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Abstract. We consider the class of continuous-state branching processes with immigration (CBI-

processes), introduced by Kawazu and Watanabe [1971] and their limit distributions as time tends

to infinity. We determine the Lévy-Khintchine triplet of the limit distribution and give an explicit

description in terms of the characteristic triplet of the Lévy subordinator and the scale function of

the spectrally positive Lévy process, which describe the immigration resp. branching mechanism

of the CBI-process. This representation allows us to describe the support of the limit distribution

and characterise its absolute continuity and asymptotic behavior at the boundary of the support,

generalizing several known results on self-decomposable distributions.

1. Introduction

Continuous-state branching processes with immigration (CBI-processes) have been introduced

by Kawazu and Watanabe [1971] as scaling limits of discrete single-type branching processes with

immigration. In Kawazu and Watanabe [1971] the authors show that in general a CBI-process has a

representation in terms of the Laplace exponents F (u) and R(u) of two independent Lévy processes:

a Lévy subordinator XF and a spectrally positive Lévy process XR, which can be interpreted as

immigration and branching mechanism of the CBI-process respectively. Following Dawson and Li

[2006] a CBI-process can in fact be represented as the unique strong solution of a non-linear SDE

driven by XF and XR.

For discrete branching processes with immigration, limit distributions have been studied already

in Heathcote [1965, 1966] and some results on the existence of limit distributions of a CBI-process

were published by Pinsky [1972], albeit without proofs. Recently, proofs for the results of Pinsky

have appeared in Li [2011]. The main result of Pinsky [1972] states that under an integral condition

on the ratio F (u)/R(u) a limit distribution exists and can be described in terms of its Laplace

exponent (cf. Theorem 2.6). The contribution of this article is to build on the results of Pinsky

[1972] in order to give a finer description of the limit distribution: We show that it is infinitely
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divisible, give a representation of its Lévy-Khintchine triplet (Theorem 3.1) and then use this

new representation to obtain results on smoothness, support and other properties of the limit

distribution. From this main result, several other representations of the Lévy-Khintchine triplet

are then derived. The most concise representation is given by equation (3.17), which states that the

Lévy measure of the limit distribution has a density of the form x 7→ k(x)/x and the corresponding

k-function k : (0,∞) → R>0 is given by the formula

k = −AX̆FW,

where AX̆F is the generator of the modified Lévy subordinator X̆F and W is the scale function

that corresponds to the spectrally one-sided Lévy process XR (see Remark 3.4 for the precise

statement of this factorization). In Section 4 we derive further properties of the limit distribution.

In particular, we characterize the support of the limit distribution, show its absolute continuity

and describe its boundary behavior at the left endpoint of the support. Furthermore we prove that

the class of limit distributions of CBI-processes is strictly larger than the class of self-decomposable

distributions on R>0 and is strictly contained in the class of all infinitely divisible distributions on

R>0.

Most of our results can also be regarded as extensions of known results on limit distributions of

Ornstein-Uhlenbeck-type (OU-type), see e.g. Jurek and Vervaat [1983], Sato and Yamazato [1984],

Sato [1999], to the class of CBI-processes. The knowledge of the Lévy-Khintchine triplet for station-

ary distributions of OU-type processes has been applied to statistical estimation of the underlying

process in Masuda and Yoshida [2005]). We suggest that in further research our results may be

used for extensions of this methodology to CBI-processes.

2. Preliminaries

2.1. Continuous-State Branching Processes with Immigration. Let X be a continuous-

state branching process with immigration. Following Kawazu and Watanabe [1971], such a process

is defined as a stochastically continuous Markov process with state space [0,∞], whose Laplace

exponent is affine in the state variable, i.e. there exist functions φ(t, u) and ψ(t, u) such that

(2.1) − logEx
[
e−uXt

]
= φ(t, u) + xψ(t, u), for all t ≥ 0, u ≥ 0, x ∈ R>0 ,

where, as usual for the theory of Markov processes, Ex denotes expectation, conditional on X0 = x.

Since we are interested in the limit behavior of the process X as t ↑ ∞, we further assume that X is

conservative, i.e. that Xt is a proper random variable for each t ≥ 0 with state space R>0 := [0,∞).

The following theorem is proved in Kawazu and Watanabe [1971].
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Theorem 2.1 (Kawazu and Watanabe [1971]). Let (Xt)t≥0 be a conservative CBI-process. Then

the functions φ(t, u) and ψ(t, u) in (2.1) are differentiable in t with derivatives

F (u) =
∂

∂t
φ(t, u)

∣∣∣∣
t=0

, R(u) =
∂

∂t
ψ(t, u)

∣∣∣∣
t=0

(2.2)

and F , R are of Levy-Khintchine form

F (u) = bu−

∫

(0,∞)

(
e−uξ − 1

)
m(dξ),(2.3)

R(u) = −αu2 + βu−

∫

(0,∞)

(
e−uξ − 1 + uξI(0,1](ξ)

)
µ(dξ),(2.4)

where α, b ∈ R>0, β ∈ R, I(0,1] is the indicator function of the interval (0, 1] and m,µ are Lévy

measures on (0,∞), with m satisfying
∫
(0,∞) (x ∧ 1)m(dx) <∞, and R satisfying1

(2.5)

∫

0+

1

R∗(s)
ds = ∞ where R∗(u) = max(R(u), 0).

Moreover φ(t, u), ψ(t, u) take values in R>0 and satisfy the ordinary differential equations

∂

∂t
φ(t, u) = F (ψ(t, u)) , φ(0, u) = 0 ,

∂

∂t
ψ(t, u) = R (ψ(t, u)) , ψ(0, u) = u .

(2.6)

Remark 2.2. The equations (2.6) are often called generalized Riccati equations, since they are

classical Riccati differential equations, when m = µ = 0.

