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SIMPLIFYING TRIANGULATIONS OF S3

Aleksandar Mijatović

In this paper we describe a procedure to simplify any given
triangulation of S3 using Pachner moves. We obtain an expli-
cit exponential-type bound on the number of Pachner moves
needed for this process. This leads to a new recognition algo-
rithm for the 3-sphere.

1. Introduction.

It has been known for some time that any triangulation of a closed PL
n-manifold can be transformed into any other triangulation of the same
manifold by a finite sequence of moves [5]. We can describe the moves as
follows.

Definition. Let T be a triangulation of an n-manifold M . Suppose D is a
combinatorial n-disc which is a subcomplex both of T and of the boundary
of a standard (n+ 1)-simplex ∆n+1. A Pachner move consists of changing T
by removing the subcomplex D and inserting ∂∆n+1 − int(D) (for n equals
3, see Figure 1).

It is an immediate consequence of the definition that there are precisely
(n+1) possible Pachner moves in dimension n. We can now state Pachner’s
result [5] in the following way.

Theorem 1.1 (Pachner). Closed PL n-manifolds M and N with triangu-
lations T and K respectively, are piecewise linearly homeomorphic if and
only if there exists a finite sequence of Pachner moves and simplicial iso-
morphisms taking the triangulation T into the triangulation K.

In dimension 3 we have four moves from Figure 1 at our disposal. Using
them, we can describe the main theorem of this paper.

Theorem 1.2. Let T be a triangulation of a 3-sphere and let t be the number
of tetrahedra in it. Then we can simplify the triangulation T to the canonical
triangulation of S3, by making less than a t22bt2 Pachner moves, where the
constant a is bounded above by 6 · 106 and the constant b is smaller than
2 · 104.
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Figure 1. Three dimensional Pachner moves.

The triangulation T in this theorem can be non-combinatorial (i.e., sim-
plices are not uniquely determined by their vertices), as is the case with
the canonical triangulation of S3, consisting of two standard 3-simplices
glued together via an identity on their boundaries. We should mention here
that Pachner’s original proof of Theorem 1.1 works for combinatorial tri-
angulations only. However, at least in dimension 3, this does not matter
because the second derived subdivision of any (possibly non-combinatorial)
triangulation is always combinatorial and can be obtained from the original
triangulation by a finite sequence of Pachner moves.
A possible effect Pachner’s result could have on the theory of 3-manifolds

is discussed by the next proposition.

Proposition 1.3. Let T and K be two triangulations of the same closed
PL 3-manifold M . The existence of a computable function, depending only
on the number of 3-simplices in T and K, bounding the number of Pach-
ner moves required to transform T into K, is equivalent to an algorithmic
solution of the recognition problem for M among all 3-manifolds.

Proof. Assume first that f(t, k) is a computable function as described in the
proposition. Suppose that T is a triangulation of M with t 3-simplices. Let
K be a triangulation of some closed 3-manifold N containing k 3-simplices.
Do all possible sequences of Pachner moves on the triangulation T of length
at most f(t, k), and check each time if the result is isomorphic to K. This
gives an algorithm to determine whether M and N are PL homeomorphic.



SIMPLIFYING TRIANGULATIONS OF S3 293

Conversely suppose that we have an algorithm to recognize M among all
3-manifolds. Now we need a complete (finite) list of all triangulations of all
3-manifolds with a fixed number of 3-simplices. In dimension three, such a
list can be built algorithmically because there is an easy way of recognizing
the 2-sphere (the Euler characteristic suffices) as a link of a vertex.
We can now create all triangulations of M with the specific number of

3-simplices by running the recognition algorithm for M (which exists by
assumption) on the list of all 3-manifold triangulations with the specified
number of 3-simplices.
An algorithm, making all possible Pachner moves on a triangulation of

our 3-manifold M with t 3-simplices will after a finite number of steps (by
Theorem 1.1) necessarily produce a given triangulation of M containing k
3-simplices. Since we can list all triangulations of M with t (respectively
k) 3-simplices, this gives an algorithm to calculate the value of the function
f(t, k) as required. �

At present there is no known algorithm to decide whether a given simpli-
cial complex is an n-sphere, for n ≥ 4. This means that the proof of one of
the implications in Proposition 1.3 breaks down in dimensions five and above
since there is no way of building a list of all triangulations of all manifolds
with a fixed number of top dimensional simplices, in these dimensions.
The proof of the converse implication in Proposition 1.3, showing that a

computable bound implies a recognition algorithm for a given n-manifold, re-
mains valid in any dimension. Furthermore, if such a computable bound ex-
isted for all n-manifolds, and was independent of the underlying n-manifold,
then it would give an algorithm to determine whether any two n-manifolds
are homeomorphic. But using the fact (proved by A.A. Markov) that there
is no such algorithm for n ≥ 4, we can conclude that such a computable
function does not exist in dimensions four and above.
It is interesting to note, that for any n-manifold M Pachner’s theorem

implies the existence of a function, depending only on the number of n-
simplices in T and K, and bounding the number of Pachner moves necessary
for the whole transformation. This is because there are only finitely many
triangulations of our n-manifoldM with fixed numbers of n-simplices. Then,
using Theorem 1.1, a finite sequence of Pachner moves connecting any two
of them, can be found. Taking the maximum length over this finite family
of sequences gives us the bound. Therefore, computability of the function
in Proposition 1.3 is an assumption that can not be omitted.
The upper bound in Theorem 1.2 is computable. It therefore yields a new

recognition algorithm for the 3-sphere.
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2. Normal surfaces.

One of the essential ingredients of the proof of Theorem 1.2 is the theory of
normal and almost normal surfaces. In this section we shall describe some of
its basic features. We will then go on to discuss the Rubinstein-Thompson
algorithm [7] for recognizing the 3-sphere which provides the setting for the
proof of Theorem 1.2. After it, we’ll mention some of the consequences of
normal surface theory which will prove to be useful later. At the end of this
section we shall prove the isotoping lemma that will later give us a way of
simplifying triangulations of the 3-sphere. Let’s start with some definitions.
A normal triangle (respectively quadrilateral) in a 3-simplex ∆3 is a prop-

erly embedded disc D, such that its boundary ∂D intersects precisely three
(respectively four) edges transversely in a single point and is disjoint from
the remaining 1-simplices and vertices of ∆3. A normal disc is a normal
triangle or quadrilateral.

Figure 2. Three types of normal discs.

There are four possible types of normal triangles, because each triangle is
parallel to one of the faces of ∆3. Normal quadrilaterals will always separate
the vertices of the tetrahedron in pairs. It is therefore clear, that we can
only have three possible quadrilateral types. Together, there are 7 distinct
normal disc types in a tetrahedron.
Let M be a 3-manifold with a triangulation T . A properly embedded

surface F in M is in normal form with respect to the triangulation T , if
it intersects each tetrahedron of T in a finite (possibly empty) collection of
disjoint normal discs.
Since normal surfaces are always embedded, at most one of the quadri-

lateral types can occur in each 3-simplex.
Suppose F is a normal surface in M with respect to T . Then F corre-

sponds to a vector x = (x1, . . . , x7t) with 7t coordinates, where t denotes
the number of 3-simplices in the triangulation T . The index set {1, . . . , 7t}
corresponds to all possible disc types in T (there is 7 of them for each tetra-
hedron). The coordinate xi is simply the number of copies of i-th disc type
in our surface F .
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Each 2-simplex in T contains three types of normal arcs (coming from
normal discs), one cutting off each vertex of the triangle. If it is a face of
two 3-simplices in T , then it gives rise to three matching (linear) equations,
one corresponding to each normal arc type. Doing this for every triangle,
not in the boundary ofM , we’ve constructed a linear system in 7t variables,
consisting of at most 6t equations.
It follows immediately from the construction, that the vector x, coming

