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Abstract. We study here the large-time behaviour of all continuous affine stochastic volatility models

(in the sense of [13]) and deduce a closed-form formula for the large-maturity implied volatility smile.

We concentrate on (rescaled) strikes around the money, which are the most common in practice, and

extend the results in [4] and [8].

1. Introduction

We are interested here in the large-time behaviour of the process
(
t−1Xt

)
t>0

, where X is defined via

the system of stochastic differential equations

dXt = −1

2
(a+ Vt) dt+ ρ

√
Vt dW

1
t +

√
a+ (1− ρ2)Vt dW

2
t , X0 = x ∈ R,

dVt = (b+ βVt) dt+
√
αVt dW

1
t , V0 = v ∈ (0,∞),

with a, b ≥ 0, α > 0, β ∈ R, ρ ∈ [−1, 1] and
(
W 1

t ,W
2
t

)
t≥0

is a two-dimensional standard Brownian motion.

The couple (Xt, Vt)t≥0 represents the restriction to continuous paths of the whole class of affine stochastic

volatility models with jumps (ASVM), introduced by Keller-Ressel [13]. In particular it encompasses the

popular Heston stochastic volatility model [9], in which b > 0 and β < 0. The weak convergence of

the process
(
t−1Xt

)
t>0

has been studied in [4, 5] for the Heston model and in [10] for ASVM, via the

Gärtner-Ellis theorem from large deviations theory. This convergence is the main ingredient needed to

obtain the large-maturity behaviour of the implied volatility in these models. However the authors have

imposed technical conditions on the parameters, which ensures that the assumptions of the Gärtner-Ellis

theorem are met: (i) the limiting cumulant generating function Λ is essentially smooth inside a domain D
and (ii) the interior D contains the origin.

Even though these conditions are usually satisfied in practice, they can actually be broken when

calibrating the model for volatile markets. In terms of the parameters these two conditions—assumed

in [4, 5]—read β < 0 and β + ρ
√
α < 0. The second assumption makes sense on equity markets where

the correlation is usually negative. However, on FX markets, the correlation between the asset and

its volatility is not necessarily so (see [11] for instance), and a large value of the variance of volatility

parameter α can violate this assumption. In [1], Andersen and Piterbarg studied the moment explosions

of the Heston model (and other stochastic volatility models). They assume β < 0, but it appears that

the restriction β + ρ
√
α < 0 may also be needed. In [18] the authors highlighted the importance of this

latter condition by proving that the Heston model remains of Heston form under the Share measure (i.e.

taking the share price as the numeraire) with new mean-reversion speed −(β + ρ
√
α). This in particular

implies that the left wing of the smile could be deduced from the right wing automatically by symmetry.
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This may not be true however when this condition fails. Reversing the symmetry, the case where the

mean-reversion −β (in the original measure) is positive becomes interesting to study as well.

We show here that—at least in a neighbourhood of the origin—a large deviations principle still holds (as

t tends to infinity) for the process
(
t−1Xt

)
t>0

when the two conditions (i) and (ii) above fail, i.e. without

the technical assumptions of [4, 5, 10]. As an application, we translate this asymptotic behaviour into

asymptotics of the implied volatility, corresponding to European vanilla options with payoff
(
eXt − ext

)
+
,

for any real number x. In [8], the authors proved that the so-called Stochastic Volatility Inspired (SVI)

parametric form—first proposed in [7]—of the implied volatility was the genuine limit (as the maturity

tends to infinity) of the Heston implied volatility under the same technical conditions as in [4, 5, 10]. We

extend the scope of this result by proving that it remains partially true—i.e. on some subsets of the real

line—without the technical conditions mentioned above.

In Section 2, we study the limiting behaviour of the limiting cumulant generating function of the process(
t−1Xt

)
t>0

and state the main result of the paper (Theorem 2.13), i.e. a large deviations principle for

this process. In Section 3, we translate this LDP into option price and implied volatility asymptotics.

2. LDP for continuous affine stochastic volatility models

2.1. The model and its effective domain. Throughout this paper we work on a probability space

(Ω,F ,P) equipped with a filtration (Ft)t≥0 supporting two independent Brownian motions W 1 and W 2.

We consider affine stochastic volatility models in the sense of [13] with continuous paths. Let (Xt, Vt)t≥0

be an affine process with state-space R× R+ which satisfies the following SDE

(2.1)
dXt = −1

2
(a+ Vt) dt+ ρ

√
Vt dW

1
t +

√
a+ (1− ρ2)Vt dW

2
t , X0 = x ∈ R,

dVt = (b+ βVt) dt+
√
αVt dW

1
t , V0 = v ∈ (0,∞),

where the admissible parameter values are given by

a, b ≥ 0, α > 0, β ∈ R and ρ ∈ [−1, 1] .(2.2)

The process (Vt)t≥0 is a square-root diffusion process and the Yamada-Watanabe conditions [12] ensure

that a unique non-negative strong solution exists. The share price process S = (St)t≥0, defined by

St := exp (Xt), is a local martingale with respect to the filtration (Ft)t≥0, and [13, Theorem 2.5] implies

that S is a true martingale. The Heston model [9] with mean-reversion rate κ, positive long-time variance

level θ, volatility of volatility σ and correlation ρ, is in the class of models given by the SDE in (2.1) (take

a = 0, b = κθ > 0, β = −κ < 0, α = σ2; the correlation parameter ρ has the same role as in (2.1)).

Remark 2.1.

(i) The class of models defined by (2.1) coincides with the class of affine stochastic volatility models

with continuous sample paths.