We call (F,R) the functional characteristics of the CBI-process X. Furthermore the article of

Kawazu and Watanabe [1971] contains the following converse result: for any functions F and R

defined by (2.3) and (2.4) respectively, which satisfy condition (2.5) and the restrictions on the

parameters α, b, β and the Lévy measure m stated in Theorem 2.1, there exists a unique con-

servative CBI-process with functional characteristics (F,R). In this sense the pair (F,R) truly

characterizes the process X. Clearly, F (u) is the Laplace exponent of a Lévy subordinator XF ,

and R(u) is the Laplace exponent of a Lévy process XR without negative jumps. Thus, we also

have a one-to-one correspondence between (conservative) CBI-processes and pairs of Lévy pro-

cesses (XF , XR), of which the first is a subordinator, and the second a process without negative

jumps that satisfies condition (2.5). In the case of a CBI-process without immigration (i.e. a

CB-process), which corresponds to F = 0, a pathwise transformation of XR to X and vice versa

was given by Lamperti [1967], and is often referred to as ‘Lamperti transform’. Recently, a path-

wise correspondence between the pair (XF , XR) and the CBI-process X has been constructed by

Caballero, Pérez Garmendia, and Uribe Bravo [2010].

1The notation
∫
0+

denotes an integral over an arbitrarily small right neighborhood of 0.
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The following properties of F (u) and R(u) can be easily derived from the representations (2.3)

and (2.4) and the parameter conditions stated in Theorem 2.1.

Lemma 2.3. The functions F (u) and R(u) are concave and continuous on R>0 and infinitely

differentiable in (0,∞). At u = 0 they satisfy F (0) = R(0) = 0, the right derivatives F ′
+(0) and

R′
+(0) exist in (−∞,+∞] and satisfy F ′

+(0) = limu↓0 F
′(u) and R′

+(0) = limu↓0R
′(u).

We will also need the following result, which can be found e.g. in Kyprianou [2006, Ch. 8.1]

Lemma 2.4. For the function R(u) exactly one of the following holds:

(i) R′
+(0) > 0 and there exists a u0 > 0 such that R(u0) = 0;

(ii) R ≡ 0;

(iii) R′
+(0) ≤ 0 and R(u) < 0 for all u > 0.

Remark 2.5. In case (i) R(u) is called a supercritical branching mechanism, while case (iii) can be

further distinguished into critical (R′
+(0) = 0) and subcritical branching (R′

+(0) < 0).

In what follows we will be interested in the limit distribution and the invariant distribution

of (Xt)t≥0. We write Ptf(x) = Ex[f(Xt)] for all x ∈ R>0 and denote by (Pt)t≥0 the transition

semigroup associated to the Markov process X. We say that L is the limit distribution of the

process X = (Xt)t≥0 if Xt converges in distribution to L under all Px for any starting value

x ∈ R>0 of X. We call L an invariant (or stationary) distribution of X = (Xt)t≥0, if
∫

[0,∞)
Ptf(x)dL(x) =

∫

[0,∞)
f(x)dL(x),

for any t ≥ 0 and bounded measurable f : R>0 → R>0. Finally we denote the Laplace exponent of

L by

l(u) = − log

∫

[0,∞)
e−uxdL(x), (u ≥ 0).

2.2. Limit Distributions of CBI-Processes. Theorem 2.6 and Corollary 2.8 concern the ex-

istence of a limit distribution of a CBI-process and have been announced in a similar form but

without proof in Pinsky [1972]. A proof has recently appeared in Li [2011, Thm. 3.20, Cor 3.21];

the only difference to the result given here is that we drop a mild moment condition assumed in

Li [2011, Eq.(3.1)f] and that we include stationary distributions in the statement of our result.

Some weaker results on the existence of a limit distribution of a CBI-process have also appeared

in Keller-Ressel and Steiner [2008]. We give a self-contained proof of the theorem and its corollary

in the appendix of the article.

Theorem 2.6 (Pinsky [1972], Li [2011]). Let (Xt)t≥0 be a CBI-process on R>0. Then the following

statements are equivalent:

(a) (Xt)t≥0 converges to a limit distribution L as t→ ∞;
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(b) (Xt)t≥0 has the unique invariant distribution L;

(c) It holds that R′
+(0) ≤ 0 and

(2.7) −

∫ u

0

F (s)

R(s)
ds <∞

for some u > 0.

Moreover the limit distribution L has the following properties:

(i) L is infinitely divisible;

(ii) the Laplace exponent l(u) = − log
∫
[0,∞) e

−uxdL(x) of L is given by

(2.8) l(u) = −

∫ u

0

F (s)

R(s)
ds (u ≥ 0) .

Remark 2.7. Note that the existence of the right derivative R′
+ at 0 that appears in statement (c)

is guaranteed by Lemma 2.3.

Corollary 2.8. If R′
+(0) < 0 then the integral condition (2.7) is equivalent to the log-moment

condition

(2.9)

∫

ξ>1
log ξ m(dξ) <∞.

2.3. Results on Ornstein-Uhlenbeck-type Processes. A subclass of CBI-processes, whose

limit distributions have been studied extensively in the literature is the class of R>0-valued Ornstein-

Uhlenbeck-type (OU-type) processes. We briefly discuss some of the known results on OU-type

processes, that will be generalized by our results in the next section. Let λ > 0 and Z be a Lévy

subordinator with drift b ∈ R>0 and Lévy measure m(dξ). An R>0-valued OU-type process X is

the strong solution of the SDE

(2.10) dXt = −λXtdt+ dZt, X0 ∈ R>0,

which is given by Xt = X0e
−λt +

∫ t
0 e

λ(s−t)dZs. This is the classical Ornstein-Uhlenbeck process,

where the Brownian motion has been replaced by an increasing Lévy process. It follows from

elementary calculations that an R>0-valued OU-type process is a CBI-process with R(u) = −λu.

In terms of the two Lévy processes XF , XR, this corresponds to the case that XF = Z, and XR

is the degenerate Lévy process XR
t = −λt. For OU-type processes analogues of Theorem 2.6 and

the log-moment condition of Corollary 2.8 already appeared in Çinlar and Pinsky [1971].