from the normal surface F , gives a solution to the linear system. By impos-
ing extra conditions to ensure that all quadrilaterals in a given tetrahedron
are of the same type, we obtain a restricted linear system. The conditions
we’ve just added are sometimes referred to as quadrilateral constraints. Now
there is a one to one correspondence between embedded normal surfaces in
M and nonnegative integral solutions to the restricted linear system.
Haken proved that all nonnegative integral solutions to such a system are

integer linear combinations of a finite set of nonnegative integral solutions
x1, . . . , xn, called fundamental solutions, which can be found in an algorith-
mic way. As it turns out, these fundamental solutions are characterized by
the property of not having a decomposition as a sum of two (nontrivial)
nonnegative integral solutions to the restricted linear system.
Since each fundamental solution corresponds to an embedded normal sur-

face, we obtain a finite set F1, . . . , Fn of embedded normal surfaces, called
fundamental surfaces. Any embedded normal surface inM can thus be writ-
ten algebraically as a nonnegative integer linear combination of fundamental
surfaces. Miraculously, this algebraic fact carries over to geometry. In other
words, we can define a geometric addition for any two normal surfaces F
and G with the property that the sum of the corresponding solutions to
the restricted linear system, is again a solution of the same system. This
condition boils down to the fact that the union of all normal discs in both
F and G satisfies the quadrilateral constraints.
Assuming that and putting both surfaces in general position with respect

to one another, cutting along the arcs of intersection in each tetrahedron,
and pasting the pieces back together in the unique way, so that we end
up with normal discs only, yields a well-defined embedded normal surface
F +G. Its corresponding vector is a sum of the vectors coming from F and
G. The cut and paste process described above is sometimes called regular
alteration.
An isotopy of the ambient manifold, preserving the normal structure of a

given normal surface is called a normal isotopy. We should also note that the
geometric addition described above is well-defined up to a normal isotopy
of the summands.
Before we describe the Rubinstein-Thompson algorithm, we need to in-

troduce a concept, originally due to Rubinstein.
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Definition. A properly embedded surface in a 3-manifold M with a trian-
gulation T is almost normal with respect to T , if it intersects each tetra-
hedron of T in a finite (possibly empty) collection of disjoint normal discs
except in precisely one tetrahedron there is precisely one exceptional piece
from Figure 3 and possibly some normal triangles.

Figure 3. Almost normal pieces.

This exceptional piece is either a disc (the first possibility in Figure 3)
whose boundary is a normal curve of length eight (i.e., an octagon), or it is
an annulus consisting of two normal disc types with a tube between them
that is parallel to an edge of the 1-skeleton.
Now we can describe the Rubinstein-Thompson algorithm which is de-

signed to determine whether or not a 3-manifold M with a triangulation
T is a 3-sphere. We can assume that M is closed, orientable and that
H1(M ;Z2) is trivial. All these properties can be checked algorithmically.
The last assumption guarantees that M contains no closed non-separating
surfaces. The algorithm now is in three steps. We proceed as follows.

Step 1. Find a maximal collection Σ of disjoint non-parallel normal 2-spheres
in M .

Step 2. Cut M open along Σ. This splits M into three different types of
pieces:
Type A: A 3-ball neighborhood of a vertex of T (every vertex is en-

closed in such a piece).
Type B: A piece with more than one boundary component.
Type C: A piece with exactly one boundary component which is not

of Type A.
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Step 3. Search each Type C piece for an almost normal 2-sphere with an
octagonal component.

Conclusion: M is a 3-sphere if and only if every Type C piece contains an
almost normal 2-sphere with an octagonal component.

The bulk of the proof that this indeed is a recognition algorithm for the
3-sphere relies on the following two lemmas from [7].

Lemma 2.1. A Type B piece is a punctured 3-ball.

Lemma 2.2. A Type C piece is a 3-ball if and only if it contains an “oc-
tagonal” almost normal 2-sphere.

By Lemma 2.2, if some Type C piece fails to contain an “octagonal”
almost normal 2-sphere, then it is not a 3-ball and M is not a 3-sphere.
Otherwise, M is just a collection of 3-balls and punctured 3-balls glued
together. Since every 2-sphere is separating, M has to be a 3-sphere.
The difficult part of the argument is in the proof of Lemma 2.2. It is

here that Thompson simplified Rubinstein’s original methods to prove the
existence of an “octagonal” almost normal 2-sphere in a 3-ball of Type C,
by using Gabai’s powerful notion of thin position. We should also note that
the easier converse implication in Lemma 2.2 follows from Lemma 2.7.
In order to be able find a maximal collection of disjoint non-parallel nor-

mal 2-spheres in M in an algorithmic way, we need the following lemma.

Lemma 2.3. A maximal collection Σ of disjoint non-parallel normal 2-
spheres in M , as in the Rubinstein-Thompson algorithm, can always be
constructed algorithmically.

A proof of this lemma was given by Casson [1]. It was also described
in [3] (see Lemma 3). It will be important for us to be able to bound the
complexity of all of the 2-spheres in the maximal collection Σ. We shall
therefore give a brief description of this algorithm.
Additivity of Euler characteristic implies at once that if there exists a non-

trivial normal 2-sphere in our triangulation, we can also find one (which is
also nontrivial) among fundamental surfaces. Since the family of fundamen-
tal surfaces is accessible in an algorithmic way, we can take this fundamental
2-sphere to be the first element in Σ.
Assume now that we have already constructed a subcollection Σ′ of Σ. We

shall look for normal surfaces with respect to the triangulation T , lying in the
complement of the normal 2-spheres constructed so far. In any tetrahedron
from T we can have complementary regions of Σ′ that are not of the form
triangle×I or square×I (see Figure 4), as well as the ones that are. Note also
that the unions of the product regions support a natural I-bundle structure.
These I-bundles are usually referred to as parallelity regions.
We can now describe normal surfaces in the complement of Σ′ by assign-

ing a variable to each triangle or square type that does not lie in any of the
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parallelity regions. The equations are again the matching equations along
the faces together with the equations that ensure that the surface intersects
each parallelity region in a well-defined number of components. In other
words each parallelity I-bundle contributes new linear equations (that are
of the same form as the matching equations along faces) and no new vari-
ables. This is because the normal 2-spheres we are looking for, can only run
parallel to the horizontal boundary in these I-bundles. Adding the usual
quadrilateral constraints gives a restricted linear system.
Like in standard normal surface theory, we have a one to one correspon-

dence between closed normal surfaces in the complement of Σ′ and solutions
of the above restricted linear system. Since addition of two solutions is
again realized topologically by regular alteration, the same argument as be-
fore tells us that the next normal 2-sphere, that is not parallel to any of the
elements in Σ′, can be chosen from the family of fundamental surfaces.
So in order to find a maximal family Σ of disjoint non-parallel normal 2-

spheres, we just have to keep repeating this procedure. We stop when each
normal 2-sphere in the complement of Σ′ is normally parallel to some normal
2-spheres in the collection Σ′. Lemma 2.4 guarantees that this process has
to reach such a stage.
As far as the complexity, i.e., the number of normal pieces, of elements

in Σ goes, at each stage it is going to be bounded by Proposition 2.5. Since
the linear algebra in the proof of Proposition 2.5 (which can be found in [2])
depends only on the number of normal variables and is independent of how
many equations we have, it is the number of different normal disc types
outside the parallelity regions, that needs to be controlled. The proof of
Lemma 2.4 shows that this number is bounded linearly by the number of
tetrahedra in T . In fact there can be at most 11 different normal disc types
in a single tetrahedron in T at any stage of the process. We shall calculate
explicit upper bounds later on in this section.
We still need to answer the question of how to search for “octagonal”