(ii) The parameter a adds modelling flexibility.

(iii) The general form of the instantaneous variance of a continuous affine stochastic volatility pro-

cess X is given by a + α̃V for some α̃ > 0. A simple scaling of the process V in (2.1) maps the

class of (2.1) to the general case. Without loss of generality we therefore assume α̃ = 1.

(iv) The process U = (Ut)t≥0 defined by Ut := a + Vt for all t ≥ 0 follows the shifted square-root

dynamics (see [14] for applications of the shifted square-root process in pricing theory).



LARGE DEVIATIONS FOR THE EXTENDED HESTON MODEL: THE LARGE-TIME CASE 3

Let us define the cumulant generating function 1 Λt of the random variable Xt, where X0 = 0, by

(2.3) Λt(u) := logE (exp (uXt)) , for any u ∈ R, t ≥ 0,

as an extended real number in (−∞,∞]. The effective domain of Λt is defined byDt := {u ∈ R : Λt(u) <∞}.
Note that by the Hölder inequality the function Λt is convex on Dt. In order to give the structure of

Λt(u) explicitly we need to define

(2.4) χ(u) := β + uρ
√
α,

as well as

(2.5) γ(u) :=
(
χ(u)2 + αu (1− u)

)1/2
and ft(u) := cosh

(
γ(u)t

2

)
− χ(u)

γ(u)
sinh

(
γ(u)t

2

)
.

In Proposition 2.2 we show how to express the cumulant generating function of X in terms of the

logarithmic moment generating function of model (2.1) with a = 0.

Proposition 2.2. The logarithmic moment generating function Λt defined in (2.3) reads

Λt(u) = ΛH
t (u) +

a

2
u (u− 1) t, for all t ≥ 0 and u ∈ Dt,

where ΛH
t is given by (2.3) for the process X in (2.1) with a = 0. Furthermore we have

Dt = {u ∈ R : ΛH
t (u) <∞}

and the following formula holds

(2.6) ΛH
t (u) = −2b

α

(
χ(u)t

2
+ log ft(u)

)
+
u (u− 1)

ft(u)γ(u)
sinh

(
γ(u)t

2

)
v, for all u ∈ Dt.

Proof. It is well known that the logarithmic moment generating function of an affine process X given as

a solution of SDE (2.1) is of the form

Λt(u) = ϕt(u) + ψt(u)v for all t ≥ 0 and u ∈ Dt,

where the functions ϕt, ψt : Dt → R satisfy the system of Riccati equations (see e.g. [13])

(2.7)
∂tϕt(u) = F (u, ψt(u)), ϕ0(u) = 0,

∂tψt(u) = R(u, ψt(u)), ψ0(u) = 0,

with

R (u,w) :=
1

2
u (u− 1) +

α

2
w2 + uwρ

√
α+ βw and F (u,w) :=

a

2
u (u− 1) + bw.

The Riccati equation equation for ψt can be solved in closed form

ψt(u) = sinh

(
γ(u)t

2

)
u (u− 1)

γ(u)ft(u)
,

where the functions γ and ft are defined in (2.5). The function ϕt can be determined by noting that equa-

tion (2.7) is equivalent to ϕt(u) =
∫ t

0
F (u, ψs(u)) ds. Therefore ϕt(u)st = au (u− 1) t/2 + b

∫ t

0
ψs(u)ds.

The function ΛH
t can be constructed in an analogous way on the set {u ∈ R : ΛH

t (u) <∞} with R and

F as above and a = 0. This concludes the proof. �

1We will use here the terms “logarithmic moment generating function” and “cumulant generating function” as synonyms.
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In order to analyse the effective domain Dt we need to introduce the quantities u− and u+ given by

(2.8) u− :=


1

2
√
α

2βρ+
√
α−

√
(2βρ+

√
α)

2
+ 4β2 (1− ρ2)

1− ρ2
, if |ρ| < 1,

−∞, if |ρ| = 1 and 2βρ+
√
α ≤ 0,

−β2/
(
2βρ

√
α+ α

)
, if |ρ| = 1 and 2βρ+

√
α > 0,

and

(2.9) u+ :=


1

2
√
α

2βρ+
√
α+

√
(2βρ+

√
α)

2
+ 4β2 (1− ρ2)

1− ρ2
, if |ρ| < 1,

∞, if |ρ| = 1 and 2βρ+
√
α ≥ 0,

−β2/
(
2βρ

√
α+ α

)
, if |ρ| = 1 and 2βρ+

√
α < 0.

Note that the inequalities u− ≤ 0 and u+ ≥ 1 hold for all admissible values of the parameters and that

in the case |ρ| < 1 the parabola γ(u)2 is strictly positive on the interior of the interval [u−, u+] between

its distinct zeros. In the case |ρ| = 1 the graph of the function γ(u)2 is a line and either u− or u+ are

infinite. For notational convenience we shall understand the interval [x, y] ⊂ R as [x,∞) if y = ∞ and as

(−∞, y] if x = −∞. Proposition 2.3 analyses the structure of the effective domain Dt of the function Λt.

Proposition 2.3. The effective domain Dt of the cumulant generating function Λt (defined in (2.3))

satisfies [0, 1] ⊂ Dt for all t ≥ 0 and any set of admissible parameter values from (2.2). Furthermore the

following statements hold.

(i) If χ(0) ≤ 0 we have:

(a) if χ(1) ≤ 0 then [u−, u+] ⊂ Dt for any t > 0;

(b) if χ(1) > 0 then for all t large enough there exists u(t) ∈ (1, u+) such that

lim
t→∞

u (t) = 1 and [u−, u(t)) ⊂ Dt ⊂ (−∞, u (t)) .

