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Abstract. Let τ(x) be the first time that the reflected process Y of a Lévy process X crosses x > 0.

The main aim of this paper is to investigate the joint asymptotic distribution of the path functionals

Y (t) = X(t) − inf0≤s≤t X(s), Z(x) = Y (τ(x)) − x, and m(t) = sup0≤s≤t Y (s) − y∗(t) for a certain

non-linear curve y∗(t). We prove that under Cramér’s condition on X(1) the functionals Y (t) and Z(x)

are asymptotically independent as min{t, x} → ∞ and characterise the law of the limit (Y (∞), Z(∞)).

Moreover, if y∗(t) = γ−1 log(t) and min{t, x} → ∞ in such a way that t exp{−γx} → 0 (γ denotes the

Cramér coefficient), then we show that Y (t), Z(x) and m(t) are asymptotically independent and derive

the explicit form of the joint weak limit (Y (∞), Z(∞),m(∞)). The proof is based on the theorem of

Doney & Maller [7] together with our characterisation of the law (Y (∞), Z(∞)).

1. Introduction and main results

The reflected process Y of a Lévy process X is a strong Markov process on R+
.
= [0,∞) equal to

X reflected at its running infimum. The reflected process is of great importance in many areas of

probability, ranging from the fluctuation theory for Lévy processes (e.g. [2, Ch. VI] and the references

therein) to mathematical statistics (e.g. [16, 18], CUSUM method of cumulative sum), queueing theory

(e.g. [1, 17]), mathematical finance (e.g. [10, 14], drawdown as risk measure), mathematical genetics

(e.g. [13] and references therein) and many more. The aim of this paper is to study the weak limiting

behaviour of the following functionals of the reflected process Y :

(1.1) Y (t)
.
= X(t)− inf

0≤s≤t
X(s), Z(x)

.
= Y (τ(x))− x, m(t)

.
= Y ∗(t)− y∗(t),

where t, x ∈ R+ and y∗ is a specific non-linear curve to be specified shortly. Here τ(x) and Y ∗(t) denote

the first entry time of Y into the interval (x,∞) and the supremum up to time t of the reflected process

respectively,

τ(x)
.
= inf{t ≥ 0 : Y (t) > x} (inf ∅

.
= ∞), Y ∗(t)

.
= sup

0≤s≤t
Y (s).

In this paper we restrict to Lévy processes satisfying the Cramér assumption and a standard non-lattice

condition:
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Assumption 1. The mean of X(1) is finite, Cramér’s condition, E[eγX(1)] = 1 for γ > 0, holds,

E[eγX(1)|X(1)|] < ∞ and either the Lévy measure of X is non-lattice or 0 is regular for (0,∞).

Cramér’s condition implies that X tends to −∞ almost surely, and hence, by a classical time re-

versal argument, the reflected process Y has a weak limit Y (∞) equal in distribution to the ultimate

supremum supt≥0X(t). The second functional, the overshoot Z(x), admits a weak limit Z(∞) de-

scribed in Section 3 (see Proposition 3). The question of interest is that of the weak asymptotics of

the vector (Y (t), Z(x)).

Theorem 1. Y (t) and Z(x) are asymptotically independent, as min{t, x} → ∞, in the sense that

lim
min{x,t}→∞

E[exp (−uY (t)− vZ(x))] = E[exp (−uY (∞))]E[exp (−vZ(∞))]

= lim
min{x,t}→∞

E[exp (−uY (t))]E[exp (−vZ(x))],

for u, v ∈ R+. (Y (t), Z(x)) converges weakly to the law (Y (∞), Z(∞)) given by the Laplace transform

(1.2) E[exp (−uY (∞)− vZ(∞))] =
γ

γ + v
·
φ(v)

φ(u)
, for all u, v ∈ R+,

where φ is the Laplace exponent of the ascending ladder-height subordinator of X.1 In particular, the

law of the sum Y (∞) + Z(∞) is exponential with mean 1/γ.

We now turn to the weak asymptotics of the triplet (Y (t), Z(x), m(t)). To avoid degeneracies we

specify the centering curve to be given by

(1.3) y∗(t) = γ−1 log(t), t ∈ R+\{0}.

This choice is informed by Iglehart [11], where in the analogous random walk setting x(n) = γ−1 logn

was chosen as centering sequence, and by the main result in Doney & Maller [7], which implies that

running maximum m(t) of Y after centering by the curve y∗(t) given in (1.3) converges weakly to a

Gumbel distribution (see [8, Ch. 3] for the form of the Gumbel distribution and Sect. 5 below for a

simple derivation of the distribution of m(∞) deploying [7, Thm. 1]). A question of interest is if and

when the asymptotic independence of Y (t) and Z(x) extends to that of the triplet Y (t), Z(x) and

m(t). A priori, it appears unlikely that Z(x) and m(t) are asymptotically independent in general, for

x and t tending to infinity in an arbitrary way. In the next result we give a sufficient condition for

such asymptotic independence to hold, namely that min{x, t} → ∞ such that

x− y∗(t) → ∞, or equivalently t exp{−γx} → 0.

Since, by [7], the process Y ∗ has weakly convergent random fluctuations around the deterministic

curve y∗, the assumption x− y∗(t) → ∞ in effect forces the process Y to reach the level x for the first

time after time t. The result is as follows.

1Note that the Cramér condition implies E[X(1)] < 0 and hence φ(0) > 0 (see (2.1) for definition of φ and Section 2

for more details on ladder processes), making the formula in (1.2) well defined.
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Figure 1. This schematic figure of a path of Y depicts the values of the three functionals in (1.1)

at times t, t′, and t′′ before and after the reflected process crosses the level x, and the curve y∗(t) =

γ−1 log(t).

Theorem 2. Let min{t, x} → ∞ such that t exp{−γx} → 0. Then the triplet (Y (t), Z(x),m(t))

converges weakly and the law of the weak limit (Y (∞), Z(∞),m(∞)) is determined by the Fourier-

Laplace transform

E [exp (−uY (∞)− vZ(∞) + iβm(∞))](1.4)

=
γ

γ + v
·
φ(v)

φ(u)
· Γ

(
1−

iβ

γ

)
· exp

[
iβγ−1 log

(
ℓCγ φ̂(γ)

)]

for all u, v ∈ R+, β ∈ R, where φ̂ is the Laplace exponent of the decreasing ladder-height process, L̂−1

is the decreasing ladder-time processes with ℓ
.
= 1/E[L̂−1(1)] (see Section 2 for the definitions of φ̂

and L̂−1), Γ(·) denotes the gamma function and the constant Cγ is given by

(1.5) Cγ
.
=

φ(0)

γφ′(−γ)
.

In particular, Y (t), Z(x) and m(t) are asymptotically independent: for any a, b ∈ R+ and c ∈ R

P (Y (t) ≤ a, Z(x) ≤ b,m(t) ≤ c) = P (Y (t) ≤ a)P (Z(x) ≤ b)P (m(t) ≤ c) + o(1).2

The remainder of the paper is devoted to the proofs of Prop. 3 and Thms. 1 and 2. After notation

and setting are fixed in Sect. 2, the law of the asymptotic overshoot Z(∞) is established in Sect. 3

and the proof of the asymptotic independence is given in Sect. 4. Drawing on these results we present

the proofs of Prop. 3 and Thms. 1 and 2 in Sect. 5 by deploying a number of classical facts from the

fluctuation theory of Lévy processes.

2. Setting and notation

The formula for the law of the asymptotic overshoot follows from Lemma 5 and Prop. 7 established

in Sect. 3. The asymptotic independence in Thms. 1 and 2 is a consequence of Lemma 10 proved in

Sect. 4. We next briefly define the setting and notation to be used throughout.