An interesting characterization of the limit distributions of OU-type processes is given in terms

of self-decomposability: Recall that a random variable Y has a self-decomposable distribution if for
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every c ∈ [0, 1] there exists a random variable Yc, independent of Y , such that

(2.11) Y
d
= cY + Yc.

Self-decomposable distributions are a subclass of infinitely divisible distributions, and exhibit in

many aspects an increased degree of regularity. It is known for example, that every non-degenerate

self-decomposable distribution is absolutely continuous (cf. Sato [1999, 27.8]) and unimodal (cf.

Yamazato [1978] or Sato [1999, Chapter 53]), neither of which holds for general infinitely divisi-

ble distributions. As we are working with non-negative processes, we focus on self-decomposable

distributions on the half-line R>0, and we denote this class by SD+. The connection to OU-type

processes is made by the following result.

Theorem 2.9 (Jurek and Vervaat [1983], Sato and Yamazato [1984]). Let X be an OU-type pro-

cess on R>0 and suppose that m(dξ) satisfies the log-moment condition
∫
ξ>1 log ξ m(dξ) < ∞.

Then X converges to a limit distribution L which is self-decomposable. Conversely, for every

self-decomposable distribution L with support R>0 there exists a unique subordinator Z with drift

b ∈ R>0 and a Lévy measure m(dξ), satisfying
∫
ξ>1 log ξ m(dξ) < ∞, such that L is obtained as

the limit distribution of the corresponding OU-type process.

Since a self-decomposable distribution is infinitely divisible, its Laplace exponent has a Lévy-

Khintchine decomposition. The following characterization is due to Paul Lévy and can be found

in Sato [1999, Cor. 15.11]: an infinitely divisible distribution L on R>0 is self-decomposable, if and

only if its Laplace exponent is of the form

(2.12) − log

∫

[0,∞)
e−uxdL(x) = γu−

∫ ∞

0

(
e−ux − 1

) k(x)
x

dx,

where γ ≥ 0 and k is a decreasing function on R>0. The parameters γ and k are related to the

Lévy subordinator Z by

(2.13) γ =
b

λ
and k(x) =

1

λ
m(x,∞) for x > 0.

Following Sato [1999] we call k the k-function of the self-decomposable distribution L. Many prop-

erties of L, such as smoothness of its density, can be characterized through k. In fact, several sub-

classes of SD+ have been defined, based on more restrictive assumptions on k. For example, the class

of self-decomposable distributions whose k-function is completely monotone, is known as the Thorin

class, and arises in the study of mixtures of Gamma distributions; see James, Roynette, and Yor

[2008] for an excellent survey. In our main result, Theorem 3.1 we give analogues of the formulas

(2.12) and (2.13) for the limit distribution of a CBI-process. As it turns out, a representation as

in (2.12) still holds, with the class of decreasing k-functions replaced by a more general family.
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However, we do not obtain a structural characterization of the CBI limit distributions that re-

places self-decomposability. Identifying such a structural condition (if there is any) constitutes an

interesting question that is left open by our results.

3. Lévy-Khintchine Decomposition of the Limit Distribution

Let XF and XR be the Lévy processes that correspond to the Laplace exponents F and R

given in (2.3) and (2.4) respectively. As remarked in Section 2.1, XF is a subordinator and XR

is a Lévy process with no negative jumps. From Theorem 2.6 it follows that whenever a limit

distribution exists, then E
[
XR

1

]
= R′

+(0) ≤ 0 and R 6≡ 0, such that XR is not a subordinator,

but a true spectrally positive Lévy process in the sense of Bertoin [1996]. The fluctuation theory of

spectrally one-sided Lévy processes has been studied extensively. The convention used in much of

the literature is to study a spectrally negative process. In our setting such a process is given by the

dual X̂R = −XR and its Laplace exponent is logE
[
euX̂

R
]
= −R(u) for u ≥ 0. A central result in

the fluctuation theory of spectrally one-sided Lévy processes (see [Bertoin, 1996, Thm 8, Ch VII])

states that for each function R of the form (2.4) there exists a unique function W : R → [0,∞),

known as the scale function of X̂R, which is increasing and continuous on the interval [0,∞) with

Laplace transform

(3.1)

∫ ∞

0
e−uxW (x)dx = −

1

R(u)
, for u > 0.

and identically zero on the negative half-line (W (x) = 0 for all x < 0). Note that this equality

implies that

(3.2) W (x) = o(eǫx) as x→ ∞ for any ǫ > 0,

i.e. that W has sub-exponential growth, a fact that will be needed subsequently. Furthermore the

scale function W has the representation

W (x)

W (y)
= exp

{
−

∫ y

x
n (ε ≥ z) dz

}
for any 0 < x < y,(3.3)

where n is the Itô excursion measure on the set

(3.4) E = {ε ∈ D(R) : ∃ζε ∈ (0,∞] s.t. ε(t) = 0 if ζε ≤ t <∞, ε(0) ≥ 0, ε(t) > 0 ∀t ∈ (0, ζε)} ,

with D(R) the Skorokhod space. The measure n is the intensity measure of the Poisson point

process of excursions from the supremum of X̂R and {ε ≥ z} ⊂ E denotes the set of excursions of

height ε = supt<ζε ε(t) at least z > 0 (see Bertoin [1996] for details on the Itô excursion theory in the

context of Lévy processes). The representation (3.3) implies that, on the interval (0,∞), the scale

function W is strictly positive, absolutely continuous, log-concave with right- and left-derivative

given byW ′
+(x) = n (ε > x)W (x) andW ′

−(x) = n (ε ≥ x)W (x) respectively. Furthermore at x = 0

the right-derivative W ′
+(0) exists in [0,∞].
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Using the scale function W associated to X̂R we can formulate our main result on the Lévy-

Khintchine decomposition of the limit distribution of a CBI-process.