(ii) If χ(0) > 0 we have:

(a) if χ(1) ≤ 0 then for all large t there exists u(t) ∈ (u−, 0) such that

lim
t→∞

u (t) = 0 and (u (t) , u+] ⊂ Dt ⊂ (u (t) ,∞) ;

(b) if χ(1) > 0 then for large t there exist u(t) ∈ (u−, 0) and u(t) ∈ (1, u+) such that

lim
t→∞

u (t) = 0, lim
t→∞

u (t) = 1 and Dt = (u (t) , u (t)) .

Remark 2.4. The following elementary facts are useful in the proof of Proposition 2.3.

(I) Note that u− = −∞ and u+ = ∞ if and only if the conditions |ρ| = 1 and
√
α+ 2ρβ = 0 hold.

(II) The condition χ(1) ̸= 0 implies that u+ > 1 since u+ is the largest root of the quadratic γ(u)2

in (2.5). In particular in (i)(b) and (ii)(b) of Proposition 2.3 the interval (1, u+) is not empty.

(III) The condition χ(0) ̸= 0 implies that u− < 0. In particular in (ii) we have χ(0) = β > 0 and

hence the interval (u−, 0) is not empty.

(IV) The interval [0, 1] is contained in Dt for all t ≥ 0 since the stock price process (S0 exp(Xt))t≥0 is

a true martingale.

(V) If χ(0) = 0 then u− = 0 and u+ = 1/(1− ρ2) for |ρ| < 1 and u+ = ∞ for |ρ| = 1.
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Remark 2.5. The variance process (Vt)t≥0 in (2.1) is a time-changed squared Bessel process (see [2]):

(Vt)t≥0
∆
=eβtR2

δ,τt ,

where τt := α4
(
1− e−βt

)
/ (4β), and

(
R2

δ,t

)
t≥0

is a squared Bessel process of dimension δ := 4b/α4, i.e.

dR2
t = 2Rt dWt + δ dt and R2

δ,0 = 0. The sign of χ(0) = β changes the convexity of the time-change τt.

Proof. Proposition 2.2 implies that it is enough to study the effective domain of the cumulant generating

function ΛH
t of the Heston model. It is clear that the function ft, defined in (2.5) by

ft(u) = cosh

(
γ(u)t

2

)
− χ(u)

γ(u)
sinh

(
γ(u)t

2

)
,

will play a key role in in understanding the set Dt.

Case (i): If we can prove that

(2.10) ft(u) > 0, for all u ∈ [u−, 1] ,

then Proposition 2.2 implies that [u−, 1] ⊂ Dt since the functions on both sides of (2.6) can be analytically

extended to a neighbourhood of [u−, 1] in the complex plane and hence coincide on the interval.

We now prove (2.10). It follows from the definition of γ in (2.5) that |χ(u)/γ(u)| ≤ 1 for all u ∈ [0, 1]

and hence (2.10) holds on [0, 1]. It is easy to see that limu↘u− χ(u) ≤ 0. Since χ(0) = β ≤ 0 we have

χ(u) ≤ 0 for all u ∈ [u−, 0] which implies (2.10).

In case (i)(a) assume first that u+ < ∞. Then elementary algebra shows that χ(u+) ≤ 0. Therefore

χ(u) ≤ 0, and hence ft(u) > 0, for all u ∈ [1, u+]. If u+ = ∞ the condition χ(1) ≤ 0 implies that ρ = −1

and therefore χ(u) < 0 for all u ≥ 1. Hence ft(u) ∈ (0,∞) for all u ∈ [1,∞) = [1, u+]. Proposition 2.2

and the analytic continuation argument as above imply [u−, u+] ⊂ Dt.

Recall that in case (i)(b) we have u+ > 1 (see Remark 2.4 (II)). Let u(t) be the smallest solution of the

equation ft(u) = 0 in the interval (1, u+). Note that, since γ is strictly positive on the interval (1, u+),

for a fixed t the equation ft(u) = 0 can be rewritten as

(2.11) t = F (u), where F (u) :=
2

γ(u)
arctanh

(
γ(u)

χ(u)

)
.

This equation has a solution in (1, u+) for large t since the continuous function F tends to infinity as u

decreases to 1 (since limu↘1 γ(u)/χ(u) = 1). This also implies that the smallest solution u(t) decreases

to one. The functions on both sides of (2.6) coincide on [u−, 1], are analytic on some neighbourhood of

this interval in the complex plane and the right-hand side in (2.6) is real and finite on [u−, u(t)). They

must therefore also coincide on [u−, u(t)), which in particular implies [u−, u(t)) ⊂ Dt. Formula (2.6)

implies that u(t) is not an element of Dt and the convexity of Λt yields that Dt ∩ [u(t),∞) = ∅.
Case (ii): In case (ii)(a) the condition χ(1) ≤ 0 implies ρ < 0 and hence χ(u) ≤ 0 for all u ∈ [1, u+].

Therefore ft(u) > 0 on [1, u+] and hence [0, u+] ⊂ Dt. Let u(t) be the largest solution of the equation

ft(u) = 0 in the interval (u,0). Since limu↗0(γ(u)/χ(u)) = 1, an analogous argument as in the proof of

(i)(b) shows that u(t) is well defined and the limit in the proposition holds. The proof for the inclusions

follows the same steps as in the proof of (i)(b).