Let (Ω,F , {F(t)}t≥0, P ) be a filtered probability space that carries a Lévy process X satisfying

As. 1. Here Ω
.
= D(R) is the Skorokhod space of real-valued functions that are right-continuous

2Here we use the definiton f(t, x) = o(1) if limmin{t,x−y∗(t)}→∞ f(t, x) = 0.
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on R+ and have left-limits on (0,∞), X is the coordinate process, {F(t)}t≥0 denotes the completed

filtration generated by X, which is right-continuous, and F is the completed σ-algebra generated by

{X(t)}t≥0. For any x ∈ R denote by Px the probability measure on (Ω,F) under which X − x is a

Lévy process. We refer to [2, Ch. I] for further background on Lévy processes.

Let L be a local time3 at zero of the reflected process Ŷ = {Ŷ (t)}t≥0 of the dual X̂
.
= −X, i.e.

Ŷ (t)
.
= X∗(t) − X(t), where X∗(t)

.
= sup0≤s≤tX(s). The ladder-time process L−1 = {L−1(t)}t≥0

is equal to the right-continuous inverse of L. The ladder-height process H = {H(t)}t≥0 is given by

H(t)
.
= X(L−1(t)) for all t ≥ 0 with L−1(t) finite and by H(t)

.
= +∞ otherwise. Let φ be the Laplace

exponent of H,

(2.1) φ(θ)
.
= − logE[e−θH(1)I{H(1)<∞}], for any θ ∈ R+,

where IA denotes the indicator of a set A. Analogously, define the local time L̂ of Y at zero, the

decreasing ladder-time and ladder-height subordinators L̂−1 and Ĥ with φ̂ the Laplace exponent of

Ĥ. See [2, Sec. VI.1] for more details on ladder subordinators. Note that the Cramér assumption

implies E[X(1)] < 0, making Y (resp. Ŷ ) a recurrent (resp. transient) Markov process on R+. Hence

φ(0) > 0 and the stopping time τ(x) is a.s. finite for any x ∈ R+, so that H is a killed subordinator

under P and the overshoot Z(x) a P -almost surely defined random variable.

We now briefly review elements of Itô’s excursion theory that will be used in the proof. We refer

to [9], [6] and [2, Ch. IV] for a general treatment and further references. Consider the Poisson point

process of excursions away from zero associated to the strong Markov process Y . For each moment

t ∈ R+ of local time, let ǫ(t) ∈ E = {ε ∈ Ω : ε ≥ 0} denote the excursion at t:

(2.2) ǫ(t)
.
=








Y
(
s+ L̂−1(t−)

)
, s ∈ [0, L̂−1(t)− L̂−1(t−))

0, s ≥ L̂−1(t)− L̂−1(t−)



 , if L̂−1(t−) < L̂−1(t),

Υ, otherwise,

where Υ ≡ 0 is the null function, L̂−1(t−)
.
= lims↑t L̂

−1(s) if t > 0 and L̂−1(0−) = 0 otherwise.

Definition (2.2) uses the fact L̂(∞)
.
= lims→∞ L̂(s) = ∞ P -a.s., which holds by the recurrence of Y .

Itô [12] proved that ǫ is a Poisson point process under P . Let n be the intensity (or excursion) measure

on (E ,G) of ǫ, where G is the Borel σ-algebra on the Polish space E . In Sections 4 and 3, for any Borel-

measurable non-negative (or integrable) functional F : E → R we denote n(F ) = n(F (ε))
.
=

∫
E F dn.

In this notation the equality n(A) = n(IA) holds for any A ∈ G and, if n(A) ∈ (0,∞), we denote

n(B|A)
.
= n(B ∩A)/n(A) for any B ∈ G.

For an excursion ε ∈ E , let ρ(x, ε) (for any x > 0) and ζ(ε) be the first time that ε enters the

interval (x,∞) and the lifetime of ε respectively:

(2.3) ρ(x, ε)
.
= inf{s ≥ 0 : ε(s) > x} ζ(ε)

.
= inf{t > 0 : ε(t) = 0},

where here and troughout we set inf ∅
.
= ∞. For brevity we sometimes write ρ(x) (resp. ζ) instead

of ρ(x, ε) (resp. ζ(ε)). Note that ζ(ǫ(t)) is given in terms of L̂−1 by ζ(ǫ(t)) = L̂−1(t) − L̂−1(t−) for

3In the case 0 is not regular for [0,∞), only a finite number of maxima of X are attained in any compact time interval.

In this case we work with the right-continuous version of local time L.
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any t ∈ R+. We refer to [2, Ch. O.5] for a treatment of Poisson point processes, the compensation

formula and the properties of its characteristic measure.

3. Limiting overshoot of the reflected process

In this section we prove the following result, which plays a role in Theorems 1 and 2.

Proposition 3. (i) The weak limit Z(∞) of Z(x) as x → ∞ has Laplace transform

(3.1) E[e−vZ(∞)] =
γ

γ + v
·
φ(v)

φ(0)
for all v ∈ R+,

where φ is the Laplace exponent of the ascending ladder-height subordinator of X.4

(ii) Let m
.
= limu→∞ φ(u)/u and νH denote the Lévy measure of the Laplace exponent φ with the tail

function νH(x)
.
= νH((x,∞)), x > 0. Then the law of the asymptotic overshoot Z(∞) is given by

(3.2) P (Z(∞) > x) =
γ

φ(0)
e−γx

∫ ∞

x
eγy νH(y) dy, x ∈ [0,∞), and P (Z(∞) = 0) =

γ

φ(0)
m.

In particular, Z(∞) is a continuous random variable except possibly at the origin.

The formula in (3.1) of Prop. 3, which characterises the law of the limiting overshoot Z(∞) is

implied by the main result in [15]. As this formula constitutes a key step in the proofs of Theorems 1

and 2, we give in this section an independent proof of Prop. 3 based on excursion theory alone. This

approach is in the spirit of the present paper and should be contrasted with the result in [15], which

crucially relies on the renewal theorem.

The proof of Prop. 3 is as follows: we first establish Cramér’s asymptotics for the exit probabilities

of X from a finite interval. Then we describe the distribution of the overshoot Z(x), defined in (1.1),

in terms of the excursion measure n and apply the result from the first step to find the relevant

asymptotics under the excursion measure, which in turn yield the Laplace transform of the limiting

law Z(∞). Finally, formula (3.2) is established in Section 3.1.

Let T (x) and T̂ (x) denote the first-passage times of X into the intervals (x,∞) and (−∞,−x)

respectively for any x ∈ R+,

(3.3) T (x)
.
= inf{t ≥ 0 : X(t) ∈ (x,∞)}, T̂ (x)

.
= inf{t ≥ 0 : X(t) ∈ (−∞,−x)}.

and define the overshoot

K(x)
.
= X(T (x))− x on the event {T (x) < ∞}.

Denote by f(x) ∼ g(x) as x ↑ ∞ the functions f, g : R+ → (0,∞) satisfying limx↑∞
f(x)
g(x) = 1.

Proposition 4. (i) (Asymptotic two-sided exit probability) For any z > 0 we have

(3.4) P (T (x) < T̂ (z)) ∼ Cγe
−γx

(
1− E

[
eγX(T̂ (z))

])
as x → ∞,

where the constant Cγ is given in (1.5).