Theorem 3.1. Let X be a CBI-process with functional characteristics (F,R) given in (2.3)

and (2.4) and assume that X converges to a limit distribution L. Let W be the scale function

associated to the dual X̂R of the spectrally positive Lévy process XR and let (b,m) be the drift and

Lévy measure of the subordinator XF . Then L is infinitely divisible, and its Laplace exponent has

the Lévy-Khintchine decomposition

(3.5) − log

∫ ∞

0
e−uxdL(x) = uγ −

∫

(0,∞)

(
e−xu − 1

) k(x)
x

dx,

where γ ≥ 0 and k : (0,∞) → R>0 are given by

γ = bW (0),(3.6)

k(x) = bW ′
+(x) +

∫

(0,∞)
[W (x)−W (x− ξ)] m(dξ).(3.7)

Remark 3.2. If X is an OU-type process, then R is of the form R(u) = −λu with λ > 0. Since

the scale function in this case takes the form W (x) = 1
λI[0,∞)(x), equations (3.6) and (3.7) reduce

to γ = b
λ and k(x) = 1

λm(x,∞). This is precisely the known result for the R>0-valued OU-type

process stated in (2.13).

Before proving this result, we state a corollary that connects the limit distribution in Theorem 3.1

with the excursion measure n associated to the Poisson point process of excursions away from the

supremum of the dual of the branching mechanism XR. To state it, we introduce the effective drift

λ0 of X̂R, which is defined as

(3.8) λ0 =





∫
(0,1] ξµ(dξ)− β, if XR has bounded variation,

+∞, if XR has unbounded variation.

Note that λ0 > 0 must hold if R′
+(0) ≤ 0.

Corollary 3.3. Let the assumptions of Theorem 3.1 hold. Then

γ =
b

λ0
and(3.9)

k(x) =W (x)

(
b n(ε > x) +

∫

(0,∞)

(
1− 1{ξ≤x} exp

(
−

∫ x

x−ξ
n(ε ≥ z)dz

))
m(dξ)

)
(3.10)

where λ0 is the effective drift of X̂R, n is the Itô excursion measure corresponding to the Poisson

point process of excursions from the supremum of X̂R.
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Proof of Theorem 3.1. For every t > 0, the distribution of Xt is infinitely divisible and supported

on R>0. Hence the same is true of the limit distribution L. The Laplace exponent of L can by

Theorem 2.6 be expressed as

(3.11) − log

∫

[0,∞)
e−uxdL(x) = −

∫ u

0

F (s)

R(s)
ds = du−

∫

(0,∞)

(
e−ux − 1

)
ν(dx), u ≥ 0,

for d ≥ 0 and some Lévy measure ν(dx) satisfying
∫
(0,1) xν(dx) < ∞. Moreover, it is clear from

Theorem 2.6 that R′
+(0) ≤ 0 and R 6≡ 0. Thus, Lemma 2.4 implies that the quotient F/R is

continuous at any u > 0. Since the elementary inequality |e−xh − 1|/h < x holds for all x, h > 0,

the dominated convergence theorem and the fundamental theorem of calculus applied to (3.11)

yield the identity

−
F (u)

R(u)
= d+

∫

(0,∞)
e−uxxν(dx) for all u > 0.(3.12)

Any twice-differentiable function f that tends to zero as |x| → ∞, i.e. f ∈ C2
0 (R), is in the

domain of the generator AXF of the subordinator XF and the following formula holds

AXF f(x) = bf ′(x) +

∫

(0,∞)
[f(x+ ξ)− f(x)] m(dξ) for x ∈ R.(3.13)

Fix u > 0 and let fu ∈ C2
0 (R) be a function that satisfies fu(x) = e−ux for all x ≥ 0. Applying (3.13)

to fu yields AXF fu(x) = F (u)fu(x) for all u > 0, x ≥ 0. Multiplying by −W (x) and integrating

from 0 to ∞ gives the following identity for all u > 0:

−

∫ ∞

0
W (x)AXF fu(x) dx(3.14)

= b

∫ ∞

0
ue−uxW (x) dx−

∫ ∞

0
W (x)

∫

(0,∞)

[
e−u(x+ξ) − e−ux

]
m(dξ)dx.

Note that AXF fu(x) ∼ e−ux for x → ∞, which guarantees that the integrals are finite in light of

eq. (3.2). Since W is increasing and absolutely continuous, integration by parts gives

−

∫ ∞

0
W (x)AXF fu(x) dx = bW (0) + b

∫ ∞

0
e−uxW ′

+(x) dx(3.15)

+

∫ ∞

0
e−ux

∫

(0,∞)
[W (x)−W (x− ξ)] m(dξ) dx,

for all u > 0. The second integral on the right-hand side of (3.15) is a consequence of the following

steps: (i) note that the corresponding integrand in (3.14) does not change sign on the domain of

integration, (ii) approximate the Lévy measure m by a sequence of measures (mn)n∈N with finite

mass, (iii) apply Fubini’s theorem to obtain the formula for each mn, (iv) take the limit by applying

the monotone convergence theorem.
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On the other hand, combining the identity AXF fu(x) = F (u)e−ux for all u > 0, x ∈ R>0 with

(3.1) and (3.11) yields

(3.16) −

∫ ∞

0
W (x)AXF fu(x)dx = −

∫ ∞

0
W (x)F (u)e−uxdx = −

F (u)

R(u)
= d+

∫

(0,∞)
e−uxxν(dx),

which in turn must equal the right hand side of (3.15). In the limit as u→ ∞, the equality of the

expressions in (3.15) and (3.16) yields d = bW (0). Subtracting this term we arrive at the equality

∫ ∞

0
e−ux

[
bW ′

+(x) +

∫

(0,∞)
[W (x)−W (x− ξ)] m(dξ)

]
dx =

∫

(0,∞)
e−uxxν(dx).