In case (ii)(b) we have χ(0) = β > 0 and χ(1) > 0. Therefore the definition of γ, given in (2.5), implies

lim
u↗0

γ(u)

χ(u)
= 1 and lim

u↘1

γ(u)

χ(u)
= 1
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and hence, by (2.11), there exist solutions to the equation ft(u) = 0 in both intervals (u−, 0) and (1, u+).

Let u(t) be the largest solution in (u−, 0) and u(t) the smallest solution in (1, u+). An analogous argument

to the one in the proofs of (i)(b) and (ii)(a) gives the form of Dt. �

2.2. Large deviation principles and the Gärtner-Ellis theorem. We review here the key concepts

of large deviations for a family of real random variables (Zt)t≥1 and state the Gärtner-Ellis theorem

(Theorem 2.6). A general reference for all the concepts in this section is [3, Section 2.3]. Assume that

the cumulant generating function ΛZ
t (u) := logE

(
euZt

)
is finite on some neighbourhood of the origin and

that for every u ∈ R the following limit exists as an extended real number

(2.12) Λ(u) := lim
t→∞

t−1ΛZ
t (ut).

Let DΛ := {u ∈ R : |Λ(u)| <∞} be the effective domain of Λ and assume that

(2.13) 0 ∈ Do
Λ,

where Do
Λ is the interior of DΛ (in R). Since ΛZ

t is convex for every t by Hölder’s inequality, the limit Λ is

also convex and the set DΛ is an interval. Since Λ(0) = 0, convexity implies that for any u ∈ R we have

Λ(u) > −∞. The function Λ : R → (−∞,∞] is said essentially smooth if (a) it is differentiable in Do
Λ

and (b) it satisfies limn→∞ |Λ′(un)| = ∞ for every sequence (un)n∈N in Do
Λ that converges to a boundary

point of Do
Λ. A cumulant generating function Λ which satisfies (b) is called steep. The Fenchel-Legendre

transform Λ∗ of Λ is defined by the formula

(2.14) Λ∗(x) := sup{ux− Λ(u) : u ∈ R}, for all x ∈ R

with an effective domain DΛ∗ := {x ∈ R : Λ∗(x) < ∞}. Under certain assumptions Λ∗ is a good

rate function, i.e. is lower semicontinuous (since it is a supremum of continuous functions), satisfies

Λ∗(R) ⊂ [0,∞] (since Λ(0) = 0) and the level sets {x : Λ∗(x) ≤ y} are compact for all y ≥ 0 (see [3,

Lemma 2.3.9(a)]). In general Λ∗ can be discontinuous and DΛ∗ can be strictly contained in R (see [3,

Section 2.3] for elementary examples of such rate functions). We say that the family of random variables

(Zt)t≥1 satisfies the large deviations principle (LDP) with the good rate function Λ∗ if for every Borel

measurable set B in R the following inequalities hold

(2.15) − inf
x∈Bo

Λ∗(x) ≤ lim inf
t→∞

1

t
logP [Zt ∈ B] ≤ lim sup

t→∞

1

t
logP [Zt ∈ B] ≤ − inf

x∈B
Λ∗(x),

where the interior Bo and the closure B of the set B are taken in the topology of R and inf ∅ = ∞.

It is clear from definition (2.15) that if (Zt)t≥1 satisfies the LDP and Λ∗ is continuous on B, then

limt→∞ t logP [Zt ∈ B] = − inf{Λ∗(x) : x ∈ B}. An element y ∈ R is an exposed point of Λ∗ if there

exists uy ∈ R such that

(2.16) yuy − Λ∗(y) > xuy − Λ∗(x) for all x ∈ R\{y}.

Intuitively the exposed points are those at which Λ∗ is strictly convex (e.g. the second derivative is

continuous and strictly positive). The segments over which Λ∗ is affine are not exposed. Note that (2.16)

can only hold for y ∈ DΛ and, if Λ is differentiable in Do
Λ, then uy is the unique solution of Λ′(u) = y.

We now state the Gärtner-Ellis theorem the proof of which can be found in [3, Section 2.3].
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Theorem 2.6. Let (Zt)t≥1 be a family of random variables for which the function Λ : R → (−∞,∞]

in (2.12) satisfies (2.13). Let F be a closed and G an open set in R. Then the following inequalities hold

lim sup
t→∞

t−1P [Zt ∈ F ] ≤ − inf{Λ∗(x) : x ∈ F},

lim inf
t→∞

t−1P [Zt ∈ G] ≥ − inf{Λ∗(x) : x ∈ G ∩ E},

where E := {y ∈ R : y satisfies (2.16) with uy ∈ Do
Λ}. Furthermore if Λ is essentially smooth and lower

semicontinuous, then the LDP holds for (Zt)t≥1 with the good rate function Λ∗.

2.3. LDP in affine stochastic volatility models. In this section we analyse the large deviations

behaviour of the family of random variables Zt := Xt/t for t ≥ 1. Corollary 2.7—which follows from

Propositions 2.2 and 2.3—describes the properties of the cumulant generating function Λ defined in (2.12),

and its Fenchel-Legendre transform Λ∗ is studied in Proposition 2.10. The main result of this section,

Theorem 2.13, states that the family (Zt)t≥1 satisfies a large deviations principle.

Corollary 2.7. The limiting cumulant generating function (2.12) for the family of random variables

(Xt/t)t≥1, where (Xt)t≥0 is defined by SDE (2.1),is given by

Λ(u) =

 − b

α
(χ(u) + γ(u)) +

a

2
u (u− 1) , for all u ∈ DΛ \ {0, 1},

0, for u ∈ {0, 1},

with the functions χ and γ given in (2.4) and (2.5) respectively. The function Λ is infinitely differentiable

on the interior Do
Λ of its effective domain. The boundary points u− and u+, defined in (2.8) and (2.9),

can be used to describe the effective domain DΛ as follows.