4Note that the Cramér condition implies E[X(1)] < 0 and hence φ(0) > 0 (see (2.1) for definition of φ and Section 2

for more details on ladder processes), making the formula in (3.1) well defined.
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(ii) (Asymptotic overshoot) Let u ∈ R+ and fix z > 0. Then we have as x → ∞:

(3.5) E
[
e−uK(x)I

{T (x)<T̂ (z)}

]
∼ C(u)e−γx

(
1− E

[
eγX(T̂ (z))

])
, with C(u)

.
=

γ

γ + u
·
φ(u)

φ(0)
· Cγ

and Cγ in (1.5).

Remarks. (i) Let P
(γ)
x be the Cramér measure on (Ω,F). Its restriction to F(t) is given by

P (γ)
x (A)

.
= Ex[e

γ(X(t)−x)IA], A ∈ F(t), t ∈ R+.

Here Ex is the expectation under Px and IA is the indicator of A. Under As. 1 it follows that P
(γ)
x is

a probability measure and X − x is a Lévy process under P
(γ)
x with E

(γ)
x [X(1)− x] ∈ (0,∞).

(ii) Since the overshoot of X is the same as that of its ladder process, the weak limit under P (γ) of

K(x) as x → ∞, needed in the proof of Proposition 4, follows from [4, Thm. 1]. The second ingredient

of the proof of Proposition 4 is the Cramér estimate for Lévy processes [3].

(iii) Note that the random variable X(T̂ (z)) under the expectation in (3.4) is well-defined P -a.s.,

since As. 1 implies that the Lévy process X drifts to −∞ P -a.s.

Proof. (i) Recall that, under As. 1, [3] shows that Cramér’s estimate remains valid for the Lévy process

X (with Cγ defined in (1.5)):

(3.6) P (T (y) < ∞) ∼ Cγe
−γy as y → ∞.

By the strong Markov property and spatial homogeneity of X it follows that

(3.7) P (T (x) < T̂ (z)) = P (T (x) < ∞)−

∫

(−∞,−z]
Py(T (x) < ∞)P (X(T̂ (z)) ∈ dy, T̂ (z) < T (x)).

The translation invariance of X and Cramér’s estimate (3.6) imply the following equality

Py(T (x) < ∞) = Cγe
−γxeγy (1 + r(x− y)) for all x > y,(3.8)

where limx′→∞ r(x′) = 0. Equality (3.8) applied to the identity in (3.7) yields

C−1
γ eγxP (T (x) < T̂ (z)) = 1− E

[
eγX(T̂ (z))I

{T̂ (z)<T (x)}

]
(3.9)

+ r(x)− E
[
eγX(T̂ (z))r(x−X(T̂ (z)))I

{T̂ (z)<T (x)}

]
.

Since X(T̂ (z)) ≤ −z < 0 on the event {T̂ (z) < ∞}, which satisfies P (T̂ (z) < ∞) = 1 by As. 1, the

dominated convergence theorem implies

E
[
eγX(T̂ (z))

]
= E

[
eγX(T̂ (z))I

{T̂ (z)<T (x)}

]
+ o(1) as x → ∞.

An application of the dominated convergence theorem to the second expectation on the right-hand

side of equality (3.9), together with the fact that r vanishes in the limit as x → ∞, proves the first

statement in the proposition.

(ii) Recall that the Laplace exponent φ of the increasing ladder-height process H is a strictly

concave function that satisfies φ(−γ) = 0 so that the right-derivative φ′(−γ) is strictly positive.

Under the measure P (γ) the identity φ(γ)(γ + u) = φ(u) holds for any u ∈ R+ and hence, since

φ′(−γ) = E(γ)[X1] > 0, X drifts to +∞ as t → ∞, i.e. P (γ)(T (x) < ∞) = 1 for any x > 0.

Therefore, under As. 1, under P (γ) the ladder-height process H is a non-lattice subordinator with

E(γ) [H(1)] ∈ (0,∞). Since the overshoot K(x) is equal to that of H over x, [4, Thm. 1] implies that
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the weak limit K(x)
D
−→ K(∞), as x → ∞, exists. Since x 7→ e−ux is uniformly continuous on R+, [5,

p. 16, Thm. 2.1] implies limx↑∞E(γ)[e−uK(x)] = E(γ)[e−uK(∞)] for any fixed u ≥ 0. A version of the

Wiener-Hopf factorisation of X (see e.g. [2, p.183]) under the measure P (γ) yields

(3.10)

∫ ∞

0
qe−qxE(γ)

[
e−uK(x)

]
dx =

q

φ(q − γ)
·
φ(q − γ)− φ(u− γ)

q − u
for any q, u > 0.

Since the function x 7→ E(γ)
[
e−uK(x)

]
is bounded, the dominated convergence theorem implies that

in the limit as q ↓ 0 we get E(γ)[e−uK(∞)] = φ(u − γ)/(uφ′(−γ)). The Esscher change of measure

formula implies the following for any u ≥ 0 (C(u) is defined in (3.5)):

(3.11) E[e−uK(x)I{T (x)<∞}] = e−γx · E(γ)[e−(γ+u)K(x)] ∼ C(u)e−γx as x → ∞.

Furthermore, since the expectation in (3.11) is bounded as x → ∞, there exists a bounded function

R : R+ → R, such that E[e−uK(x)I{T (x)<∞}] = C(u)e−γx(1 + R(x)) for x > 0, and limx→∞R(x) = 0.

The strong Markov property at T̂ (z) and an argument analogous to the one used in the proof of

Proposition 4(i) (cf. (3.9)) yields

C(u)−1eγxE[e−uK(x)I
{T (x)<T̂ (z)}

]

= 1− E[eγX(T̂ (z))I
{T̂ (z)<T (x)}

] +R(x)− E[eγX(T̂ (z))R(x−X(T̂ (z)))I
{T̂ (z)<T (x)}

],

which implies equivalence (3.5). �

Since the expectation E(γ)[X1] is strictly positive, the reflected process Y , under P (γ), is transient

and L̂(∞) is an exponentially distributed random variable, independent of the killed subordinator

{(L̂−1(t), Ĥ(t))}
t∈[0,L̂(∞))

. As a consequence, the excursion process ǫ′ = {ǫ′(t)}t≥0, given by the

formula in (2.2) for t < L̂(∞) and the cemetery state ∂ after L̂(∞), is, under P (γ), a Poisson point

process killed at an independent exponential time with mean E(γ)[L̂(∞)]. Put differently, ǫ′ is equal

to (2.2) up to the first entry into {ε ∈ E : ζ(ε) = ∞} and killed after that. In the rest of the paper we

will denote by n(γ) the excursion measure under P (γ) of the killed Poisson point process ǫ′.

Lemma 5. For any x > 0 the random variable L̂(τ(x)) is exponentially distributed under P (resp.

P (γ)) with parameter n(ρ(x) < ζ) (resp. n(γ)(ρ(x) < ζ)) and the following equality holds:

P (Z(x) > y) = n(ε(ρ(x, ε))− x > y|ρ(x) < ζ) for any y ∈ R+.

Proof. The definitions of the Poisson point process ǫ in (2.2) and the first-passage time ρ(x, ε) in (2.3)

imply the equality L̂(τ(x)) = TA
.
= inf{t ≥ 0 : ǫ(t) ∈ A} where A

.
= {ε ∈ E : ρ(x, ε) < ζ(ε)}.

The first statement in the lemma follows since TA is exponentially distributed with parameter n(A)

(e.g. [2, Sec. O.5, Prop. O.2]). The second statement is a consequence of the fact that ǫ(TA) follows an

n-uniform distribution (i.e. P (ǫ(TA) ∈ B) = n(B|A) for any B ∈ G, see e.g. [2, Sec. O.5, Prop. O.2])

and taking B to be equal to {ε ∈ E : ρ(x, ε) < ζ(ε), ε(ρ(x, ε))− x > y}. �

Conversely, one may also express n as a ratio of expectations under the measure P . To derive such

a representation, for any x > 0, define the random variable KF (x) by

(3.12) KF (x)
.
=

∑

g

F (ǫg)I{g<τ(x)},
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where the sum runs over all left-end points g of excursion intervals, ǫg
.
= ǫ(L̂(g)), and F : E → R is

Borel-measurable and non-negative (note that F ≡ 1 implies KF (x) ≡ 1 P - and P (γ)-almost surely).