Both sides are Laplace transforms of Borel measures on (0,∞), and we conclude from the equality

of transforms the equality of the measures
[
bW ′

+(x) +

∫

(0,∞)
[W (x)−W (x− ξ)] m(dξ)

]
dx = xν(dx)

for all x > 0. In particular it follows that ν(dx) has a density k(x)/x with respect to the Lebesgue

measure, and that k(x) is given by

k(x) = bW ′
+(x) +W (x)m(x,∞) +

∫

(0,x]
[W (x)−W (x− ξ)]

almost everywhere, which concludes the proof. �

Proof of Corollary 3.3. Following Kyprianou [2006, Lemma 8.6], W+(0) > 0 if and only if XR has

finite variation, and is equal to 1/λ0 in this case, with λ0 defined by (3.8). If XR has infinite

variation, then W (0) = 0 and λ0 = ∞, and hence equation (3.9) holds. Substituting the represen-

tation (3.3) of W in terms of the measure n into (3.7) yields the second equation (3.10). �

Remark 3.4. The formula for the k-function in (3.7) looks very much like the Feller generator of

the subordinator XF applied to the scale function W of X̂R. However, the Feller generator is only

defined on a subset (i.e. its domain) of the Banach space of continuous functions that tend to 0 at

infinity, C0(R). Any function in the domain of the generator of XF must be in C0(R) and differen-

tiable; sufficient conditions for the differentiability of W are given in Chan, Kyprianou, and Savov

[2011]. However, the scale function W , which is non-decreasing on R>0, is not in C0(R) and thus

never in the domain of the Feller generator of XF . To remedy this problem, consider that by (3.2)

and (3.3), both W and W ′
+ are elements of the weighted L1-space defined by

Lh1(0,∞) :=

{
f ∈ Lloc

1 (0,∞) :

∫ ∞

0
|f(x)|h(x)dx <∞

}
,

where h : (0,∞) → (0,∞) is a continuous bounded function with limx↓0 h(x) = 0 and h(x) ∼ e−cx

as x→ ∞ for some c > 0. The semigroup (P̆t)t≥0 of the Markov process X̆F,x
t = (x−XF

t )I{XF
t ≤x}+

∂I{XF
t >x}

(i.e. the dual, started at x > 0, of XF , sent to a killing state ∂ upon the first passage
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into (−∞, 0)) acts on Lh1(0,∞) by P̆tf(x) = E
[
f
(
X̆F,x
t

)]
= E

[
f
(
x−XF

t

)
1{XF

t <x}

]
, for each

f ∈ Lh1(0,∞) where we take f(∂) = 0. It can be shown that the Lh1(0,∞)-semigroup (P̆t)t≥0 is

strongly continuous with a generator AX̆F and, if R′
+(0) ≤ 0, then the scale function W associated

to R is in the domain of AX̆F . Furthermore the k-function k in Theorem 3.1 can be written as

(3.17) k = −AX̆FW.

The proof of these facts is straightforward but technical and rather lengthy and hence omitted.

4. Further Properties of the Limit Distribution

As discussed in Section 2.3, self-decomposable distributions, which arise as limit distributions of

R>0-valued OU-type processes are in many aspects more regular than general infinitely divisible

distributions. For self-decomposable distributions precise results are known about their support,

absolute continuity and behavior at the boundary of their support. Using the notation of Sec-

tion 2.3, and excluding the degenerate case of a distribution concentrated in a single point, the

following holds true when L is self-decomposable:

(i) the support of L is [b/λ,∞);

(ii) the distribution of L is absolutely continuous;

(iii) the asymptotic behavior of the density of L at b/λ is determined by c = limx↓0 k(x).

We refer the reader to Sato [1999, Theorems 15.10, 24.10, 27.13 and 53.6]. The goal in this section

is to show analogous results for the limit distributions L arising from general CBI-processes, i.e. to

characterize the support, the continuity properties and the asymptotic behavior at the boundary

of the support of L. We start by isolating the degenerate cases. A Lévy process, such as XF or

XR, is called degenerate, if is deterministic, or equivalently if its Laplace exponent is of the form

u 7→ λu for some λ ∈ R. For a CBI-process X we draw a finer distinction.

Definition 4.1. A CBI-process X is degenerate of the first kind, if it is deterministic for all starting

values X0 = x ∈ R>0. X is degenerate of the second kind, if it is deterministic when started at

X0 = 0.

Remark 4.2. Clearly degeneracy of the first kind implies degeneracy of the second kind. From

Theorem 2.1 the following can be easily deduced: a CBI-process is degenerate of the first kind if

and only if both XF and XR are degenerate. In this case F (u) = bu and R(u) = βu, and X is the

deterministic process given by

(4.1) Xt = X0e
βt +

b

β

(
eβt − 1

)
.
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A CBI-process X is degenerate of the second kind, but not of the first, if and only if XF = 0 and

XR is non-degenerate. In this case it is a CB-process, i.e. a continuous-state branching process

without immigration.

The following proposition describes the support of the limit L in the degenerate cases.

Proposition 4.3. Let X be a CBI-process, let L be its limit distribution and let k be the function

defined in Theorem 3.1. If X is degenerate of the first kind, then suppL = {−b/β}. If X is

degenerate of the second kind but not of the first kind, then suppL = {0}. Moreover, the following

statements are equivalent:

(a) the support of L is concentrated at a single point;

(b) X is degenerate (of either kind);

(c) there exists a sequence xi ↓ 0 such that k(xi) = 0 for all i ∈ N;

(d) k(x) = 0 for all x > 0.

Proof. Suppose that X is degenerate of the first kind. Then the limit L is concentrated at −b/β

by (4.1). Suppose next, that X is degenerate of the second, but not the first kind. Then F = 0

and by Theorem 3.1 the Laplace exponent of L is 0. It follows that L is concentrated at 0 in this

case.