(i) If χ (0) ≤ 0 we have:

(a) if χ(1) ≤ 0 then DΛ = [u−, u+];

(b) if χ(1) > 0 then DΛ = [u−, 1].

(ii) If χ (0) > 0 we have:

(a) if χ(1) ≤ 0 then DΛ = [0, u+];

(b) if χ(1) > 0 then DΛ = [0, 1].

Remark 2.8. From Corollary 2.7, the following facts can be deduced immediately for the large deviations

behaviour of the family of random variables (Xt/t)t≥1.

(I) In case (i)(a) the function Λ is essentially smooth.

(II) In case (i)(b) (resp. (ii)(a)) the function Λ is steep at the left boundary u− (resp. right boundary

u+) but not at the right (resp. left) boundary of the effective domain.

(III) In case (i)(b) (resp. (ii)(a)) the right (resp. left) boundary point of the effective domain is strictly

smaller (resp. greater) than u+ (resp. u−). This is a consequence of Remark 2.4 (II) and (III).

(IV) In case (ii)(b) the function Λ is not steep at either of the two boundaries of its effective domain.

Furthermore DΛ is contained in the interior of the interval [u−, u+] by Remark 2.4 (II) and (III).

(V) As a consequence of (I)–(IV) the limiting cumulant generating function Λ is steep at a boundary

point of the effective domain if and only if this point is an element of the set {u−, u+}.
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(a) Case (i)(a) (b) Case (i)(b) (c) Case (i)(a) (d) Case (i)(b)

(e) Case (ii)(a) (f) Case (ii)(b) (g) Case (ii)(a) (h) Case (ii)(b)

Figure 1. The four figures on the left represent the function Λ characterised in Corol-

lary 2.7. The four figures on the right represent the Fenchel-Legendre Λ∗ determined in

Proposition 2.10. The dotted line on the graphs for Λ∗ represent the threshold Λ′
−(1)

and Λ′
+ (0) above or below which Λ∗ becomes linear.

Note that when u− (resp. u+) is not in DΛ then the function Λ is discontinuous at 0 (resp. at 1). We

henceforth define the following extended real numbers

(2.17) Λ−(1) := lim
u↗1

Λ(u), Λ+ (0) := lim
u↘0

Λ(u), Λ′
−(1) := lim

u↗1
Λ′(u), Λ′

+ (0) := lim
u↘0

Λ′(u).

The functions Λ and Λ′ are monotone on the intervals (0, ε) and (1− ε, 1) for small enough ε, hence all

the limits exist. Note further that the limit Λ′
+ (0) (resp. Λ′

−(1)) is equal to −∞ (resp. ∞) if and only

if χ (0) = 0 (resp. χ(1) = 0).

Remark 2.9. At zero and one the following identities hold

Λ+ (0) = − b

α
(χ (0) + |χ (0)|) and Λ′

+ (0) =


1

|χ (0)|

(
(χ(1)− χ (0)) Λ+ (0)− b

2

)
− a

2
, if χ (0) ̸= 0,

−a/2, if χ (0) = 0, b = 0,

−∞, if χ (0) = 0, b ̸= 0,

Λ−(1) = − b

α
(χ(1) + |χ(1)|) and Λ′

−(1) =


1

|χ(1)|

(
(χ(1)− χ (0)) Λ−(1) +

b

2

)
+
a

2
, if χ(1) ̸= 0,

a/2, if χ(1) = 0, b = 0,

∞, if χ(1) = 0, b ̸= 0.

Note that the inequalities Λ+ (0) ≤ 0 and Λ−(1) ≤ 0 hold for any admissible set of parameters. The case

χ(0) = 0 and b = 0 is rather degenerate, and we refer the reader to Remark 3.5 for further details.

Proposition 2.10. The Fenchel-Legendre transform Λ∗ defined in (2.14) for the family of random vari-

ables (Xt/t)t≥1, where (Xt)t≥0 is given by SDE (2.1), can be represented as follows

(2.18) Λ∗ (x) =


xux − Λ (ux) , for all x ∈ Λ′ (Do

Λ) ,

x− Λ−(1), for all x ∈
[
Λ′
−(1),∞

)
∩ (R\Λ′ (Do

Λ)) ,

−Λ+ (0) , for all x ∈
(
−∞,Λ′

+ (0)
]
∩ (R\Λ′ (Do

Λ)) ,
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where ux is the unique solution in Do
Λ to the equation Λ′(u) = x for all x ∈ Λ′ (Do

Λ). Furthermore Λ∗ is

continuously differentiable on its effective domain DΛ∗ and DΛ∗ = R.

(i) The function Λ∗ attains its global minimal value −Λ+ (0) at Λ′
+(0). If 0 ∈ Do

Λ then the minimum

is attained at the unique point Λ′
+(0) = Λ′(0) and the minimal value is Λ∗(Λ′(0)) = Λ+ (0) = 0.