Lemma 6. (i) Define V̂(x)
.
= E

[
L̂(τ(x))

]
and V̂(γ)(x)

.
= E(γ)

[
L̂(τ(x))

]
. Then the following hold:

n(F ) = V̂(x)−1E [KF (x)] , n(γ)(F ) = V̂(γ)(x)−1E(γ) [KF (x)] .(3.13)

In particular we have V̂(x) · n(ρ(x) < ζ) = 1 and V̂(γ)(x) · n(γ)(ρ(x) < ζ) = 1.

(ii) The following holds n(γ)(F (ε)I{ρ(x,ε)<ζ(ε)}) = n(eγε(ρ(x,ε))F (ε)I{ρ(x,ε)<ζ(ε)}). Hence we have

(3.14) n(γ)(ρ(x, ε) < ζ(ε)) = n(eγε(ρ(x,ε))I{ρ(x,ε)<ζ(ε)}).

(iii) For any z ∈ (0,∞) the following holds as x → ∞:

(3.15) n(γ)(ρ(x, ε) < ζ(ε)) ∼ φ̂(γ) and eγxn(ε(ρ(z, ε)) > x, ρ(z, ε) < ζ(ε)) = o(1).

Proof of Lemma 6. (i) The proof of (3.13) is identical under both measures. Hence we give the

argument only under P . Note that for any left-end point g of an excursion interval the following

equality holds: F (ǫg)I{g<τ(x)} = F (ǫg)I{g≤τ(x)}. Since for every ε ∈ E the process t → F (ε)I{t≤τ(x)} is

left-continuous and adapted, an application of the compensation formula of excursion theory for the

Poisson point process ǫ defined in (2.2) to KF (x) (see e.g. [2, Cor. IV.11]) yields representation (3.13).

The second statement follows by taking F = I{ρ(x)<ζ} in (3.13), since in that case KF (x) = I{τ(x)<∞}.

(ii) Define G(ε)
.
= F (ε)I{ρ(x,ε)<ζ(ε)} and let KG(x) as in (3.12). The Esscher change of measure

formula and the compensation formula in [2, Cor. IV.11] yield

E(γ) [KG(x)] = E

[∫ ∞

0
eγX(t−)I{t≤τ(x)}dL̂(t)

]
n
(
eγε(ρ(x,ε))F (ε)I{ρ(x,ε)<ζ(ε)}

)
.(3.16)

A change of variable t = L̂−1(u) under the expectation on the right-hand side of (3.16), Fubini’s

theorem and P (γ)-a.s. equality {L̂−1(u−) ≤ τ(x)} = {L̂−1(u) ≤ τ(x)} yield

E

[∫ ∞

0
eγX(t−)I{t≤τ(x)}dL̂(t)

]
= E(γ)

[∫ L̂(∞)

0
I
{L̂−1(u−)≤τ(x)}

du

]
= V̂(γ)(x).

The final equality follows from {L̂−1(u−) ≤ τ(x)} = {u ≤ L̂(τ(x))}. Equality in (3.13) under P (γ)

applied to KG(x) and (3.16) now imply the formula in part (ii) of the lemma.

(iii) By Lemma 5 the random variable L̂(τ(x)) is exponentially distributed under P (γ) with parameter

n(γ)(ρ(x) < ζ). Hence n(γ)(ρ(x) < ζ) = − logP (γ)(L̂(τ(x)) > 1) and the dominated convergence theo-

rem implies limx↑∞ n(γ)(ρ(x) < ζ) = − logP (γ)(L̂(∞) > 1) = − logP (γ)(L̂−1(1) < ∞), which is equal

to φ̂(γ)(0) = φ̂(γ) by the elementary equality φ̂(γ)(u) = φ̂(γ + u), u ≥ 0. Chebyshev’s inequality and

part (ii) of the lemma imply eγxn(ε(ρ(z, ε)) > x, ρ(z, ε) < ζ(ε)) ≤ n(eγε(ρ(z,ε))I{ε(ρ(z,ε))>x,ρ(z,ε)<ζ(ε)}) =

n(γ)(ε(ρ(z, ε)) > x, ρ(z, ε) < ζ(ε)). The final expression tends to zero as x ↑ ∞ by the dominated con-

vergence theorem and the lemma follows. �

We now apply Lemma 6 to establish the asymptotic behaviour of certain integrals against the

excursion measure as x → ∞.
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Proposition 7. Let u ≥ 0. Then, as x → ∞, we have

(3.17) n(e−u(ε(ρ(x))−x)|ρ(x) < ζ) −→ C(u) · C−1
γ =

γ

γ + u
·
φ(u)

φ(0)
.

In particular, as x → ∞, Z(x) converges weakly to a random variable Z(∞) with Laplace transform

E[exp(−uZ(∞))] = C(u) · C−1
γ .

Remark. Recall the result of Doney & Maller [7, Thm. 1] (Cγ is defined in (1.5)):

(3.18) n(ρ(x) < ζ) ∼ Cγ φ̂(γ) e
−γx as x → ∞.

Proof of Proposition 7. Fix M > 0 and recall that, under the probability measure n( · |ρ(M) < ζ),

the coordinate process has the same law as the first excursion of Y away from zero with height larger

than M . For any x > M , the following identity holds:

n(e−u(ε(ρ(x))−x)|ρ(x) < ζ) = n(e−u(ε(ρ(x))−x)I{ρ(x)<ζ}|ρ(M) < ζ)
n(ρ(M) < ζ)

n(ρ(x) < ζ)
.(3.19)

The definitions of the point process ǫ in (2.2) and of the compensator measure n, together with the

strong Markov property under the probability measure n( · |ρ(M) < ζ), imply that ε ◦ θρ(M) has the

same law as the process X with entrance law n(ε(ρ(M, ε)) ∈ dz|ρ(M) < ζ) and killed at the epoch of

the first passage into the interval (−∞, 0]. We therefore find

n(e−u(ε(ρ(x,ε))−x)I{ρ(x)<ζ}|ρ(M) < ζ) = n
(
e−u(ε(ρ(M,ε))−x)I{ε(ρ(M,ε))>x}|ρ(M) < ζ

)

+

∫

[M,x]
Ez

[
e−uK(x)I

{T (x)<T̂ (0)}

]
n(ε(ρ(M, ε)) ∈ dz|ρ(M) < ζ),(3.20)

where K(x) = X(T (x))− x. By the second equality in (3.15) of Lemma 6, we have as x ↑ ∞:

eγxn
(
e−u(ε(ρ(M,ε))−x)I{ε(ρ(M,ε))>x}|ρ(M) < ζ

)
≤ eγx

n (ε(ρ(M, ε)) > x, ρ(M, ε) < ζ(ε))

n(ρ(M) < ζ)
= o(1).