almost normal 2-spheres that are contained in Type C pieces. Modified
versions of standard normal surface theory algorithms suffice for the search.
So our goal is to construct an algorithmic procedure which will find an
“octagonal” almost normal 2-sphere in each Type C piece. These 2-spheres
will exists by Lemma 2.2 if the 3-manifoldM we are looking at is a 3-sphere.
We proceed as follows.
First we fix a tetrahedron H in the triangulation T of a 3-manifold M

and then we fix a normal curve c of length eight on its boundary (there
are three choices for c). Now an analogue to the normal surface theory,
used to construct the collection Σ, can be set up. The matching conditions
will look just like before. Quadrilateral constraints have to be modified
however, because we want our solutions to consist of normal triangles and
quadrilaterals everywhere except in H, where we want them to be composed
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of normal triangles and octagonal components with boundaries parallel to c.
The notion of regular alteration can be defined in this generalized setting and
again it gives rise to the correspondence between integer linear combinations
of the fundamental solutions to the (generalized) restricted linear system and
the set of all surfaces described above. Fundamental surfaces are again the
ones corresponding to fundamental solutions. We should also note that their
complexity is bounded by Proposition 2.5 since the linear system they are
the solutions of, has less than 11t variables.
What we really want is to find algorithmically “octagonal” almost nor-

mal 2-spheres that are contained in Type C pieces. We know that one such
2-sphere exists in each Type C piece by Lemma 2.2. This 2-sphere can
be expressed as a sum of the fundamental surfaces. Precisely one of the
summands has to contain a single octagonal piece and, since the Euler char-
acteristic is additive, at least one of the fundamental surfaces in the sum
has to be a 2-sphere (since the Type C piece we are looking at contains an
“octagonal” almost normal 2-sphere, it has to be a 3-ball and can therefore
not contain embedded projective planes). If the fundamental 2-sphere in the
sum does not contain an octagon, then it has to be normal and thus parallel
to the unique normal 2-sphere from Σ that is bounding the Type C piece we
are looking at. This is a contradiction because we could then isotope it away
from all the other summands by a normal isotopy. Since regular alteration is
defined up to normal isotopy, this would then make the sum (i.e., a 2-sphere)
disconnected. So we’ve found an “octagonal” almost normal 2-sphere in a
Type C piece that is fundamental.
The complexity of the fundamental “octagonal” almost normal 2-sphere

we’ve just constructed is bounded in the same way as all the other complexi-
ties of the normal 2-spheres in Σ. This follows directly from the construction,
since all we are doing when searching for an almost normal 2-sphere, is just
making another step of the recursion that gave us Σ, without increasing
the number of normal variables. We will give an explicit estimate for the
complexity later on in this section.
Let’s first bound the number of disjoint non-parallel normal 2-spheres in

Σ. This is made possible by an old idea due to Kneser.

Lemma 2.4. Let T be any triangulation of S3 and let t be the number of
tetrahedra in T . Then any family of disjoint non-parallel normal 2-spheres
contains at most 6t of them.

Proof. Normal triangles and squares chop up any tetrahedron in T into
several pieces. But at most six of these regions are not of the form triangle×I
or square× I (see Figure 4).
Let n be the maximal number of disjoint non-parallel normal 2-spheres

in T . Then the complement of this family has precisely (n+1) components.
Each of those components must contain at least one of the non-product
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Figure 4. Complementary regions which are not a product.

regions. This is because any component, consisting only of product pieces,
is bounded by two parallel normal 2-spheres. Since the total number of
non-product regions is bounded by 6t, our lemma is proved. �
We are interested in bounding the number of normal pieces of elements in

Σ. We also want to bound the number of normal pieces of the “octagonal”
almost normal 2-spheres that arise in Type C pieces. Both of these things
can be accomplished at one go, because we know that the procedure giving
Σ can be extended (by making a single additional step) to an algorithm
producing “octagonal” almost normal 2-spheres in Type C pieces.
The proposition we are about to state is proved in [2]. It originally deals

with the linear system in 7t variables coming from the matching equations
for normal surfaces. Its proof uses some basic linear algebra on the linear
system which consists of matching equations. We should note at this point
that the number of equations in this linear system does not influence the
bound that the proposition gives.

Proposition 2.5. Let M be a triangulated 3-manifold containing t tetrahe-
dra. Let x be a fundamental solution of a system of linear equations coming
from matching conditions. Then each coordinate of the vector x is bounded
above by 7t27t−1.

Using Proposition 2.5, we can bound the size of each component of all the
vectors corresponding to the normal 2-spheres in Σ. It follows from Figure 4
that the number of normal discs that are not contained in the parallelity
regions (at any stage of the algorithm producing the family Σ) is always
bounded above by 11t. The system of equations we are solving at each
stage consists of the matching equations along the faces together with the
equations that ensure that the surface intersects each parallelity region in
a well-defined number of components. We should note here that the latter
equations are of the same form as the matching equations.
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Proposition 2.5 then implies that there can be at most 11t211t−1 parallel
copies of a given normal disc type in a complement of any subcollection Σ′
from any stage of the algorithm. This can be deduced because the proof
of Proposition 2.5 depends only on the number of variables and the shape
of the equations, i.e., the number and size of nonzero coefficients in each
equation. Since the number of variables has increased and the shape of the
equations hasn’t changed, we get the above bound by substituting 7t with
11t into Proposition 2.5.
Lemma 2.4 tells us that we’ll never have to make more than 6t steps

when constructing Σ. This means that each of the normal disc types in
the complement of any subcollection Σ′ can only give rise to less than (2 ·
11t · 211t−1)6t normal discs of the same type in the initial triangulation T .
This is because at each stage of the algorithm the number of parallel copies
of a fixed normal disc type is given by 11t211t−1. We have to include the
factor of 2 because in each parallelity region there are two normal variables
contributing to the number of parallel copies of a given normal disc type in
the initial triangulation.
We can obtain a similar kind of bound for “octagonal” almost normal

2-spheres. We only have to change the exponent from 6t to (6t + 1). This
is because all these “octagonal” almost normal 2-spheres are just one step
away (in our algorithm) from the normal ones (bounding Type C pieces)
and at each stage they are described by fewer variables. For example, in our
original triangulation they require 7(t − 1) + 4 variables. So the bound in
Proposition 2.5 applies.
Putting everything together and using the fact that 5t(11t211t)6t+1 <

2110t2 , we get the following lemma (the factor 5t comes in because there are
at most 5 different normal and almost normal pieces in each tetrahedron of
T ).

Lemma 2.6. Let T be a triangulation of the 3-sphere which contains t tetra-
hedra. Then the number of all normal pieces contained both in all elements
of Σ and in all “octagonal” almost normal 2-spheres from all Type C pieces
is bounded above by 2110t2.

We should note at this point that this is the only part of the bound
in Theorem 1.2 which contains a quadratic expression in its exponent. If
one could find both the “octagonal” almost normal 2-spheres in Type C
pieces and the maximal family Σ among the fundamental solutions of linear
systems that are based on the triangulation T , the bound in Lemma 2.6
would have a linear function (similar to the one in Proposition 2.5) in its
exponent.

The essential process we are just about to describe, is the one of iso-
toping almost normal surfaces. It is going to provide a foundation for the
simplifying procedure needed for the proof of Theorem 1.2.
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Let F be a separating almost normal surface in a 3-manifold M with a
triangulation T . Its weight, w(F ), is defined to be the number of points
in the intersection of F and the 1-skeleton T 1. If F contains an octagon,
a natural isotopy is the one pushing the surface over an edge which meets
the length eight normal curve bounding the octagon in two points. There
are two possible natural isotopies, depending on the component of M − F
we are pushing into. In case of other non-normal pieces (see Figure 3), a
natural isotopy pushes the tube part of the annulus so that it encompasses
one of the edges it is parallel to. As a result in both cases, we get a surface
with its weight equal to w(F )− 2.
Notice that if we look at our almost normal surface F in the complement of

the 1-skeleton of T , there is an obvious compression disc D for it, enveloping
the edge we are isotoping over. The natural isotopy can then be realized by
isotoping over the 3-ball bounded by D and the disc in F , bounded by ∂D.
The natural isotopy is only the first step in the process of isotoping almost

normal surfaces. Everything else will be accomplished by a sequence of
elementary isotopies. We can define them as follows.
Let A be a 2-simplex in T , containing a non-normal arc (Figure 5) which

comes from intersecting A with an isotope of F .

