · 103 5 · 104

factor of variance reduction rn,k in Eq. (43) 1170.4 3281.7 5735.9

5.2.2. Heavy tailed distribution. Let π(x) := (3/2π)(1 + x6)−1 and F (x) = 1[0,1](x) (x ∈ R).

Since the target distribution π is heavy tailed, we take the proposal density q(x, ·) to be the

density of N(x, 100). As in the previous two examples, we construct Â, F̃ and P̂ F̃ by the

formulae in (40)–(42) using the decomposition of R \ J0 := [−15, 15) into 1500 subintervals of

equal lengths and n1 = 1, n2 = 10.

The random walk Metropolis chain in the present example is known not to be geometrically

ergodic [MT96, Theorem 3.3] and hence does not satisfy the main assumption A1 of Theorem 2.4.
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Furthermore, the force function is not continuous, potentially leading to an increase in variance.

However, the variance reduction achieved by the Algorithm is significant:

path length k of the chain (n = 200 stationary paths) 103 5 · 103 5 · 104

factor of variance reduction rn,k in Eq. (43) 52437 15662 1427

The right plot in Figure 1 shows typical paths of the estimators.
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Figure 1. Evolution of the path averages Si(F ) and Si(F + U), i = 1, . . . , k,

over k = 105 time steps in Examples 5.2.1 (left graph) and 5.2.2 (right graph).

5.2.3. A non-geometrically ergodic chain without a CLT. Consider the exponential target density

π(x) := e−x on the positive reals and a proposal density q(x, y) := 3e−3y, x, y ∈ (0,∞). The

chain Φ, generated by the transition kernel (MH(q, π)), is the so-called independence sampler

(the proposed value is independent of the current state). This chain is well known not to be

geometrically ergodic and the CLT(Φ,F ) fails for the force function F (x) := x (see [Rob99,

Sec. 4]). Furthermore, the slow convergence properties of the ergodic average Sk(F ) is well

documented in the literature (e.g. the simulations in [RR98] indicate that the average of the

path of such a chain over a million iterations returns a value of 0.8 (instead of π(F ) = 1) and

occasionally returns a very large value). In this example the chain tends to either spend a lot of

time jumping around the level 1/3 or jump to a value much higher than 1 and stay there. This

leads to a very unstable behaviour of the ergodic average Sk(F ).

In order to investigate numerically the level of improvement achieved by the Algorithm, let

(0,∞) \J0 := (0, 13) and decompose it into 200 intervals of equal length. Using n1 = 1, n2 = 10

and the formulae in (40)–(42), compute Â, F̃ and P̂ F̃ . Although this example is clearly outside

the scope of Theorem 2.4, the variance of the estimator Sk(F + U) is significantly reduced

compared to that of Sk(F ):

path length k of the chain (n = 200 stationary paths) 103 5 · 103 5 · 104

factor of variance reduction rn,k in Eq. (43) 985.32 1063.8 2038.7

We obtain such a vast reduction in variance with longer paths, as the estimator Sk(F ) consis-

tently and significantly underestimates the mean. See Figure 2 for a path of the estimators.

Furthermore, note that [Rob99, Thm 3] implies that the CLT also fails for Sk(F + U).

5.2.4. A target density with an unbounded curvature of level contours. Let φB : R2 → R2,

φ(x, y) := (x, y + Bx2 − 100B), be a diffeomorphism of R2 with a fixed “bananicity” constant

B > 0. It is well known [HST01] that a random walk Metropolis chain with a normal proposal

and the target distribution π := f ◦φB, where f is the density of a bivariate normal distribution
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with independent components and zero mean N(0, diag(100, 1)), has very poor convergence

properties. In fact, even if the adaptive random walk Metropolis algorithm is used (for B = 0.1)

the mixing of the first component of the chain is still very slow after 5 · 106 iterations [RR09,

Sec.2.1]. Since the part of R2, where most of the mass of π lies, is heavily curved (i.e. banana

shaped), the chain struggles to traverse this set leading to poor mixing and slow convergence.

As in [RR09, Sec.2.1], we fix B = 0.1 and define F (x, y) := x. Hence it holds that

π(x, y) ∝ exp(−(x2/100 + (y + 0.1x2 − 10)2)/2)

and π(F ) = 0. This examples is based on a random walk Metropolis chain with the density

of the proposed increments given by N(0,diag(100, 100)) and the target π. Let R2 \ J0 be the

image under φB of the rectangle [−50, 50] × [−5, 5]. Subdivide the longer (resp. shorter) of

the two sides of this rectangle into 300 (resp. 30) intervals of equal length, thus obtaining a

partition into 9000 rectangles of the box [−50, 50]× [−5, 5]. Define the partition sets Jj and the

representatives aj , j = 1, . . . , 9000, to be the images of these rectangles and their centres under

the diffeomorphism φB. Figure 2 shows typical paths of the two estimators. The achieved factor

of variance reduction is several hundred:

path length k of the chain (n = 200 stationary paths) 103 5 · 103 5 · 104

factor of variance reduction rn,k in Eq. (43) 247.4 238.2 255.2
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Figure 2. Evolution of the path averages Si(F ) and Si(F + U), i = 1, . . . , k,

over k = 105 time steps in Examples 5.2.3 (left graph) and 5.2.4 (right graph).