This estimate, spatial homogeneity of X and equations (3.19) and (3.20) yield as x → ∞:

n(e−u(ε(ρ(x,ε))−x)|ρ(x) < ζ)

= o(1) +

∫

[M,x]
E
[
e−uK(x−z)I

{T (x−z)<T̂ (z)}

] n(ε(ρ(M, ε)) ∈ dz, ρ(M) < ζ)

n(ρ(x) < ζ)
.(3.21)

Formula (3.5) of Proposition 4 implies the following equality:

(3.22) E
[
e−uK(x−z)I

{T (x−z)<T̂ (z)}

]
= C(u)e−γx (1−G(z) +R(x− z)) eγz,

where G,R : R+ → R are bounded functions such that G(z) = E[eγX(T̂ (z))] and limx′→∞R(x′) =

0. Therefore the equality in (3.21), the asymptotic behaviour of n(ρ(x) < ζ) given in (3.18) and

Lemma 6 (ii) imply the following identity as x → ∞:

n(e−u(ε(ρ(x,ε))−x)|ρ(x) < ζ) = Aγ(u)n
(γ)(ε(ρ(M, ε)) ∈ [M,x], ρ(M, ε) < ζ(ε)) + o(1)(3.23)

+ Aγ(u)n
(γ)

(
[R(x− ε(ρ(M, ε)))−G(ε(ρ(M, ε)))] I{ε(ρ(M,ε))∈[M,x],ρ(M,ε)<ζ(ε)}

)
,

where Aγ(u)
.
= C(u)/(Cγ φ̂(γ)). By (3.23) the limit limx→∞ n(e−u(ε(ρ(x,ε))−x)|ρ(x) < ζ) exists and the

dominated convergence theorem yields

lim
x→∞

n(e−u(ε(ρ(x,ε))−x)|ρ(x) < ζ) = Aγ(u)
(
n(γ)(ρ(M) < ζ)− n(γ)

(
G(ε(ρ(M, ε)))I{ρ(M,ε)<ζ(ε)}

))
.
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Since this equality holds for any M > 0 and the left-hand side does not depend on M , if the right-hand

side has a limit as M → ∞, then the equality also holds in this limit. Note that (3.15) of Lemma 6 (iii)

implies limM→∞ n(γ)(ρ(M) < ζ) = φ̂(γ). Since G(z) = E[eγX(T̂ (z))] it holds G(ε(ρ(M, ε))) ≤ e−γM

and an application of the dominated convergence theorem yields (3.17). By combining with Lemma 5

we find the stated form of Laplace transform of Z(∞). �

3.1. Proof of Prop. 3. (i) Equation (3.1) is established in Proposition 7.

(ii) The Wiener-Hopf factorisation of X [2, p. 166] implies the following identity for some k ∈ (0,∞):

(3.24) − logE[eθX(1)] = kφ(−θ)φ̂(θ), θ ∈ C, ℜ(θ) = 0.

By analytic continuation and As. 1, identity (3.24) holds for all θ ∈ C with ℜ(θ) ∈ [0, γ). Furthermore,

continuity implies that (3.24) remains valid for θ = γ. As Ĥ is a non-zero subordinator (recall

E[X(1)] < 0), we have φ̂(γ) > 0 and hence φ(−γ) = 0.

By (1.2) the Laplace transform of x 7→ P (Z(∞) > x) is (1 − γ
φ(0)φ(v)/(v + γ))/v. The Lévy-

Khintchine formula for φ and integration by parts imply φ(v) = φ(0) + v(m +
∫∞
0 e−vxνH(x) dx) for

any v ≥ −γ. Since φ(−γ) = 0, we have
∫∞
0 eγyνH(y)dy = φ(0)/γ − m. A direct Laplace inversion,

based on this representation of φ, yields the left-hand side of formula (3.2). The atom at zero is

obtained by taking the limit in (3.1) of part (i) as v → ∞.

4. Asymptotic independence

In this section we establish the asymptotic independence of the triplet (Y (t), Z(x+ y),M(t, x)) as

min{t, x, y} → ∞, i.e. for any a, b ∈ R+ and c ∈ R

P (Y (t) ≤ a, Z(x+ y) ≤ b,M(t, x) ≤ c) = P (Y (t) ≤ a)P (Z(x+ y) ≤ b)P (M(t, x) ≤ c) + o(1).5

where

(4.1) M(t, x)
.
= Y ∗(t)− x, t, x ∈ R+.

From this we deduce (see Lemma 11 below) he asymptotic independence of (Y (t), X(x),m(t)) as

min{t, x} → ∞ and x− y∗(t) → ∞, described in Theorem 2. We start with the following observations

concerning the large time behaviour of the local time L̂:

Lemma 8. The following statements hold true: (i) We have E[L̂−1(1)] ∈ (0,∞).

(ii) As in Thm. 2 denote ℓ = 1/E[L̂−1(1)]. For any δ ∈ (0, ℓ/2) we have

lim sup
min{x,t}→∞

P (L̂(τ(x)) ∈ t[ℓ− δ, ℓ+ δ]) ≤
4

eℓ
δ.

(iii) The following limit holds: P (L̂(t) = L̂(τ(x))) −→ 0 as min{x, t} → ∞;

(iv) For any δ1, δ2 ∈ [0, 1/4) we have

lim sup
min{x,t}→∞

P (L̂(t(1− δ1)) ≤ L̂(τ(x)) ≤ L̂(t(1 + δ2))) ≤
8

e
max{δ1, δ2}.(4.2)

For any fixed s ∈ (0,∞) it holds P (L̂((t− s) ∨ 0) ≤ L̂(τ(x)) < L̂(t)) −→ 0 as min{x, t} → ∞.

5f(t, x, y) = o(1) (min{x, y, t} → ∞) if limmin{t,x,y}→∞ f(t, x, y) = 0
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Remarks. (i) Part (iii) in Lemma 8 implies that, as x and t tend to infinity, the probability that

the excursion straddling t is the first excursion with height larger than x tends to zero. This fact is

in line with the asymptotic independence of Z(∞) and Y (∞). Part (iv) of Lemma 8 has analogous

interpretation.

(ii) The important role played by Lemma 8 in the proof of the asymptotic independence in Thms. 1

and 2 lies in the fact that, the limits in parts (iii) and (vi) do not require the point (t, x) in (0,∞)2

to tend to infinity along a specific trajectory but only for its norm min{x, t} to increase beyond all

bounds.

(iii) In contrast to Lemma 8(iv) the inequality lim supmin{x,t}→∞ P (L̂(τ(x)) < L̂(t) ≤ L̂(τ(x+z))) > 0

holds for any fixed z > 0. To show this, recall L̂(t)/t → ℓ a.s. as t ↑ ∞ (see e.g. proof of Lemma 8(iii)

below) and note that for any small δ > 0 we have P (L̂(τ(x)) < L̂(t) ≤ L̂(τ(x + z))) ≥ P (L̂(τ(x)) <

t(ℓ− δ), L̂(τ(x+ z)) ≥ t(ℓ+ δ)) + o(1). Hence by Lemma 5 and equality (3.18) we find

P (L̂(τ(x)) < t(ℓ− δ), L̂(τ(x+ z)) ≥ t(ℓ+ δ))

≥ P (L̂(τ(x+ z)) ≥ t(ℓ+ δ))− P (L̂(τ(x)) ≥ t(ℓ− δ))

= e−t(ℓ+δ)n(ρ(x+z)<ζ) − e−t(ℓ−δ)n(ρ(x)<ζ) → e−(ℓ+δ)Cγ φ̂(γ)e−γz

− e−(ℓ−δ)Cγ φ̂(γ) > 0,

where min{x, t} → ∞ in such a way that te−xγ → 1 and ρ is given in (2.3). Since z > 0, the final

inequality clearly holds for δ = 0 and hence by continuity for all δ > 0 sufficiently small.

Proof of Lemma 8. (i) This part of the lemma is known. For completeness a short proof, based on

the Wiener-Hopf factorisation, is given in the Appendix.