If 0 /∈ Do
Λ the minimal value is attained at every x ∈

(
−∞,Λ′

+ (0)
]
∩ (R\Λ′ (Do

Λ))

(ii) The function x 7→ Λ∗(x) − x attains its global minimal value −Λ−(1) at Λ′
−(1). If 1 ∈ Do

Λ then

the minimum value Λ−(1) = Λ(1) = 0 is attained at the unique point Λ′
−(1) = Λ′(1) which is

therefore the unique solution to the equation Λ∗(x) = x. If 1 /∈ Do
Λ the function x 7→ Λ∗(x) − x

attains the minimal value at every x ∈
[
Λ′
−(1)∞

)
∩ (R\Λ′ (Do

Λ)).

Remark 2.11.

(i) Since Λ is a strictly convex smooth function on Do
Λ, the first derivative Λ′ is invertible on this

interval and ux is a strictly increasing, differentiable function of x on Λ′ (Do
Λ). Furthermore the

equality (Λ∗)′ (x) = ux holds for any x ∈ Λ′ (Do
Λ).

(ii) Corollary 2.7 implies the following form for the interval Λ′(Do
Λ):

(2.19) Λ′ (Do
Λ) =


R, if χ(0) ≤ 0, χ(1) ≤ 0,(

−∞,Λ′
−(1)

)
, if χ(0) ≤ 0, χ(1) > 0,(

Λ′
+(0),∞

)
, if χ(0) > 0, χ(1) ≤ 0,(

Λ′
+(0),Λ

′
−(1)

)
, if χ(0) > 0, χ(1) > 0.

Hence the second case in (2.18) corresponds to χ(1) > 0 and the third case occurs when χ (0) > 0.

(iii) When a is null, the unique solution ux to the equation Λ′(u) = x, when x ∈ Λ′ (Do
Λ) is given by

(2.20) ux =
1

2 (1− ρ2)
√
α

2ρβ +
√
α+

p (x) ξ√
p (x)

2
+ b2 (1− ρ2)

 ,

where p (x) := bρ+ x
√
α and ξ :=

√
(2ρβ +

√
α)

2
+ 4β2 (1− ρ2). This, together with (2.18), yields

an explicit formula for the rate function Λ∗. Note that ux is well defined as a limit when |ρ| tends
to 1 and

(2.21) ux =
1

4

b− 2βx

2β + ρ
√
α

4bβ + ρ(b+ 2βx)
√
α

(bρ+ x
√
α)

2 , whenever ρ ∈ {−1, 1} .

(iv) When the parameter a is not null, we do not have a closed-form representation for ux, and hence

not for the function Λ∗ either. However computing Λ∗ is a simple root-finding exercise and the

smoothness of the function Λ makes it computationally quick.

Proof of Proposition 2.10. Let ux ∈ Do
Λ be the unique solution of Λ′(u) = x, which exists by Re-

mark 2.11 (i). It is clear from definition (2.14) that, for x ∈ Λ′ (Do
Λ), the Fenchel-Legendre Λ∗ takes

the form given in the proposition.

Assume now that Λ′
−(1) is finite. This is equivalent to χ(1) ̸= 0 which implies that for every u ∈ Do

Λ

we have u < 1. Then for any x ∈
[
Λ′
−(1),∞

)
∩ (R\Λ′ (Do

Λ)) the inequality Λ−(1) − Λ(u) ≤ x (1− u)

holds by the Lagrange theorem (and the fact that Λ′ is strictly increasing). Hence formula (2.18) follows.

If Λ′
+(0) is finite, then for every u ∈ Do

Λ we have u > 0. For any x ∈
(
−∞,Λ′

+ (0)
]
∩ (R\Λ′ (Do

Λ)) the

inequality ux− Λ(u) ≤ −Λ+ (0) holds for all u ∈ Do
Λ. Hence formula (2.18) follows.
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The function Λ∗ is continuously differentiable on R by (2.18) and Remark 2.11 (i). Note that, if

0 ∈ Do
Λ, at the minimum we have ux = 0. This implies by definition that the minimum of Λ∗ is attained

at Λ′(0) = x. The case 0 /∈ Do
Λ follows in a similar way.

If 1 ∈ Do
Λ, then by differentiating the formula in (2.18) we find that the minimum of x 7→ Λ∗(x) = x

is attained if and only if ux = 1, which is equivalent to Λ′(1) = x. If 1 /∈ Do
Λ, it is easy to see that the

minimum is attained for all x ≥ Λ′
−(1). This concludes the proof. �

Before stating the main theorem of this paper, let us define a probability measure P̃, known as the

Share measure, via the Radon-Nikodym derivative dP̃/dP which at time t takes the form eXt . Since

(eXt)t≥0 is a martingale, P̃ is a well-defined probability measure. The cumulant generating functions and

consequently the Fenchel-Legendre transforms of X under P and P̃ are related by

(2.22) Λ̃(u) = Λ(u+1), for all u such that (1+u) ∈ DΛ, and Λ̃∗(x) = Λ∗(x)−x, for all x ∈ R.

The following proposition gives explicit conditions on the parameters ensuring that zero lies in Λ′ (Do
Λ),

equivalently that Λ′
+(0) < 0 < Λ′

−(1). This proposition will be fundamental in the next section in order

to determine the large-time behaviour of option prices.

Proposition 2.12. The origin belongs to Λ′ (Do
Λ) if and only if

(i) β ≤ 0 and one of the following conditions hold:

• χ(1) ≤ 0;

• χ(1) > 0 and ξ− ≤ 0;

• 0 < χ(1) < αb/ξ− and ξ− > 0;

(ii) β > 0 and the two following conditions hold simultaneously:

• either χ(1) ≤ 0 or χ(1) > 0 and ξ− ≤ 0 or 0 < χ(1) < αb/ξ− and ξ− > 0;

• either ξ+ ≥ 0 or ξ+ < 0 and β ∈ (0,−αb/ξ+);
where ξ± := 4bρ

√
α± aα.