We proceed to show the second part of the proposition. It is obvious that (d) implies (c). To

show that (c) implies (b), note that the inequality

k(x) ≥W (x) (b n(ε > x) +m(x,∞))

holds for all x > 0 by equation (3.10). Since W (x) > 0 for any x > 0, assumption (c) implies that

bn(ε > xi) +m(xi,∞) = 0 for all xi, i ∈ N.

We can conclude that m ≡ 0 and hence XF
t = bt for all t ≥ 0. Furthermore we see that either

b = 0 or n ≡ 0. If b = 0, then F = 0 and hence, by Remark 4.2, X is a degenerate CBI-process of

the second kind. On the other hand, if the Itô excursion measure n is zero, then the representation

in (3.3) implies that the scale function W is constant. In this case it follows from (3.1) that

R(u) = βu for some β < 0, or equivalently that XR
t = βt for all t ≥ 0 and hence that X is

degenerate of the first kind.

The fact that (b) implies (a) follows from the first part of the proposition. It remains to show

that (a) implies (d); this is a consequence of the fact that L is infinitely divisible with support in

R>0, and that the support of an infinitely divisible distribution in R>0 is concentrated at a single

point if and only if its Lévy measure is trivial (cf. Sato [1999, Thm. 24.3, Cor. 24.4]). �

The next result describes the support of the limit L in the non-degenerate case.
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Proposition 4.4. Let X be a non-degenerate CBI-process and let L be its limit distribution. Then

suppL = [b/λ0,∞),

where λ0 is the effective drift of X̂R, defined in (3.8). In particular suppL = R>0 if and only if

b = 0 or the paths of XR have infinite variation.

Proof. From Proposition 4.3c we know that there is some δ > 0, such that the k-function of L is

non-zero on (0, δ). For any h ∈ (0, δ), define Lh as the infinitely divisible distribution with Laplace

exponent
∫
(h,∞) (e

−xu − 1) k(x)x dx. Each Lh is a compound Poisson distribution, with Lévy measure

νh(dξ) =
k(x)
x 1(h,∞)(x). Since k is non-zero on (0, δ)

(4.2) (h, δ) ⊂ supp νh ⊂ (h,∞).

From Theorem 3.1 we deduce that as h → 0 the distributions Lh converge to L(γ + .), i.e. to L

shifted to the left by γ. For the supports, this implies that

(4.3) suppL = {γ}+ lim
h↓0

suppLh

where the limit denotes an increasing union of sets and ‘+’ denotes pointwise addition of sets.

Using (4.2) and the fact that Lh is a compound Poisson distribution it follows that

{0} ∪
∞⋃

n=1

(nh, nδ) ⊂ suppLh ⊂ {0} ∪ (h,∞),

by Sato [1999, Thm. 24.5]. Let h ↓ 0 and apply (4.3) to obtain

∞⋃

n=1

[γ, γ + nδ] ⊂ suppL ⊂ [γ,∞),

and we conclude that suppL = [γ,∞). By Corollary 3.3 γ = b/λ0, which completes the proof. �

Proposition 4.5. Let X be a CBI-process and let λ0 be as in (3.8). Then the limit distribution L

is either absolutely continuous on R>0 or absolutely continuous on R>0 \ {b/λ0} with an atom at

{b/λ0}, according to whether

(4.4)

∫ 1

0

k(x)

x
dx = ∞ or

∫ 1

0

k(x)

x
dx <∞.

Proof. If X is degenerate, then the assertion follows immediately from Proposition 4.3. In this case

k(x) = 0 for all x > 0, the integral in (4.4) is always finite and the distribution of L consists of a

single atom at b/λ0.

It remains to treat the non-degenerate case. Assume first that the integral in (4.4) takes a finite

value. Then also the total mass ν(0,∞) of the Lévy measure ν(dx) = k(x)
x dx is finite, and L − γ
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has compound Poisson distribution. By Sato [1999, Rem. 27.3] this implies that for any Borel-set

A ⊂ R>0

(4.5)

∫

A+γ
dL(x) = e−tν(0,∞)

∞∑

j=0

tj

j!
ν∗j(A),

where ν∗j(dx) is the j-th convolution power of ν, and it is understood that ν∗0 is the Dirac measure

at 0. Since ν(dx) is absolutely continuous – it has density k(x)
x – also the convolution powers ν∗j(dx)

are absolutely continuous for j ≥ 1. The first summand ν∗0 however has an atom at 0. It follows

by (4.5) that L− γ is absolutely continuous on (0,∞) with an atom at 0, and we have shown the

claim for the case
∫ 1
0
k(x)
x dx <∞.

Assume that
∫ 1
0
k(x)
x dx = ∞. Then the Lévy measure ν(dx) = k(x)

x dx of L has infinite total

mass, and Sato [1999, Thm. 27.7] implies that L has a distribution that is absolutely continuous,

which completes the proof. �

So far, we know that the left endpoint of the support of L is γ = b/λ0, and that the distribution

of L may or may not have an atom at this point. In case that there is no atom, the following

proposition yields an even finer description of the behavior of the distribution close to γ.

Proposition 4.6. Let X be a CBI-process satisfying the assumptions of Theorem 3.1, and let L

be its limit distribution. Suppose that c = limx↓0 k(x) is in (0,∞), and define

(4.6) K(x) = exp

(∫ 1

x
(c− k(y))

dy

y

)
.

Then K(x) is slowly varying at 0 and L satisfies

(4.7) L(x) ∼
κ

Γ(c)
(x− γ)c−1K(x− γ) as x ↓ γ,

where γ = b/λ0 and

κ = exp

(
c

∫ 1

0
(e−x − 1)

dx

x
+ c

∫ ∞

1
e−x

dx

x
−

∫ ∞

1
k(x)

dx

x

)
.

Proof. Note that the inequality c > 0 and Proposition 4.5 imply that L is absolutely continuous. Its

support is by Proposition 4.4 equal to [γ,∞) and L(γ) = 0. The proof of Sato [1999, Theorem 53.6]

for self-decomposable distributions can now be applied without change. �

Recall that ID+ and SD+ denote the classes of infinitely divisible and self-decomposable distri-

butions on R>0 respectively. Let CLIM be the class of distributions on R>0 that arise as limit

distributions of CBI-processes.