(ii) For any x, t ∈ (0,∞), Lemma 5 implies P (L̂(τ(x)) > t) = e−t n(B(x)) for all t ≥ 0, where

B(x)
.
= {ρ(x) < ζ} with ρ defined in (2.3). Therefore for any δ ∈ (0, ℓ/2) the following holds:

P (L̂(τ(x)) ∈ t[ℓ− δ, ℓ+ δ]) = e−t ℓ n(B(x))
(
eδ t n(B(x)) − e−δ t n(B(x))

)
.

Lagrange’s theorem implies that there exists ξt,x ∈ (−δ, δ) such that

P (L̂(τ(x)) ∈ t[ℓ− δ, ℓ+ δ]) = 2δtn(B(x))e(ξt,x−ℓ)tn(B(x))

≤ 2δtn(B(x))e−tn(B(x))ℓ/2 ≤ δ4/(eℓ),

where the inequality follows from |ξt,x| < ℓ/2. Since t, x ∈ (0,∞) were arbitrary, this concludes the

proof of part (ii).

(iii) Since L̂−1 is a subordinator under P , the strong law of large numbers (see e.g. [2, p.92]) implies

that, as t → ∞, the ratio t/L̂−1(t) tends to ℓ almost surely. Hence, for any δ ∈ (0, ℓ/2),

(4.3) P
(
L̂(t)/t ∈ [ℓ− δ, ℓ+ δ]

)
= 1 + o(1), as t → ∞.

Equation (4.3) yields the following as min{x, t} → ∞:

P (L̂(t) = L̂(τ(x))) = P (L̂(t) = L̂(τ(x)), L̂(t) ∈ t[ℓ− δ, ℓ+ δ]) + o(1)

≤ P (L̂(τ(x)) ∈ t[ℓ− δ, ℓ+ δ]) + o(1).

Hence part (ii) yields lim supmin{x,t}→∞ P (L̂(t) = L̂(τ(x))) ≤ δ4/(eℓ). Since δ ∈ (0, ℓ/2) was arbitrary

and probabilities are non-negative quantities, the limit in part (iii) follows.
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(iv) Note that for any α ≥ 0 the quotient L̂(tα)/t tends to ℓα P -a.s. as t → ∞. For any δ1, δ2 ∈ [0, 1/4)

we therefore find that the probability of the event

Aδ1,δ2(t, x) = {L̂(t(1− δ1)) ≤ L̂(τ(x)) ≤ L̂(t(1 + δ2))}

satisfies the following as min{x, t} → ∞:

P (Aδ1,δ2(t, x)) = P (Aδ1,δ2(t, x), L̂(t(1− δ1)), L̂(t(1 + δ2)) ∈ t[ℓ(1− δ), ℓ(1 + δ)]) + o(1)

≤ P (L̂(τ(x)) ∈ t[ℓ(1− δ), ℓ(1 + δ)]) + o(1),(4.4)

for any δ ∈ (2max{δ1, δ2}, 1/2). Since 0 < δℓ < ℓ/2, part (ii) of the lemma and inequality (4.4) imply

that lim supmin{x,t}→∞ P (Aδ1,δ2(t, x)) ≤ δ4/e. Therefore the first inequality in part (iv) is satisfied.

The second limit in part (iv) follows by noting that, for any s ∈ R+ and δ1 ∈ (0, 1/4), the inclusion

{L̂((t− s)∨ 0) ≤ L̂(τ(x)) < L̂(t)} ⊂ Aδ1,0(t, x) holds for all (t, x) with large min{x, t}. Hence by (4.2)

we have

lim sup
min{x,t}→∞

P (L̂((t− s) ∨ 0) ≤ L̂(τ(x)) < L̂(t)) ≤ δ18/e.

Since δ1 can be chosen arbitrarily small, this proves part (iv) and hence the lemma. �

Before moving to the proof of the asymptotic independence of Y (t), Z(x + y) and M(x, t), we

establish the asymptotic behaviour of certain convolutions that will arise in the proof. For any x ∈ R+,

recall that T (x) is given in (3.3).

Lemma 9. For a ∈ [0,∞) and any family of sets F (t) ∈ F , t ∈ R+, we have

(4.5)

∫

[0,t]
P (F (t), L̂(τ(y)) < L̂(t− s))P (T (a) ∈ ds)

= P (F (t), L̂(τ(y)) < L̂(t))P (Y (t) > a) + o(1), as min{y, t} → ∞.

Proof of Lemma 9. The proof of this lemma is based on Lemma 8. Since Y (t) and sup0≤s≤tX(s) are

equal in law (by time reversal) and P (T (a) = t) → 0 as t → ∞ (as Xt → −∞ by As. 1), it holds

P (T (a) ≤ t) = P (Y (t) > a) + o(1) as t → ∞.

Hence, to prove equality (4.5), it is sufficient to establish

(4.6)

∫

[0,t]

(
P (F (t), L̂(τ(y)) < L̂(t))− P (F (t), L̂(τ(y)) < L̂(t− s))

)
P (T (a) ∈ ds) = o(1)

as min{y, t} → ∞. Since the local time L̂ is non-decreasing, the integrand in (4.6) satisfies

|P (F (t), L̂(τ(y)) < L̂(t))− P (F (t), L̂(τ(y)) < L̂(t− s))| ≤ P (L̂(t− s) ≤ L̂(τ(y)) < L̂(t)).

Hence Lemma 8(iv) and the dominated convergence theorem imply that (4.6) holds. This completes

the proof of the lemma. �

We move next to the asymptotic independence of Y (t), Z(x+ y) and M(t, x).



PATH FUNCTIONALS OF THE REFLECTED PROCESS 13

Lemma 10. For any t, x ∈ (0,∞), a, b ∈ R+, c ∈ R, y ∈ [0, x] and Borel sets A,B,C ∈ B(R) with

A = (−∞, a], B = (−∞, b] and C = (−∞, c] denote

π1(t, A) = P (Y (t) ∈ A), π2(x,B) = P (Z(x) ∈ B), π3(t, y) = P (L̂(τ(y)) < L̂(t)).

Recall the definition of M(t, x) in (4.1). We have as min{t, y, x− y} → ∞

P (Y (t) ∈ A,Z(x) ∈ B) = π1(t, A)π2(x,B) + o(1),(4.7)

P (Y (t) ∈ A,Z(x) ∈ B, L̂(τ(y)) < L̂(t)) = π1(t, A)π2(x,B)π3(t, y) + o(1),(4.8)

P (Y (t) ∈ A,Z(x) ∈ B,M(t, y) ∈ C) = π1(t, A)π2(x,B)P (M(t, y) ∈ C) + o(1).(4.9)

Proof of Lemma 10. Fix t, x ∈ R+\{0}, y ∈ [0, x], a, b ∈ R+ arbitrary, with A = (−∞, a], B = (−∞, b].

As first step we note that by a classical application of excursion theory6 involving G(τ(x)) = sup{s <

τ(x) : Y (s) = 0} = L̂−1(L̂(τ(x))−) the random elements A := {Y (s) : 0 ≤ s ≤ G(τ(x))} and

A′ := ǫ(L̂(τ(x))) are independent. Hence the sets {Z(x) ∈ B} and {L̂(τ(y)) > L̂(t), Y (t) ∈ A}, which

are measurable with respect to σ(A′) and σ(A) respectively, are independent, that is,

P (L̂(τ(y)) > L̂(t), Y (t) ∈ A,Z(x) ∈ B)(4.10)

= P (L̂(τ(y)) > L̂(t), Y (t) ∈ A)P (Z(x) ∈ B).