A

B
e

Figure 5. An isotope of F intersects A in a non-normal arc.

A disc B in the triangle A (see Figure 5) is bounded by the non-normal
arc and a subarc of the edge e. An elementary disc can be constructed by
banding together two parallel copies of B in the complement of 1-skeleton,
where the band runs around the edge e. Its boundary is a simple closed
curve in the surface, bounding a disc on one side. An elementary isotopy is
an isotopy over the 3-ball bounded by the disc in the isotope of F and the
elementary disc we’ve just defined.
Since F is a separating surface, we can fix a complementary component I

ofM−F . All the elementary isotopies that we are going to do from now on,
are going to have the same direction. We will always be isotoping towards
the interior of the component I.
The following isotoping lemma will play a crucial role in the simplifying

process. A similar result is proved in [6] by a careful inspection of all the
possible cases. The proof we are giving here is based on elementary isotopies
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and is better suited from our perspective because it sheds more light on the
side of things we’ll be interested in later.

Lemma 2.7. Let F be a separating almost normal surface in a 3-manifold
M with a triangulation T . Let I be a component of the complement M −F ,
if F contains an octagon. Otherwise let I denote the component containing
a solid torus region in the interior of the 3-simplex where F is not normal. A
natural isotopy followed by a sequence of all possible elementary isotopies,
all going in the direction of I, will result with a surface intersecting each
tetrahedron of T in pieces as in Figure 6 and in normal pieces. Moreover,
in each tetrahedron there can only be at most one piece of the first type from
Figure 6. A single 3-simplex can contain several pieces of all the other types
in Figure 6 as well as several normal pieces. The pieces in Figure 6 can not
be parallel.

Figure 6. Non-normal pieces in the tetrahedra of T .

Proof. First note that after the natural isotopy, all the non-normal arcs we
get will give rise to elementary isotopies in the direction of I. After each
isotopy both F and I will change, but we’ll still denote both resulting spaces
by F and I respectively.
After the natural isotopy, F and I satisfy the following conditions:

1) In each tetrahedron of T the component I consists of a family of 3-
balls, each one bounded by pieces of F and a (possibly disconnected)
planar surface, contained in the boundary of the 3-simplex.

2) Each 3-ball from 1 intersects any face of the tetrahedron it lies in, in
at most one disc.
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An elementary isotopy moves a disc in F over a 3-ball in I, which intersects
a single edge e in T 1. So the new I is just the old I without the 3-ball we
isotoped over. This 3-ball is a union of a family of 3-balls, one in each
tetrahedron of the star of e. In fact there can be more than one 3-ball from
the same family in a single 3-simplex if this 3-simplex occurs more than once
in the star of the edge e. This is perfectly feasible in a non-combinatorial
triangulation, but it does not have any effect on the process we are studying.
The elements of the above family are the ones that are going to determine

the topology of the pieces of I in tetrahedra of T . In fact, each 3-ball from
condition 1 will after an elementary isotopy still satisfy both conditions if
we substitute the old F with the new one. So after performing all possible
elementary isotopies towards the interior of I, the surface F we end up with
will intersect each triangle of T in normal arcs and simple closed curves
which miss the boundary of the triangle.

I I

I

I

I

I

Figure 7. An intermediate state of the isotopy on a triangle
in T .

The region I will, after the isotopy, consist of 3-balls in each 3-simplex.
There is going to be a bijective correspondence between the 3-balls in the
end, and the ones we started with. By condition 2, every 3-ball will still
intersect any face of the 3-simplex it lies in, in at most one disc. It is also
true that the number of these discs will not increase when we pass from the
3-ball pieces of I at the beginning to the 3-balls at the end.
Let’s look at the pieces of F in each tetrahedron. It is obvious that all

the possibilities of the lemma can actually arise. We have to see that they
are the only ones.

Claim. A single piece of F can intersect a triangle of T in either a unique
normal arc or in a single simple closed curve.

Every piece of F is contained in the boundary of a 3-ball piece of I. This
3-ball intersects each triangle of the 2-skeleton T 2 in at most one disc. So
no triangle can contain two simple closed curves or a simple closed curve
and a normal arc, both belonging to the same piece of F .
The same argument tells us that a triangle in T 2 can either contain two

normal arcs of intersection with a single piece of F or at most three of them,
each one cutting off a vertex of the triangle in the 2-skeleton.
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Now we need to prove that our piece of F can have at most one normal
simple closed curve boundary component. So assume the opposite. Since
the piece is a subset of the boundary of a 3-ball, no arc contained in it,
running between two distinct boundary components of our piece, can be
extended to a simple closed curve in the 2-sphere bounding that 3-ball,
without increasing the number of intersection points with the boundary of
our piece. On the other hand, assuming we have at least two normal simple
closed curves in the boundary, there surely exist two normal arcs, belonging
to the distinct boundary components of our piece, that are contained in a
single 2-simplex. Connecting them by an arc in the piece of F contradicts
what was said before (because these two normal arcs are both contained in
the boundary of a disc in the 2-simplex they lie in).
So now it follows that the piece of F we are looking at, can contain at

most one normal boundary component which is of length at most eight. This
is because the only normal curve of length 12, intersecting each 2-simplex
(in the boundary of a tetrahedron) in 3 normal arcs as above, consists of
4 simple closed curves (one for each vertex of the tetrahedron). It is also
well-known that normal simple closed curves of lengths 9, 10 or 11 do not
exist.
There are precisely three normal simple closed curves of length eight in

the boundary of a tetrahedron. So if our piece of F is bounded by one such
curve, then at least one of the faces of the tetrahedron intersects the 3-ball
piece of I (containing in its boundary the piece of F we are considering) in
two discs. This is a contradiction that proves the claim.
The claim implies the following seven possible boundaries for any piece

of F : Normal simple closed curve of length three, normal simple closed
curve of length four, single simple closed curve, normal simple closed curve
of length three and a simple closed curve, two simple closed curves, three
simple closed curves, four simple closed curves.
Since every piece of F in any tetrahedron is planar, it is up to homeo-

morphism determined by its boundary. This implies that all possible pieces
of F are the ones listed in the lemma.
The fact that all these planar surfaces are embedded as in Figure 6 (up

to an isomorphism of the tetrahedron) follows from the observation that all
the elementary discs are parallel to edges of the 1-skeleton. �

3. Outline of the proof.

Given a triangulation T of the 3-sphere, how do we simplify it? The process
is divided into two stages. First, we create a subdivision S of T by defining
it in each complementary piece of the manifold S3 − Σ in such a way that
the triangulations match along all normal 2-spheres in Σ. The second step
consists of simplifying S down to the canonical triangulation of S3.
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An explicit construction of S, using Pachner moves, will be given in Sec-
tion 5. The simplifying procedure of step two is based on the relationship
between Pachner moves and shellable triangulations. This relationship will
be established in Section 4.
Now, we are going to describe the additional structure on the comple-

mentary pieces of S3−Σ, needed for the definition of the subdivision S. We
already know (Lemma 2.2) that every Type C piece contains an “octagonal”
almost normal 2-sphere. To see that each Type B piece also contains an al-
most normal 2-sphere, it is useful to introduce an ordering on the normal
family Σ. It comes naturally by picking a vertex of T and looking at the
complementary region (which is not a Type A piece) of the trivial normal
2-sphere around it. Topologically we get a 3-ball containing our normal
family Σ. Now, the ordering on Σ is induced by inclusion. For example, the
trivial normal 2-sphere around the vertex we removed is the unique largest
element. The smallest elements in this ordering are either trivial normal
2-spheres consisting of normal triangles only or the ones bounding Type C
3-balls.
Our task is to find an almost normal 2-sphere in a piece with more than

one boundary component. Pick the largest 2-sphere in its boundary. A very
nice argument in [7] (subclaim 2.0.1.) implies that there must be an edge
in T with a subarc which runs from the largest component of the boundary
to some other component and whose interior is disjoint from Σ. By taking
parallel copies of the two 2-spheres connected by this arc in the piece we are
looking at, and tubing them together in one of the tetrahedra in the star of
the edge, we obtain our almost normal 2-sphere.
All the almost normal 2-spheres we’ve created are separating, because

we are in S3. By picking the right complementary component in S3 and
applying Lemma 2.7, we can simplify each almost normal 2-sphere by a se-
quence of elementary isotopies. Since we are only using elementary isotopies
going in the same direction (towards the interior of a fixed complementary
component in S3), the whole process can be realized by an embedding of
S2×I, where the top 2-sphere is the almost normal 2-sphere we started with
and the bottom one is the 2-sphere coming from Lemma 2.7 (see Figures 8
and 9).
Another important point here is that the whole isotopy never leaves the

Type B (or C) piece it started in. This is true simply because an analogous
statement holds for each elementary isotopy. This implies that the isotoped
surface coming from Lemma 2.7 will be contained in the interior of the piece
containing the almost normal 2-sphere we started with.
In a Type C piece, the isotopy can go in two directions because the almost

normal 2-sphere in this case contains an octagon. The surface we get, when
isotoping towards the interior of the piece, will have 0 weight. This follows
from the observation that we can forget about all pieces in Figure 6 if we
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compress each annulus with a length three normal curve in its boundary.
This would then give a family of normal 2-spheres contained in the Type C
piece which is a contradiction. Therefore, the 2-sphere we end up with has
to miss the 1-skeleton.
Similar reasoning tells us that an isotopy in the other direction in the

Type C piece has to end with a 2-sphere, intersecting the 2-skeleton T 2 in
normal curves parallel to the ones coming from the boundary of the piece
we are looking at and possibly in some simple closed curves which miss the
1-skeleton.
The almost normal 2-spheres in Type B pieces that we are going to con-

sider, will never contain an octagon. We will therefore be isotoping in one
direction only. Using the same kind of arguments as before, we can con-
clude that the 2-sphere we end up with consists of boundary components of
the Type B piece (all except the two we started with, see Figure 9), tubed
together by pieces depicted in Figure 6. It should be noted that if a Type B
piece has only two boundary components, then the isotoped 2-sphere does
not intersect the 1-skeleton.
Let Λ be the following collection of 2-spheres: In every Type C piece just

take an “octagonal” almost normal 2-sphere which exists by Lemma 2.2.
In each Type B piece take a copy of the almost normal 2-sphere described
above with the annulus connecting two normal pieces moved by a natural
isotopy, so that it envelops the edge it is parallel to. The 2-spheres from Λ
in Type B pieces are therefore normal in all the tetrahedra of T , except in
the ones contained in the star of the edge we isotoped over.
The sequences of elementary 3-balls, corresponding to the supports of ele-

mentary isotopies, yields the additional structure (on Type B and C pieces)
that is required to define the subdivision S. Elementary discs and an element
in Λ chop up each Type C piece of S3 − Σ (see Figure 8).
In the case of a Type B piece, the element of Λ will, after the isotopy,

consist of all but two boundary normal 2-spheres tubed together by pieces
described in Figure 6. Again, the Type B piece in question can be decom-
posed into (many) 3-balls and two punctured 3-balls. The two punctured
3-balls come from an element in Λ we started our isotopy on, and from its
isotope after we’ve performed all elementary isotopies on the “tubed” almost
normal 2-sphere (see Figure 9). The rest of the Type B piece is decomposed
into 3-balls by all the elementary discs required for this isotopy.
After the isotopy from Lemma 2.7, what’s left in each tetrahedron of the

complementary component we isotoped into, are just 3-balls bounded by the
pieces from Lemma 2.7 on one side and possibly some normal pieces of the
elements in Σ on the other. Schematically, the situation after the isotopy is
depicted by Figure 9.
Now we want to triangulate all of these 3-balls (the elementary ones as

well as the ones that are left over in the component we were isotoping into),
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Figure 9. The “tubed” almost normal 2-sphere and the iso-
toped 2-sphere in a Type B piece.

in all the pieces of the complement of Σ, by simple shellable triangulations.
Since all the processes described above induce polyhedral structures in the
boundaries of all the 3-balls (this will be described in detail in Section 5)
in question, subdividing the boundary 2-spheres in order to obtain genuine
triangulations and then coning them, does the job. Doing so in every piece
of the space S3 − Σ exhausts the whole 3-sphere and therefore completely
determines the subdivision S.
The fact that all these cones are indeed shellable, is proved in [4] (Lemma

5.4). Here we are relying on the property that all the bounding 2-spheres
we’ll need to cone in the process, are triangulated by combinatorial trian-
gulations. The reason why we want these 3-balls to be shellable is simply
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because each elementary isotopy can then be realized by a shelling of the
corresponding 3-ball.
So what we really want from the cones on the 2-spheres above, is to be

shellable without ever having to shell from the faces contained in a fixed
disc, which lies in the bounding 2-sphere. This disc is just a 2-manifold
along which the 3-ball, we are trying to triangulate, is glued onto the rest
of the (Type B or C) piece. This can always be achieved since a cone on a
disc with a combinatorial triangulation can be shelled “from the side” just
by coning the shelling procedure of the disc itself.
The simplifying process works its way up the ordering of the normal 2-

spheres in Σ. First we change the subdivision S in each Type C piece (which
are smallest elements in our ordering), making it a cone on the unique bound-
ary component. In Section 4 we will discuss how to implement elementary
shellings from a 2-sphere boundary component by Pachner moves, if on the
other side of that 2-sphere we have a cone on it. Using that construction we
can pick a 3-ball piece (in some 3-simplex), contained in the 3-ball X from
Figure 8, and turn the whole 3-ball X, bounded by the 2-sphere coming out
of Lemma 2.7, into a cone on its boundary. This is simply because the com-
plement (in X) of the coned 3-ball piece we picked, is shellable. That follows
from the observation that all the (coned) 3-ball regions from Figure 6, the
3-ball X is made of (we already know that the first possibility in Figure 6
can not occur) can be viewed as vertices of a graph whose edges correspond
to the discs in the interiors of the 2-simplices of T . Since this graph is a tree
(this follows from the fact that the isotoped 2-sphere bounds a 3-ball), there
is a “global” shelling strategy for the complement of the piece we picked in
the 3-ball X. This can be made simplicial by shelling one cone at a time.
So now we can assume that the 3-ball X is coned. We can carry on

by shelling (in the reversed order) all elementary 3-balls (and the 3-ball
corresponding to the natural isotopy) involved in the isotopy taking the
almost normal 2-sphere Y to the boundary of X. By this stage, we’ve
changed the subdivision S so that it looks like a cone on Y in the Type C
piece we are looking at. Above it, S is still unchanged. We can now do
the same thing towards the boundary of the piece we are considering, again
using the shellable nature of the subdivision S in all appropriate 3-balls.
What we have now is a cone on the isotope of Y . Now we concentrate

on the S2 × I region between the isotope of the “octagonal” almost normal
2-sphere Y and the single boundary component of the Type C piece. We
first shell all the 3-balls from that region that are bounded by pieces in
Figure 6. We thus obtain a cone on a normal 2-sphere which is parallel to
the bounding 2-sphere of our piece. Since all the regions between any two
parallel normal pieces are cones as well, we can shell them one by one and
therefore get a cone on the boundary of our piece. Here we are relying on
the fact that the normal structure on the bounding 2-sphere is shellable. In