Proposition 4.7. The class CLIM is contained strictly between the self-decomposable and the

infinitely divisible distributions on R>0, i.e.

SD+ ( CLIM ( ID+.
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Proof. The inclusion CLIM ⊂ ID+ follows from Theorem 2.6, and the inclusion SD+ ⊂ CLIM from

Theorem 2.9 and the fact that each R>0-valued OU-type process (see (2.10)) is a CBI-process with

R′
+(0) = −λ < 0. The strictness of the inclusions can be deduced from the following facts:

• all distributions in SD+ are either degenerate or absolutely continuous (cf. Sato [1999,

Thorem 27.13]);

• all distributions in CLIM are absolutely continuous on R>0 \ {b/λ0}, but some concentrate

non-zero mass at {b/λ0} (cf. Propositions 4.4 and 4.5);

• the class ID+ contains singular distributions (cf. Sato [1999, Theorem 27.19]).

�

For a more direct proof of the fact that SD+ is strictly included in CLIM we exhibit an example

of a distribution that is in CLIM but not in SD+:

Example 4.8 (CBI-process with non self-decomposable limit distribution). In this example we con-

sider the class of CBI-processes X given by a general subordinator XF and spectrally positive

process XR equal to a Brownian motion with strictly negative drift. The Laplace exponent of XR

is R(u) = −αu2 + βu with α > 0, β < 0. It is easy to check using (3.1) that the scale function of

the dual X̂R and its derivative are

W (x) = [exp (xβ/α)− 1] /β and W ′(x) = exp (xβ/α) /α.(4.8)

Theorem 3.1 implies that the characteristics of the limit distribution L are given by γ = 0 and

(4.9) k(x) = exβ/α

[
b

α
+

1

β

(
m(x,∞) +

∫

(0,x]

(
1− e−ξβ/α

)
m(dξ)

)]
−m(x,∞)/β,

where b ∈ R>0 is the drift and m the Lévy measure of the subordinator XF . Assuming in addition

that XF is a compound Poisson process with exponential jumps and setting parameters equal to

m(x,∞) = e−x, b = 0, α = 1/2, β = −1,

formula (4.9) reduces to k(x) = 2(e−x − e−2x). Since this k-function is not decreasing, the corre-

sponding distribution L, which is in CLIM, cannot be in SD+.

Proposition (4.9) gives sufficient conditions for a distribution in CLIM to be self-decomposable.

Proposition 4.9. Let X be a CBI-process and let L be its limit distribution. Each of the following

conditions is sufficient for L to be self-decomposable:

(a) µ = 0 and α = 0,

(b) µ = 0 and m = 0,

(c) m = 0 and W is concave on (0,∞).

Conversely, if m = 0 and L is self-decomposable, then W must be concave on (0,∞).
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Remark 4.10. The monotonicity of the derivative of the scale function, which arises in Proposi-

tion 4.9, also plays a role in other applications of scale functions (e.g. control theory Loeffen [2008];

conjugate Bernstein functions and one-sided Lévy processes Kyprianou and Rivero [2008]).

Proof. The first two conditions are rather trivial. In the first caseX is an OU-type process, and self-

decomposability follows from the classical results of Jurek and Vervaat [1983], Sato and Yamazato

[1984] that we state as Theorem 2.9. In the second case X has no jumps, and hence is a Feller

diffusion. This process is well-studied, and its limit distribution is known explicitly. It is a shifted

gamma distribution, which is always self-decomposable. It remains to show (c) and the converse

assertion. Assume that m = 0. By Theorem 3.1 we have k(x) = bW ′
+(x) in this case. An infinitely

divisible distribution is self-decomposable if and only if it can be written as in (2.12) with decreasing

k-function. Clearly k is decreasing if and only if W ′
+ is, or equivalently if W is concave on R>0. �

Appendix A. Additional Proofs for Section 2

Proof of Theorem 2.6. We first show that (c) is equivalent to (a) and that L has to satisfy (i)

and (ii). Consider the three alternatives for the behavior of R(u) that are outlined in Lemma 2.4.

Through the Riccati equations (2.6) they imply the following behavior of ψ(t, u): If R′
+(0) > 0

then limt→∞ ψ(t, u) = u0 for all t, u > 0, if R ≡ 0 then ψ(t, u) = u for all u ≥ 0, and if R′
+(0) ≤ 0

but R 6≡ 0 then limt→∞ ψ(t, u) = 0. Moreover,

(A.1) lim
t↑∞

− logE
[
e−uXt

]
= lim

t↑∞
(φ(t, u) + xψ(t, u)) =

∫ ∞

0
F (ψ(r, u)) dr + x · lim

t→∞
ψ(t, u).

We see that if R′
+(0) > 0 or R ≡ 0 the right-hand side diverges for u > 0, and hence no limit

distribution exists in these cases. In case that R′
+(0) ≤ 0 and R 6≡ 0, the transformation s = ψ(r, u)

yields that

(A.2) lim
t↑∞

− logE
[
e−uXt

]
=

∫ u

0

F (s)

R(s)
ds.

This integral is finite, if and only if condition (2.7) holds. If it is finite then Lévy’s continuity theorem

for Laplace transforms guarantees the existence of, and convergence to, the limit distribution L

with Laplace exponent given by (2.8). It is also clear that L must be infinitely divisible, since it is

the limit of infinitely divisible distributions. If on the other hand the integral in (A.2) is infinite

for some u ∈ R>0, then there is no pointwise convergence of Laplace transforms, and hence also no

weak convergence of Xt as t→ ∞.