Proof. The proposition follows by Remark 2.9, i.e. by a careful study of the behaviour of the function Λ′

at the boundaries of its effective domain, provided in (2.19). When χ(0) = β < 0, then clearly Λ′
+(0) < 0

and we simply need to ensure that Λ′
−(1) > 0. This is clearly satisfied when χ(1) ≤ 0. Assume that

χ(1) > 0 and let ϕ := 4bρ
√
α − aα. A straightforward computation shows that Λ′

−(1) > 0 if and only

if (a) χ(1) < αb/ϕ when ϕ > 0, (b) χ(1) > αb/ϕ when ϕ < 0 or (c) always when ϕ = 0. Since we are

already imposing χ(1) > 0, the above shows that Λ′
−(1) > 0 if and only if (a) ϕ ≤ 0 or (b) ϕ > 0 and

χ(1) < αb/ϕ. This proves (i). Let us now consider the case β = χ(0) > 0. Then by convexity of the

function Λ, we need to ensure that Λ′
−(0) < 0 and Λ′

−(1) > 0. The proposition then follows by a careful

identification of each case. �

We are now equipped to state the main theorem of this paper.

Theorem 2.13. The family (Xt/t)t≥1, with X defined in (2.1), satisfies a large deviations principle under

P (resp. under P̃) on Λ′(Do
Λ) with rate function Λ∗ described in Proposition 2.10 (resp. Λ̃∗ in (2.22)).

Proof. The proof of this theorem follows from the Gärtner-Ellis theorem. Note that the function Λ is

not necessarily steep at the boundary of its effective domain, which is the reason why we can only state

a large deviations principle on Λ′(Do
Λ) rather than on the whole real line. �
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Remark 2.14. The absence of steepness of the limiting cumulant generating function Λ can be circum-

vented by applying an extended version of the Gärtner-Ellis theorem, based on a time-dependent change

of measure. Likewise, the fact that the origin may not be inside the interior of the effective domain of Λ

can be dealt with using the results in [15]. However, the main issue here, which does not seem to have

been tackled in the literature, is the discontinuity of Λ at the boundaries of its effective domain. This fact

seems (numerically) to break the large deviations principle, and we leave this study for future research.

3. Asymptotics of option prices and implied volatilities

In this section we relate the rate function Λ∗ governing the large deviations of the family (Xt/t)t≥1 to

the option prices in the case of model (2.1) and the Black-Scholes model. These asymptotic option prices

will then be translated into implied volatility asymptotics.

3.1. Asymptotics of option prices. Theorem 3.1 and Corollary 3.3 below describe the limiting be-

haviour of European option prices respectively in the model (2.1) and in the Black-Scholes model when

the maturity tends to infinity. These results were proved in [10] and we recall them here to highlight the

importance of proving a large deviations principle under both probability measures P and P̃.

Theorem 3.1. If the origin lies within the interval Λ′(Do
Λ) and if (Xt/t)t≥1 satisfies the LDP under both

P and P̃ with the respective good rate functions Λ∗ and Λ̃∗, the asymptotic behaviour of a covered call

option with payoff eXt −
(
eXt − ext

)+
is given by

lim
t→∞

t−1 log
(
1− E

[(
eXt − ext

)+])
= x− Λ∗ (x) , if x ∈

[
Λ′
+ (0) ,Λ′

−(1)
]
.

Remark 3.2. Note that, since we only have a partial LDP (Theorem 2.13), we do not obtain call and

put option price asymptotics for all possible strikes. However, take some x ∈ (0,Λ′
−(1)). Since the limits

are uniform in a neighbourhood of the origin, for any y > 0, we can find some t such that y = xt, which

then gives us option price asymptotics for any fixed (independent of time) positive strike. This is the

most relevant case in practice, which is the reason why we only focus on these covered call option prices.

Let us consider the Black-Scholes model where the process (Xt)t≥0 satisfies the SDE dXt = −Σ2/2dt+

ΣdWt, with Σ > 0. Its limiting cumulant generating function reads ΛBS(u) = u (u− 1)Σ2/2 for all u ∈ R,
and we define its Fenchel-Legendre transform (2.14) Λ∗

BS(·,Σ). Since the function ∂xΛ
′
BS(·,Σ) is strictly

increasing on the whole real line, the equation Λ′
BS(u) = x has a unique solution ux ∈ R for any real

number x. It is straightforward to see that ux = x/Σ2+1/2 and hence Λ∗
BS (x,Σ) =

(
x+Σ2/2

)2
/
(
2Σ2

)
for all x ∈ R. From this characterisation it is immediate to see that ∂xΛ

∗
BS (x,Σ) = 0 if and only if

x = −Σ2/2 and ∂xΛ
∗
BS (x,Σ) = 1 if and only if x = Σ2/2. The following corollary applies Theorem 3.1

to the Black-Scholes model. A more complete version of it can be found in [10].