310 ALEKSANDAR MIJATOVIĆ

general this needn’t hold, but the technical assumption that we are going
to make on our triangulation T at the beginning of Section 5 will guarantee
this property. This completes the simplification of the triangulation S in all
Type C pieces.
Take a Type B piece and assume that all normal 2-spheres, strictly smaller

than the largest normal 2-sphere in its boundary, already bound coned 3-
balls. The strategy now is similar to the one we used in Type C pieces.
Since the tube of the 2-sphere element of Λ in our piece runs from the
largest boundary component to some other boundary component, we can
deduce that all other normal 2-spheres in the boundary that are going to be
tubed together by the isotoped 2-sphere (see Figure 9), are going to bound
cones on one side.
We first shell all the regions which are bounded by two parallel normal

pieces and lie between a normal boundary component and the isotoped 2-
sphere. We can do that by expanding the cone structures on the other side
of the boundary components of our Type B piece, that exist by assumption.
Now the 3-ball bounded by the isotoped 2-sphere from Λ is again chopped
up into 3-ball regions that are glued together along discs contained in the
interiors of 2-simplices of T . Like before, there is a sequence of elemen-
tary shellings which gives a way of changing the triangulation of the 3-ball
bounded by the isotoped 2-sphere from Λ to the cone on its boundary.
We will now mimic what we did in Type C pieces. Let’s take the sequence

(in the reversed order) of all elementary 3-balls coming from the elementary
isotopies needed to push the 2-sphere element of Λ in our Type B piece,
down to the 2-sphere which now already bounds a coned 3-ball. Using this
sequence in the same way as above, we can change the triangulation S in
our piece to the cone on the 2-sphere element of Λ. It is now obvious how to
simplify the remains of the subdivision S in the Type B piece we are looking
at. So we’ve managed to transform the subdivision in our piece into a cone
on the largest boundary component.
Now we want to make sure that the techniques described above suffice

for the total simplification of the subdivision S. Let’s assume that K is
a triangulation of S3 and that S is its subdivision containing Σ as a sub-
complex. Let x be the vertex of K inducing an ordering on Σ. Let’s also
assume the following property: If all elements of Σ, smaller then a given
normal 2-sphere A in Σ, bound coned 3-balls, then using Pachner moves we
can change the triangulation of the 3-ball bounded by A into a cone on A,
without altering the simplicial structure of A. Then we claim that we can
transform S, using Pachner moves only, into a cone on x glued to another
copy of itself via an identity on the boundary.
To see this, we’ll use a simple induction on the depth of elements in Σ. A

normal 2-sphere in Σ is of depth k if it is greater than precisely k elements
of Σ.
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We can use our assumption for the 2-spheres of depth 0. Let A in Σ be of
depth (k + 1) and assume we’ve coned all the 2-spheres of depth smaller or
equal to k. Any 2-sphere smaller than A is of depth at most k. So we can
use the assumption again. This proves our claim and therefore completes
the simplification process.

4. Pachner moves and shellable triangulations.

In this section we are going to establish a relationship between elementary
shellings and Pachner moves. We will do this in dimensions two and three.
Both cases will play a crucial role in building and simplifying the subdivided
triangulation S. Let’s start by stating precisely what we mean by shelling.

Definition. Suppose thatM ′ is a submanifold of a triangulated n-manifold
M with boundary. If there exists an n-simplex ∆ in the triangulation of M
with the property that ∆ ∩ ∂M is a combinatorial (n − 1)-disc, such that
M ′ equals the closure (in M) of the complement M −∆, then we say that
M ′ is obtained from M by an elementary shelling.

An elementary shelling is quite similar to an elementary collapse of the
top dimensional simplex. The crucial difference lies in the fact that here we
stipulate explicitly that the resulting space has to be a manifold.
Another thing which is worth mentioning is that the boundaries ∂M and

∂M ′ differ by a single n− 1 dimensional Pachner move.
A sequence of such elementary shellings is called a shelling. Saying that

a triangulation of an n-manifold is shellable simply means that there ex-
ists a sequence of elementary shellings which will reduce the triangulation
down to a single n-simplex. Since the homeomorphism type of the manifold
in question does not change under an elementary shelling, it is clear that
n-balls are the only candidates to have shellable triangulations. It is for
example very well-known that any combinatorial triangulation of the two
dimensional disc is always shellable. As it was mentioned before, Lemma
5.4 in [4] and the above observation about discs together imply that a cone
on any combinatorial triangulation of the 2-sphere constitutes a shellable
triangulation of the 3-ball.
Now we are going to express all possible elementary shellings by Pachner

moves in the following three dimensional situation. Suppose we had a tri-
angulated 3-manifold and we wanted to make an elementary shelling from
a 2-sphere boundary component. Suppose further that on the other side of
this 2-sphere, we had a cone on it. We have to consider three different cases
according to the number of faces of the 3-simplex we are shelling, which are
contained in the boundary 2-sphere.
The first case, where we have a single triangle in the boundary, is dealt

with by Figure 10.



312 ALEKSANDAR MIJATOVIĆ

(2-3)

Figure 10. A single free face requires one (2-3) Pachner move.

We should note that before making the (2-3) move in Figure 10, the top
3-simplex is contained in the manifold, while the bottom one belongs to the
cone. After the move, all three 3-simplices are contained in the altered cone.
The second case is the one where we have two faces in the boundary. It

is clear from Figure 11, that a single (3-2) Pachner move suffices.

(3-2)

Figure 11. A single (3-2) move implements the shelling with
two free faces in the boundary.

Finally, we have to deal with the situation where the 3-simplex we want
to shell has three of its faces in the boundary 2-sphere. The top 3-simplex
on the left of Figure 12 is the one we want to shell next, while the other
three are contained in the cone. It is obvious that a single (4-1) Pachner
move does the job.
Putting all these facts together, we’ve seen that in the setup described

above, each elementary shelling corresponds to a single Pachner move. So
if we want to bound the number of Pachner moves required for the simpli-
fication of the subdivision S, all we need to do is to count the number of
tetrahedra in S. This will be dealt with in Section 6.
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(4-1)

Figure 12. A single (4-1) move completes the elementary shelling.

Before we go on to discuss the two dimensional case, we need to prove
the following slightly technical lemma which connects collapsing of an edge
with Pachner moves. It will be of use to us in Section 5.

Lemma 4.1. Let x be a vertex in a combinatorial triangulation of S2 con-
taining n 2-simplices. Assume further that the star of x is an embedded
PL disc, triangulated by k triangles. Let e be the unique edge in the 3-ball,
triangulated as a cone on S2, running between x and the cone point. The
triangulation of the same 3-ball obtained by crushing the edge e, and thus
flattening its star, can be constructed by (n− k+1) Pachner moves used on
the original (coned ) triangulation.