As second step we establish another asymptotic factorisation. Since s 7→ I{τ(x)<s≤t,Z(x)∈B} is left-

continuous and adapted an application of the compensation formula of excursion theory (see e.g. [2,

Cor. IV.11]) yields

P
(
L̂(τ(x)) < L̂(t), Y (t) ∈ A,Z(x) ∈ B

)
(4.11)

= E

[
∑

g

I{τ(x)<g≤t,Z(x)∈B} I{ǫg(t−g)∈A,t−g<ζ(ǫg)}

]

= E

[∫

[0,t]
I{τ(x)<s≤t,Z(x)∈B} n(ε(t− s) ∈ A, t− s < ζ(ε))dL̂(s)

]
,

where the sum is over all left-end points of excursion intervals. Let e(q) be an exponential random

time with mean 1/q defined by extending the probability space to (Ω×Ω′,F ⊗F ′, P ×P ′). Replacing

t by e(q) in (4.11) and denoting P := P × P ′ we have by the lack of memory property of e(q)

P

(
L̂(τ(x)) < L̂(e(q)), Y (e(q)) ∈ A,Z(x) ∈ B

)

= E

[∫

[0,e(q)]
I{τ(x)<s≤e(q),Z(x)∈B}dL̂(s)

]
E[n(ε(e(q)) ∈ A, e(q) < ζ(ε))]

= E

[∫

[0,e(q)]
I{τ(x)<s≤e(q),Z(x)∈B}dL̂(s)

]
E[n(e(q) < ζ(ε))]

E[n(ε(e(q)) ∈ A, e(q) < ζ(ε))]

E[n(e(q) < ζ(ε))]

= P

(
L̂(τ(x)) < L̂(e(q)), Z(x) ∈ B

)
P(Y (e(q)) ∈ A),(4.12)

6This can be seen to follow directly as a consequence of the splitting property [2, Sec O.5, Prop. O.2] of the Poisson

point process ǫ at the first entrance time HB′ = inf{s ≤ 0 : ǫ(s) ∈ B′} of ǫ into the set B′ = {ε ∈ E : ρ(x, ε) < ζ(ε)}.
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where the equality in the final line follows by similar applications of the compensation formula. Di-

viding the LHS and RHS of (4.12) by q and inverting the Laplace transform in q, and deploying (4.5)

in Lemma 9 we have

P (L̂(τ(x)) < L̂(t), Y (t) ∈ A,Z(x) ∈ B)(4.13)

= P (L̂(τ(x)) < L̂(t), Z(x) ∈ B)π1(t, A) + o(1), as min{x, t} → ∞.

Taking note of the following equality for any y, t ∈ (0,∞) and set E ∈ F :

P(E, L̂(τ(y)) > L̂(t)) + P (E, L̂(τ(y)) = L̂(t))(4.14)

= P (E)− P (E, L̂(τ(y)) < L̂(t)),

and applying (4.10) and (4.13) (with B = R+) yields as min{x, t} → ∞

P (Y (t) ∈ A,Z(x) ∈ B)

= π1(t, A)P (L̂(τ(x)) < L̂(t), Z(x) ∈ B) + P (L̂(τ(x)) > L̂(t), Y (t) ∈ A)π2(x,B)

+ P (L̂(τ(x)) = L̂(t), Y (t) ∈ A,Z(x) ∈ B) + o(1)

= π1(t, A)π2(x,B) +R(t, x) + o(1),

where R(t, x) = P (L̂(τ(x)) = L̂(t), Y (t) ∈ A,Z(x) ∈ B) − P (L̂(τ(x)) = L̂(t), Y (t) ∈ A)π2(x,B) −

P (L̂(τ(x)) = L̂(t), Z(x) ∈ B)π1(t, A) + π1(t, A)π2(x,B)P (L̂(τ(x)) = L̂(t)). Observing that R(t, x) =

o(1) when min{x, t} → ∞ by Lemma 8(iii) the proof of (4.7) is complete.

Equation (4.8) follows similarly, by combining the equality (4.14) (with E = {Y (t) ∈ A,Z(x) ∈ B})

with Lemma 8(iii) and the identities (4.7), (4.10), and (4.13) (with B = R+).

Finally, take C = (−∞, c] for an arbitrary fixed c ∈ R. In order to prove equality (4.9) note that

the following inclusions hold for any y ∈ R+:

{M(t, y) ∈ C} = {Y ∗(t) ≤ y + c} ⊂ {L̂(t) ≤ L̂(τ((y + c)+))} and

{L̂(t) ≤ L̂(τ((y + c)+))} ∩ {M(t, y) /∈ C} ⊂ {L̂(τ((y + c)+)) = L̂(t)}

(recall that τ(x) is defined for x ∈ R+). These inclusions, together with Lemma 8(iii), imply that the

following equality holds for any family of events E(t, x) ∈ F , t, x ∈ R+, as min{t, y, x− y} → ∞:

P
(
E(t, x), L̂(t) ≤ L̂(τ((y + c)+))

)
= P (E(t, x),M(t, y) ∈ C) + o(1).(4.15)

Since min{t, y, x − y} → ∞, for the fixed c ∈ R the inequalities 0 ≤ y + c ≤ x hold for all large y

and x. In particular (4.8), applied to the complement {L̂(τ(y + c)) < L̂(t)}c = {L̂(τ(y + c)) ≥ L̂(t)},

Lemma 8(iii) and (4.15) yield the following equalities:

P (Y (t) ∈ A,Z(x) ∈ B,M(t, y) ∈ C) = P (Y (t) ∈ A,Z(x) ∈ B, L̂(t) ≤ L̂(τ(y + c))) + o(1)

= P (Y (t) ∈ A)P (Z(x) ∈ B)P (L̂(t) ≤ L̂(τ(y + c))) + o(1)

= P (Y (t) ∈ A)P (Z(x) ∈ B)P (M(t, y) ∈ C) + o(1)

as min{t, y, x− y} → ∞, which establishes (4.9). This concludes the proof of the lemma. �
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Lemma 11. (i) As min{x, t} → ∞, Y (t) and Z(x) satisfy

(4.16) E[exp(−uY (t)− vZ(x))] = E[exp(−uY (t))]E[exp(−vZ(x))] + o(1), for any u, v ∈ R+\{0}.

(ii) As min{x, t} → ∞ such that t exp(−γx) → 0, Y (t), Z(x) and m(t) satisfy

E[exp(−uY (t)− vZ(x)± βm(t))I{±m(t)<0}] = E[exp(−uY (t))]E[exp(−vZ(x))]×(4.17)

×E[exp(±βm(t))I{±m(t)<0}] + o(1), for any u, v, β ∈ R+\{0}.

In particular, we have

E[exp(−uY (t)− vZ(x)− β|m(t)| − b s(m(t)))] = E[exp(−uY (t))]E[exp(−vZ(x))]×(4.18)

×E[exp(−β|m(t)| − b s(m(t)))] + o(1), for any u, v, β, b ∈ R+\{0},

where s : R → (−∞,∞] is given by s(x) = ±1 for ±x ∈ R+\{0}, and s(0) = +∞.

Proof. (i) Fix u, v ∈ R+\{0} arbitrary. By integrating both sides of the identity in (4.7) in Lemma 10

over R
2 against the measure IR+×R+(a, b)a b exp(−ua − vb)dadb we have (4.16) by noting that the

integral of the o(1) term in (4.7) tends to zero by the dominated convergence theorem (as it is bounded

by one).