To complete the proof it remains to show that any limit distribution is also invariant and vice

versa, i.e. that (b) is equivalent to (a). Assume that L̃ is an invariant distribution of (Xt)t≥0,

and has Laplace exponent l̃(u) = − log
∫
[0,∞) e

−uxdL̃(x). Denote fu(x) = e−ux and note that the
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invariance of L̃ implies

(A.3)

∫

[0,∞)
fu(x)dL̃(x) =

∫

[0,∞)
Ptfu(x)dL̃(x) = e−φ(t,u)

∫

[0,∞)
e−xψ(t,u)dL̃(x)

for all t, u ≥ 0. This can be rewritten as l̃(u) = φ(t, u) + l̃(ψ(t, u)). Taking derivatives with respect

to t and evaluating at t = 0 this becomes 0 = F (u) + l̃′(u)R(u). Since l̃(u) is continuous on R>0

with l̃(0) = 0, the above equation can be integrated to yield l̃(u) = −
∫ u
0
F (s)
R(s)ds. By the first part of

the proof this implies that a limit distribution L exists, with Laplace exponent l(u) coinciding with

l̃(u). We conclude that also the probability laws L and L̃ on R>0 coincide, i.e. L = L̃ . Conversely,

assume that a limit distribution L exists. To show that L is also invariant, note that (2.1), (2.6)

and (2.8) imply

∫

[0,∞)
Ptfu(x)dL(x) = exp (−φ(t, u)− l(ψ(t, u))) = exp

(
−

∫ t

0
F (ψ(r, u))dr +

∫ ψ(t,u)

0

F (s)

R(s)
ds

)

= exp

(∫ u

0

F (s)

R(s)
ds

)
=

∫

[0,∞)
fu(x)dL(x).

This completes the proof. �

Proof of Corollary 2.8. Assume that
∫
[1,∞) log ξ m(dξ) < ∞. From the concavity of R(u),

Lemma 2.4 and the fact that F (u) ≥ 0 for all u ≥ 0 we obtain that

(A.4) 0 ≤ −

∫ u

0

F (s)

R(s)
ds ≤ −

1

R′(0)

∫ u

0

F (s)

s
ds = −

1

R′(0)

(
bu+

∫ u

0

∫

(0,∞)

1− e−sξ

s
m(dξ)ds

)
.

In order to show that this upper bound is finite, it is enough to show that the double integral on

the right takes a finite value. Since the integrand is positive, the integrals can be exchanged by the

Tonelli-Fubini theorem. Defining the function M(ξ) =
∫ u
0

1−e−sξ

s ds, we can write

∫ u

0

∫

(0,∞)

1− e−sξ

s
m(dξ)ds =

∫

(0,∞)
M(ξ)m(dξ).

An application of L’Hôpital’s formula reveals the following boundary behavior of M(ξ):

(A.5) lim
ξ→0

M(ξ)

ξ
= u and lim

ξ→∞

M(ξ)

log ξ
= 1.

Choosing suitable constants C1, C2 > 0 we can bound M(ξ) from above by C1ξ on (0, 1) and by

C2 log ξ on [1,∞). Note that m(dξ) integrates the function ξ 7→ C1ξ on (0, 1) by Theorem 2.1, and

integrates the function ξ 7→ C2 log ξ on [1,∞) by assumption. Hence
∫

(0,∞)
M(ξ)m(dξ) ≤ C1

∫

(0,1)
ξ m(dξ) + C2

∫

[1,∞)
log ξ m(dξ) <∞,

and we have shown that the upper bound in (A.4) is finite and that (2.7) holds true.
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Suppose now that
∫
ξ>1 log ξ m(dξ) = ∞. Since R′

+(0) < 0 we can find ǫ, δ > 0 such that

R′
+(0) + ǫ < 0 and R(u) ≥ (R′

+(0)− ǫ)u for all u ∈ (0, δ). Hence,

−

∫ u

0

F (s)

R(s)
ds ≥

1

ǫ−R′
+(0)

∫ u

0

F (s)

s
ds =

1

ǫ−R′
+(0)

(
bu+

∫ u

0

∫

(0,∞)

1− e−sξ

s
m(dξ)ds

)
,(A.6)

for all u ∈ (0, δ). Exchanging integrals by the Tonelli-Fubini theorem and using the function M(ξ)

defined above we get
∫ u

0

∫

(0,∞)

1− e−sξ

s
m(dξ)ds =

∫

(0,∞)
M(ξ)m(dξ) ≥ C ′

2

∫

[1,∞)
log ξ m(dξ) = ∞,

where C ′
2 > 0 is a finite constant which exists by the second limit in (A.5). This shows that the

right hand side of (A.6) is infinite and hence that (2.7) can not hold true. �
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E. Çinlar and M. Pinsky. A stochastic integral in storage theory. Zeitschrift für Wahrscheinlichkeit-

stheorie und verwandte Gebiete, 17:227–240, 1971.

D. A. Dawson and Zenghu Li. Skew convolution semigroups and affine Markov processes. The

Annals of Probability, 34(3):1103 – 1142, 2006.

C. R. Heathcote. A branching process allowing immigration. Journal of the Royal Statistical Society

B, 27(1):138–143, 1965.

C. R. Heathcote. Corrections and comments on the paper ‘A branching process allowing immigra-

tion’. Journal of the Royal Statistical Society B, 28(1):213–217, 1966.

Lancelot F. James, Bernard Roynette, and Mark Yor. Generalized gamma convolutions, Dirichlet

means, Thorin measures, with explicit examples. Probability Surveys, 5:346–415, 2008.

Z. J. Jurek and W. Vervaat. An integral representation for self-decomposable Banach space valued

random variables. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 62:247–262,

1983.

Kiyoshi Kawazu and Shinzo Watanabe. Branching processes with immigration and related limit

theorems. Theory of Probability and its Applications, XVI(1):36–54, 1971.

Martin Keller-Ressel and Thomas Steiner. Yield curve shapes and the asymptotic short rate dis-

tribution in affine one-factor models. Finance and Stochastics, 12(2):149 – 172, 2008.

A.E. Kyprianou and V. Rivero. Conjugate and complete scale functions for spectrally negative
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