Proof. The 3-ball from the lemma can be view as a union of the following
two PL 3-balls: The star of the edge e and the cone on the disc in the
bounding S2, which is the complement of the star of the vertex x on the
2-sphere.
The triangulation we are aiming for is equal to the triangulation of the

latter 3-ball. We therefore want to flatten the star of the edge e down to
the cone on the link of e.
This can be achieved by “moving” the cone points of the 3-simplices in

the second of the two 3-balls described above, from our initial cone point to
the vertex x. Such a 3-simplex, having a face in S2, which is adjacent to
the star of x, can be moved by a (2-3) move or its inverse, depending on the
number of edges it has in common with the star of x.
Repeating this for all (but one) 3-simplices in the cone on the disc S2 −

int(star(x)) almost does the job. All we have to do at this stage, is to use a
single (4-1) move on what’s left of the two 3-balls described above.
We should also note that the sequence of (2-3) moves and their inverses,

we used to alter the initial triangulation, can always be found. This follows
from the well-known fact that every combinatorial triangulation of a PL
2-disc is shellable. �
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The rest of this section will be devoted to two dimensional Pachner moves
and their relationship with elementary shellings. In fact, what we want to do
is to transform any given triangulation of a disc into a cone on its boundary,
using Pachner moves only.
In dimension two there are three possible moves at our disposal. They

are given by Figure 13.

(3-1)

(2-2) (1-3)

Figure 13. Two dimensional Pachner moves.

The simplifying procedure for any PL disc is described by the next lemma.

Lemma 4.2. Any combinatorial triangulation of a piecewise linear disc
with n triangles can be altered into a cone on the boundary of the same
disc by n Pachner moves.

There are two reasons why we can (and have to) assume that the triangu-
lation of the disc is combinatorial. The first one is that in what follows, we
can easily guarantee this property for all the discs we are going to be using
our Lemma 4.2 on. The second one is that the proof of the above lemma
relies on the fact that any triangulation of a disc is shellable, a fact not
entirely correct (with our definition of an elementary shelling) if we allow
for non-combinatorial triangulations.

Proof. Since the triangulation of our disc is shellable, we can index all the
simplices in it by numbers from 1 to n, so that the increasing integers specify
a way of reducing our triangulation down to a single triangle. The 2-simplex
that’s left has index n. Let’s make a (1-3) move on it. The 2-simplex
corresponding to n − 1 has to share a unique edge with it. Making a (2-2)
move over this edge, changes our original triangulation in the last two 2-
simplices to a cone on the boundary of the disc that they compose. The rest
of the triangulation is unchanged at this stage.
Noticing that the union of the last k 2-simplices in our sequence always

gives a disc, makes the following induction possible. Say that we already
have a cone on the boundary of the disc which is the union of the last k 2-
simplices and that the rest of the triangulation we started with is unchanged.
If the triangle corresponding to n− k− 1 has a single edge in common with
our cone, we act as before (a single (2-2) move suffices). If it has two faces
in common, a single (3-1) move finishes the proof. �
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5. The subdivided triangulation.

Let T be a possibly non-combinatorial triangulation of S3 with t tetrahedra.
Let’s also make the following technical assumption on T : Each edge in the
1-skeleton of T appears at most once as an edge of any 3-simplex in T . This
assumption does not imply that the triangulation T is combinatorial, but
it is certainly satisfied by all combinatorial triangulations of S3. We are
making it at this stage because it is going to simplify some of the processes
we’ll have to invoke later on. It will also become clear that any triangulation
can be altered so that it has this property by linearly (in t) many Pachner
moves.
In this section, we shall describe the subdivision S of the triangulation T

and also bound the number of Pachner moves required to construct it.
Let Γ be the union of all discs needed to perform all elementary and

natural isotopies in all the pieces of S3−Σ. We should note that the number
of elements of Γ, coming from a single 2-sphere in Λ, is bounded above by
the number of times the almost normal sphere in question intersects the
1-skeleton. An explicit bound on the number of elements of Γ will be given
later.
An elementary disc from Γ will intersect every tetrahedron in the star of

the edge we are isotoping over in a disc region (see Figure 14).

Figure 14. Regions, in a disc in Γ, correspond to tetrahedra
in the star of an edge.

In each tetrahedron, the operation of adding in this disc will consist of
gluing in a length four (respectively two) disc so that two (respectively one)
arcs in its boundary are contained in the isotoped almost normal surface,
and the other two (respectively one) lie in the boundary of the tetrahedron.
We are now in the position to describe the subdivision of the polyhedron

T 2 ∪ Σ ∪ Λ ∪ Γ

which will be a subcomplex of the triangulation S. In fact, the simplicial
structure of the polyhedron T 2 ∪ Σ ∪ Λ ∪ Γ will play a crucial role in the
simplifying process and will also be of significance in the definition of the
subdivision S.
All the normal 2-spheres in Σ will inherit the PL structure from their nor-

mal structure. The normal triangles in Σ will become 2-simplices, while the
normal quadrilaterals will be subdivided into two 2-simplices by a diagonal.
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The PL structure of the almost normal 2-spheres in Λ will be a subdivision
of the normal and almost normal pieces. We will subdivide them according
to the markings on them, made by discs in Γ, where we define a marking on
a normal or an almost normal piece to be an arc of intersection of the piece
with a disc in Γ. We know, that each element of Γ is chopped up into discs
of lengths two or four in each tetrahedron (as in Figure 14).
The disc regions of the elements of Γ of length four can only leave a

marking on a normal piece of an almost normal 2-sphere going from one
normal arc to another. There can only be three such markings on a triangle
and four of them on a quadrilateral, one for each corner. On an almost
normal octagon, immediately after we glue on our first disc corresponding
to the natural isotopy, we end up with two triangles. So there can be at
most six markings on an octagon, coming from the discs of length four.
The discs of length two will either leave a marking running from a nor-

mal arc to some other marking or simply running between two markings.
Because each marking is parallel to some edge of the normal piece that it
lies on and because we can not get more than one marking of the same
kind, superimposing all the possible markings on normal and almost normal
pieces is described by Figure 15.

Figure 15. The polyhedral structure of normal and almost
normal pieces of elements in Λ.

The almost normal piece which is obtained by tubing together two nor-
mal pieces can be treated in the same way, since we could view it as an
annulus around an edge between two normal 2-spheres. This annulus con-
sists of discs of length four in each tetrahedron in the star of the connecting
edge. These discs will be glued on the pairs of normal pieces yielding non-
normal pieces, similar to the ones we get during the isotopy of the surface
F from Lemma 2.7. The PL structure on such a piece will come from the
PL structure on the two parts of normal pieces it consists of, and from the
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PL structure on the glued in disc, which we haven’t yet described. These
glued in discs from the annulus behave in the same way as the disc regions
from elements in Γ (see Figure 14).
In the next paragraph we shall see that each of these disc regions can be

triangulated by at most 6 triangles. Counting the regions in the normal and
almost normal pieces in Figure 15 and triangulating each region (if it is not
a triangle already) by coning from one of the vertices in its boundary, we
can see that each piece, including the ones coming from the “tubed” almost
normal 2-spheres, contains less than 200 2-simplices. We should also note
that the described subdivision of the pieces is combinatorial.
Now, we have to put a PL structure on the elements of Γ. We’ve noted

before (Figure 14) that each elementary disc in Γ consists of disc regions
of lengths two or four. Once we’ve glued in a disc from Γ, the disc regions
in it give us a polyhedral structure on it. Further gluings will however
subdivide this structure. Concentrating on a single disc region A of our
element in Γ, we note that all further gluings of disc regions of length four
will miss A completely and therefore not change it at all. Disc regions of
length two can add in a further arc on A which runs parallel to the arc(s)
in its boundary, contained in the 2-skeleton T 2. Since this can only happen
once per boundary arc of A in the 2-skeleton T 2, we can add at most two
arcs in each disc region of any element in Γ. So a disc in Γ will in the end
look exactly like the disc in Figure 14 with less than 3t disc regions. This
follows from the assumption we made at the beginning of this section, since
it implies that a star of an edge can contain at most t tetrahedra.
The arcs in the boundaries of disc regions of elements in Γ that leave

markings on normal and almost normal pieces of the elements in Λ will be
subdivided further by the vertices coming from the points of intersection of
the markings (see Figure 15). An arc in the boundary of the length two
disc region (i.e., the one that’s leftmost or rightmost in Figure 14) will get
at most 16 vertices in this way, while an arc in the boundary of the length
four disc region will contain at most 5 such vertices (see Figure 15).
All these observations about the polyhedral structure of the discs in Γ

imply that each disc region corresponding to a single tetrahedron in T , will
be triangulated by no more than 20 triangles. So we can triangulate any
element from Γ by less than 20t triangles. Again, the triangulation we get
is combinatorial.
Finally, we need to induce a PL structure on the 2-skeleton T 2. Normal

and almost normal simple closed curves bounding pieces of elements of Σ
and Λ will partition the 2-skeleton T 2 into piecewise linear regions and thus
induce a polyhedral structure on it. We only have five nontrivial comple-
mentary regions in the boundary of every tetrahedron in T . They are as in
Figure 16.
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 normal and almost normal curves

segments in the 1-skeleton

Figure 16. Regions in the boundary of a 3-simplex bounded
by normal and almost normal simple closed curves.