(ii) The proof is a modification of the argument in part (i). Let now u, v, w ∈ R+\{0} be arbi-

trary. Integrating both sides of the identity in (4.9) in Lemma 10 over R
3 against the measures

IR2
+×R+\{0}(a, b, c) exp(−ua − vb − wc)dadbdc (with R

2
+ = (R+)

2) and applying the dominated con-

vergence theorem shows that also in this case the integral of the o(1) tends to zero, which yields the

”− ”-version of (4.17). The ” + ”-version of follows similarly by integrating both sides of the identity

in (4.9) against the measure IR2
+×R−\{0}(a, b, c) exp(−ua − vb + wc)dadbdc (with R− = R\R+). As

(4.18) follows as direct consequence of (4.17), the proof is complete. �

5. Proofs of Theorems 1 and 2

5.1. Proof of Thm. 1. We first observe that Y (t) and Z(x) each admit a weak limit Y (∞), Z(∞)

as t, x → ∞. Existence and the form of the Laplace transform of Z(∞) are given in Proposition 7. As

far as the weak limit of Y (t) is concerned we note that the duality lemma for Lévy processes implies

that the supremum X∗(t) = sup0≤s≤tX(s) and Y (t) have the same law for any fixed t ≥ 0. Since,

by As. 1, E[X(1)] < 0, and the process {X∗(t)}t≥0 is non-decreasing, it converges a.s. as t ↑ ∞ to

X∗(∞)
.
= sups≥0X(s). Therefore Y (t) converges weakly to a limit Y (∞) that has the same law as

X∗(∞) and that is characterised by its Laplace transform E[e−uY (∞)] = φ(0)/φ(u), u ∈ R+ (see [2,

p. 163]). The joint Laplace transform of (Y (∞), Z(∞)) now follows from (4.16) in Lemma 11(i).

Finally, the factorisation of the exponential distribution is obtained by setting u = v in (1.2).

5.2. Proof of Thm. 2. We first establish that the elements ℓ and Cγ in the last factor in (1.4) are

both strictly positive and finite. Since φ is strictly concave with φ(−γ) = 0, the right-derivative of

φ at −γ satisfies φ′(−γ) > 0 and the constant Cγ in (1.5) is well-defined. By Lemma 8(i) we have

ℓ ∈ (0,∞).
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It follows from [7, Thm. 1] that if t tends to infinity then m(t) converges in distribution to m(∞),

which follows a Gumbel distribution,

(5.1) P (m(∞) < z) = exp
(
−ℓCγ φ̂(γ) e

−γz
)
, for all z ∈ R.

We give below a short proof of (5.1) based on [7, Thm. 1]. The joint Fourier-Laplace transform and

asymptotic independence now follow from a direct calculation using (5.1) and (4.18) in Lemma 11(ii)

(which implies that Y (∞), Z(∞) and (|m(∞)|, sgn(m(∞))) are independent, and hence Y (∞), Z(∞)

and m(∞) are).

To establish (5.1) we show that, as min{x, t} → ∞ and te−γx → 1, the following holds:

P (Y ∗(t)− x < z) = exp(−t ℓ n(ρ(x+ z) < ζ)) + o(1) for any z ∈ R.(5.2)

Since (3.18) implies tn(ρ(x + z) < ζ) → Cγφ̂(γ)e
−γz as min{x, t} → ∞ and te−γx → 1, the limit

in (5.1) follows from (5.2).

To complete the proof we now verify the claim in (5.2). Note that τ(x+z) → ∞ P -a.s. as x → ∞ and,

as shown in the proof of Lemma 8, the law of large numbers implies that L̂(t)/t → ℓ P -a.s. as t → ∞,

where ℓ = 1/E
[
L̂−1(1)

]
(recall from Lemma 8(i) that 0 < ℓ < ∞). Therefore L̂(τ(x + z))/τ(x + z)

tends to ℓ P -a.s as x → ∞. In particular, for any δ > 0, we have

P (L̂(τ(x+ z))/τ(x+ z) ∈ (ℓ− δ, ℓ+ δ)) = 1 + o(1) as x → ∞.

Hence as min{x, t} → ∞ the following holds

P (Y ∗(t) < x+ z) = P (τ(x+ z) > t, L̂(τ(x+ z))/τ(x+ z) ≥ ℓ− δ) + o(1)

≤ P (L̂(τ(x+ z)) > t(ℓ− δ)) + o(1).

Similarly, it follows that as min{x, t} → ∞ we have

P (Y ∗(t) < x+ z) ≥ P (L̂(τ(x+ z)) > L̂(t), L̂(t) ≤ t(ℓ+ δ))

≥ P (L̂(τ(x+ z)) > t(ℓ+ δ), L̂(t) ≤ t(ℓ+ δ)) = P (L̂(τ(x+ z)) > t(ℓ+ δ)) + o(1).

By Lemma 5, L̂(τ(x+ z)) is exponentially distributed with parameter n(ρ(x) < ζ) and hence we find

exp(−(ℓ+ δ)t n(ρ(x+ z) < ζ)) + o(1) ≤ P (Y ∗(t) < x+ z) ≤ exp(−(ℓ− δ)t n(ρ(x+ z) < ζ)) + o(1).

Since this result holds for any δ > 0, the equality in (5.2) follows. �

Appendix A. Proof of Lemma 8(i)

By analytical continuation and As. 1 it follows that identity (3.24) remains valid for all θ ∈ C

with ℜ(θ) ∈ [0, γ). Therefore on the event {H(1) < ∞} the random variable H(1) admits finite

exponential moments and in particular E
[
H(1)I{H(1)<∞}

]
< ∞. Since E[X(1)] ∈ (−∞, 0), the

ladder-height process of the dual process X̂ = −X satisfies P (Ĥ(1) < ∞) = 1. Furthermore, we have

P (H(1) < ∞) < 1. Definition (2.1) of φ, its analogue for φ̂, the Wiener-Hopf factorisation in (3.24)
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and the dominated convergence theorem imply that the following identity holds for all θ ∈ (0, γ):

−
E[X(1)eθX(1)]

kE[eθX(1)]
=

E[H(1)eθH(1)I{H(1)<∞}]

E[eθH(1)I{H(1)<∞}]
logE

[
e−θĤ(1)

]

−
E[Ĥ(1)e−θĤ(1)]

E[e−θĤ(1)]
logE

[
eθH(1)I{H(1)<∞}

]
.

As. 1 implies that in the limit as θ → 0 this equality yields E[Ĥ(1)] ∈ (0,∞).

The inequality
∣∣∣X̂

(
min{t, L̂−1(1)}

)∣∣∣ ≤ Ĥ(1)+X∗(∞) holds for all t ∈ R+. Cramér’s estimate (3.6)

implies that X∗(∞) is integrable. Since
{
X̂(t)− tE[X̂(1)]

}
t≥0

is a martingale we have

E
[
X̂

(
min{t, L̂−1(1)}

)]
= E

[
X̂(1)

]
E
[
min{t, L̂−1(1)}

]
for all t ∈ R+.

The dominated and monotone convergence theorems applied to each side of this equality respectively

imply Wald’s identity for the {Ft}-stopping time L̂−1(1): E
[
Ĥ(1)

]
= −E [X(1)]E

[
L̂−1(1)

]
. In

particular we obtain ℓ−1 = E
[
L̂−1(1)

]
∈ (0,∞), proving Lemma 8(i). �

References

[1] S. Asmussen. Applied probability and queues, volume 51 of Applications of Mathematics (New York). Springer-Verlag,

New York, second edition, 2003. Stochastic Modelling and Applied Probability.
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Probab., 12(4):893–902, 1980.

[10] O. Hadjiliadis and J. Vec̆er̆. Drawdowns preceding rallies in the Brownian motion model. Quant. Finance, 6(5):403–

409, 2006.

[11] D.L. Iglehart. Extreme values in the GI/G/1 queue. Ann. Math. Statist., 43:627–635, 1972.
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