6. Conclusion

In this paper we apply the idea of weak approximation of Markov processes to construct

approximate solutions of Poisson’s equation for discrete-time Markov chains. We show that,

under general conditions, these approximations in the case of Metropolis-Hastings chains lead

to ergodic averages with arbitrarily small asymptotic variance.

A number of questions of interest remain open. On the theoretical side, the key step in

the proof presented here consists of establishing the uniform convergence to stationarity of a

sequence of approximating chains (Section 3.3). Under suitable assumptions this fact is sufficient

for the convergence of the Algorithm to the solution of Poisson’s equation (measured by the size

of the corresponding asymptotic variances, see Section 1.2 and Definition 2.1). It is feasible

that the principle of uniform convergence to stationarity could be established in other contexts

(e.g. queueing models and stochastic networks [Mey08]), both in discrete and continuous time,
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with the approximating Markov processes not necessarily having a finite state spaces. The main

requirement for the approximating processes is that they should be sufficiently simple that their

Poisson equations can be solved numerically. The key advantage of this approach is that the

control variates do not require prior estimates of π(F ) or any other functional of the law π.

They only depend on the characteristics of the underlying process (i.e. a transition kernel (resp.

generator) in discrete (resp. continuous) time) converging to π.

A very simple application of the Algorithm, described in Section 5, shows numerically that

the variance of ergodic estimators for the well-known slowly converging low-dimensional exam-

ples of the Metropolis-Hastings chains can be reduced arbitrarily. Developing the idea of weak

approximation for the Poisson equation in the context of improving convergence of the estima-

tors in Bayesian hierarchical models (see e.g. [Ros95] and [RR04, Sec. 2.4]) is a natural next

step. For example, the chains based on the Metropolis-within-Gibbs [RR04] and the delayed Me-

tropolis [CF05] samplers appear to lend themselves well to weak approximations using simpler

Markov chains. These questions are left as a topic for future research.

Appendix A. Proof of Proposition 2.3

Let (rn)n∈N be an increasing unbounded sequence of positive numbers, such that r1 >

infx∈RdW (x). For each n ∈ N define sets Ln := W−1
(
(−∞, rn)

)
,

L̃n := {x ∈ Rd;∃y ∈ Ln, such that |x− y| <
√
d}.

Set L̃n is bounded and non-empty by definitions of W and rn. So, W is uniformly continuous

on L̃n. There exists a positive sequence (εn)n∈N (satisfying limn→∞ εn = 0 and supn∈N εn < 1)

such that |x− y| < εn
√
d implies |W (x)−W (y)| < 1

n for each n ∈ N and all x, y ∈ L̃n.

Fix n ∈ N. For x = (x1, x2, . . . , xd) ∈ Rd denote Kn
x := [x1, x1 + εn) × · · · × [xd, xd + εn).

Clearly, it is possible to pick x1, x2, . . . xmn ∈ Rd so that sets Kn
j := Kn

xj
(for 1 ≤ j ≤ mn)

are disjoint and cover Ln (assume the cover is minimal). Finally, take Jn0 to be the closure

of R \
⋃mn
j=1K

n
j and define Jnj := Kn

j \ Jn0 . Note that µLeb(Jnj ) > 0 for all 0 ≤ j ≤ mn. For

1 ≤ j ≤ mn pick arbitrary anj ∈ Jnj and choose a0 ∈ Jn0 , so that W (an0 ) = infx∈Jn0 W (x) (possible

since W has bounded sublevel sets and Jn0 is closed). Sets Jnj together with representatives anj

define an allotment Xn.

By Pythagoras theorem |x − y| < εn
√
d, for x, y from the same ∈ Jnj . Since εn < 1 and

Kn
j ∩ Ln 6= ∅, we get Jnj ⊂ Kn

j ⊂ L̃n for all 1 ≤ j ≤ mn. Hence,

max
1≤j≤mn

sup
y∈Jnj

|y − anj | ≤ εn
√
d

and by uniform continuity (recall W ≥ 1)

max
0≤j≤mn

sup
y∈Jnj

W (anj )−W (y)

W (y)
≤ 1

n
.

Doing the above for every n ∈ N shows limn→∞ δ(Xn,W ) = 0 (by (3)). By (2) and definition

of Ln, rad(Xn,W ) ≥ rn for every n ∈ N. So, limn→∞ rad(Xn,W ) =∞.
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