Corollary 3.3. Under the Black-Scholes model, we have the following asymptotics.

lim
t→∞

1

t
log

(
1− E

(
eXt − ext

)
+

)
=


2x+Σ2, if x ≤ −3Σ2/2,

x− Λ∗
BS (x,Σ) , if x ∈

(
−3Σ2/2,Σ2/2

]
,

0, if x > Σ2/2.
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3.2. Implied volatility asymptotics. We now translate the large-maturity asymptotics for option

prices proved above to the study of the implied volatility. Proposition 3.4 provides the limit of the

implied volatility for continuous affine stochastic volatility models (2.1). For any real number x, let σt(x)

represent the Black-Scholes implied volatility of a European call option with strike price S0e
xt in the

model (2.1). Let us further define the function σ∞ :
(
Λ′
+ (0) ,Λ′

−(1)
)
→ R+ by

(3.1) σ2
∞(x) := 2

(
2Λ∗ (x)− x+ 2 (x)

(
Λ∗ (x) (Λ∗ (x)− x)

)1/2
)
, for all x ∈

(
Λ′
+ (0) ,Λ′

−(1)
)
.

The following proposition gives the behaviour of the implied volatility σt as t tends to infinity for all

affine stochastic volatility models with continuous paths. Note again that we restrict here the range of

possible strikes. In view of Remark 3.2, however, this ensures that all observable strikes—for large enough

maturities—are encompassed in this result.

Proposition 3.4. The function σ∞ defined in (3.1) is continuous. Furthermore, if b ̸= 0 and the origin

lies within the interval Λ′(Do
Λ), then the equality lim

t→∞
σt(x) = σ∞(x) holds for all x ∈

(
Λ′
+ (0) ,Λ′

−(1)
)
.

Proof. From Theorem 3.1 and Corollary 3.3, the implied volatility σ∞ satisfies the quadratic equation

Λ∗(x) = Λ∗
BS (x, σ∞(x)), for all x ∈

(
Λ′
+ (0) ,Λ′

−(1)
)
. The proof of the corollary therefore consists of (a)

finding the correct root of this quadratic equation and (b) proving the the function σt(x) converges to

this root for all x in the corresponding subset of the real line. The proof is analogous to the proof of [10,

Theorem 14], and we therefore omit it for brevity. We also refer the reader to the recent work [6] for the

general methodology to transform option price asymptotics into implied volatility asymptotics. �

Remark 3.5. From Corollary 2.7, the case b = 0 can be handled directly since the limiting cumulant

generating function reads Λ(u) = 1
2au (u− 1) for all u ∈ DΛ. Using Proposition 2.10 and [10], we

immediately deduce the following limiting smiles:

(i)(a) it is immediate that σ2
∞ is everywhere equal to a;

(i)(b) Λ∗(x) = x − Λ−(1) = x for x > Λ′
−(1) = a/2 and Λ∗(x) = Λ∗

BS (x,
√
a) otherwise. Therefore

σ2
∞(x) is equal to 2x for x > a/2 and is equal to a for all x ≤ a/2;

(ii)(a) Λ∗(x) = 0 for x < Λ′
+(0) = −a/2 and Λ∗(x) = Λ∗

BS (x,
√
a) otherwise. Therefore σ2

∞(x) is equal

to −2x for x < −a/2 and is equal to a for all x ≥ −a/2;
(ii)(b) Λ∗(x) = 0 for x < Λ′

+(0) = −a/2, that Λ∗(x) = x for x < Λ′
+(1) = a/2 and that Λ∗(x) =

Λ∗
BS (x,

√
a) otherwise. Therefore σ2

∞(x) is equal to −2x for x < −a/2, to 2x when x > a/2 and

to a when x ∈ [−a/2, a/2].

Remark 3.6. The remark above implies that when considering strikes of the form ez for fixed z ∈ R,
the total variance map t 7→ σ̃2

t (z)t ≡ σ2
t (x/t)t converges to infinity as t tends to infinity.

3.3. Convergence of the implied volatility of the Heston model to SVI. In [7], Gatheral proposed

the so-called ‘Stochastic Volatility Inspired’ (SVI) parameterisation of the implied volatility smile. Using

the closed-form representation of the rate function Λ∗ (Proposition 2.10 and Equation (2.20)) in the

Heston model a = 0, Gatheral and Jacquier [8] proved that this parameterisation was indeed the true

limit of the Heston implied volatility smile as the maturity tends to infinity for strikes of the form S0e
xt,

whenever both conditions χ(0) < 0 and χ(1) < 0 are met. Corollary 3.7 below extends their result
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without these conditions. Its proof follows from straightforward manipulations of Formula (3.1) and we

therefore omit it. Recall that the SVI parameterisation for the implied variance reads

(3.2) σ2
SVI (x) =

ω1

2

(
1 + ω2ρx+

√
(ω2x+ ρ)

2
+ 1− ρ2

)
, for all x ∈ R,

where (ω1, ω2) ∈ R2 and ρ ∈ [−1, 1]. Let us further define the mappings

(3.3) ω1 :=
4b

α (1− ρ2)

(√(
2β + ρ

√
α
)2

+ α (1− ρ2) +
(
2β + ρ

√
α
))

and ω2 :=

√
α

b
.

Corollary 3.7. If a = 0, b ̸= 0 and if 0 ∈ Λ′(Do
Λ), the asymptotic implied volatility (3.1) satisfies

σ2
∞ (x) = σ2

SVI (x) under the mappings (3.3) for all x ∈
(
Λ′
+(0),Λ

′
−(1)

)
.

Remark 3.8.

(a) The case b = 0 was treated in Remark 3.5.

(b) When a = 0, the quantities in Remark 2.9 simplify to

Λ+(0) = −2bβ

α
, Λ′

+(0) = − b

2
√
α

(
4ρ+

√
α

β

)
, when χ(0) > 0,

Λ−(1) = −2b

α

(
β + ρ

√
α
)
, Λ′

−(1) = − b

2
√
α

(
4ρ+

√
α

β + ρ
√
α

)
, when χ(1) > 0.
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