So topologically we have two annuli, two twice punctured discs and one
three times punctured disc. The technical assumption on the triangulation
T , we made at the beginning of this section, implies that all these surfaces
are embedded in the 3-sphere.
We also need to take into account the discs in Γ which will subdivide

further the polyhedral structure that the surfaces in Figure 16 already have.
Each disc region of an element in Γ will give a further arc in one of the
regions in Figure 16. This arc will run from one normal arc in the boundary
of the region to the other. Its end points are vertices of the subdivision
of normal and almost normal pieces of the 2-sphere elements from Λ. It is
worth noting that an arc in the boundary of a tetrahedron, coming from a
disc in the family Γ, will neither connect two segments in the 1-skeleton T 1

nor will it connect a normal arc with a segment in T 1. Since a normal arc
can have at most 4 vertices in its interior (Figure 15), it follows that we will
never have to add in more than 50 arcs per planar surface (adding up all
the possibilities in all the regions in Figure 16) in T 2.
We can now obtain the simplicial structure on the 2-skeleton just by

coning from one of the vertices of each disc subregion of the planar surfaces
in Figure 16. It now follows that each surface in Figure 16 is triangulated
by less than 200 2-simplices.
Now we are in the position to describe completely the subdivision S of

the triangulation T we started with. As it was said before, the polyhedron
T 2∪Σ∪Λ∪Γ with its simplicial structure is going to be a subcomplex of S.
Lemma 2.7 tells us that the complement of the polyhedron T 2∪Σ∪Λ∪Γ in
each tetrahedron of T is just a union of 3-balls. The boundary 2-spheres of
these 3-balls are embedded by the assumption we made at the very beginning
of this section. They also inherit a PL structure from T 2 ∪Σ∪Λ∪ Γ which
is combinatorial. Every complementary 3-ball can thus be triangulated by
adding a vertex in its interior and coning its boundary. Since these 3-balls
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exhaust the whole 3-sphere, the cones completely determine the subdivision
S. We should also note that all these coned 3-balls are in fact shellable
because their bounding 2-spheres are triangulated in a combinatorial fashion.
The rest of this section will be devoted to obtaining the subdivision S

from the triangulation T using Pachner moves. The basic tool for achieving
this end will be the procedure called changing of cones.
Suppose we had two PL discs D and E with isomorphic simplicial struc-

ture on their boundaries. Let the union D ∪ E denote the PL 2-sphere
obtained by gluing the two discs together via a simplicial isomorphism on
their boundaries. What we want is an algorithm to transform the cone on
D, denoted by CD, to the union of cones CE∪C(D∪E), without changing
the triangulation of D. This is described schematically by Figure 17.

D
D

E

Figure 17. The changing of cones.

We have the following lemma giving a bound on the number of Pachner
moves required for changing of cones.

Lemma 5.1. Let discs D and E be as above, where n is the number of
2-simplices in D and m is the number of 2-simplices in E. Then we can
perform the changing of cones using less than 4(n+m) Pachner moves.

Proof. We will divide the process into three steps. First, we glue a cone
on the cone on the boundary of D onto the bottom part of the boundary
of CD (Figure 18). This is a reversed process to destroying an edge which
connects the two cone points of the bit that we glued on. It can therefore,
by Lemma 4.1, be accomplished by less than (n+ 1) Pachner moves.
In the second step we perform the same move again, i.e., we glue the cone

C(C(∂D)) onto the space we’ve got so far (Figure 18). This again requires
not more than (n+ 1) Pachner moves.
The space we’ve created can be described as a suspension of C(∂D) glued

onto the cone on the disc D. We know that we can transform the cone
triangulation of the disc C(∂D) into the triangulation of E by using not
more than (n+m) two dimensional Pachner moves (Lemma 4.2). It is also



320 ALEKSANDAR MIJATOVIĆ

D D
D

Figure 18. The first two steps in the changing of cones.

clear that in the suspension setting, each (1-3) move (or its inverse) can be
realized by one (1-4) and one (2-3) move. A (2-2) Pachner move can be
realized by a (2-3) and a (3-2) move. Putting all this together implies our
bound. �
The changing of cones will help us produce all the necessary cones in

the triangulation S. Now we have at our disposal all the tools required, to
bound the number of Pachner moves needed for obtaining the subdivision
S from the triangulation T .
The whole process will be divided into five stages. We’ll start by de-

scribing each one of them, and then we’ll bound the number of moves we
made.
1) Add a vertex into every tetrahedron and every triangle of the triangu-

lation T and cone.
2) Subdivide the 1-skeleton of T to get a subcomplex of S, and keep the

triangulation in the 3-simplices of T coned.
3) Subdivide the 2-skeleton of T to get a subcomplex of S, and keep the

triangulation in the 3-simplices of T coned.
4) Chop up tetrahedra of T by the appropriate normal and almost normal

pieces and triangulate the complementary regions by coning them from
a point in their interior.

5) Chop up the complementary regions of 4 by length two and length four
disc regions of elements in Γ. Cone the complements.

We note that Step 3 can be accomplished by suspending the process in
Lemma 4.2. Steps 4 and 5 are possible by Lemma 5.1.
Adding a vertex into each 3-simplex in T takes t(1-4) moves. Adding one

into a triangle of T takes two Pachner moves: One (1-4) move followed by a
(2-3) move. So Step 1 amounts to 5t Pachner moves since there are precisely
2t triangles in the triangulation T .
We should note that the subdivision we get after Step 1 will always satisfy

the technical condition we stipulated at the beginning of this section. This
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is simply because every tetrahedron of this subdivision contains precisely
one edge from the 1-skeleton of T . Its other edges are embedded in the
2-simplices and in the tetrahedra of T . It is also clear that this subdivision
contains 12t 3-simplices. So the worst case scenario would make us do
Step 1 at the very beginning and then do the simplification process (that
we’ve been describing) on that subdivision. So once we work out the bound
for this simplification procedure, we have to substitute each t in the formula
with 12t.
Let’s go back to the construction of the subdivision S. First we want to

bound the number of vertices of S in each edge of the triangulation T . By
Lemma 2.6 it follows that there are at most 3 · 2110t2 normal arcs in any
triangle of T , coming from all elements in Σ and Λ. Since each normal arc
contributes at most one point of intersection with a single edge, we will have
less than 3 · 2110t2 vertices on any edge in the 1-skeleton T 1. Since there are
less than 5t edges all together (an Euler characteristic count), the number of
vertices of the triangulation S, contained in T 1 will be bounded by 15t2110t2 .
The star of any edge in T contains at most 2t 3-simplices in the subdivision

we have so far. Creating a vertex on this edge can obviously be done in the
following way: First make a (1-4) move on one of the simplices in the star
of the edge. Then do a sequence, of length at most 2t− 2, of (2-3) Pachner
moves. Now the addition of the vertex can be finished off by a single (3-2)
Pachner move. All together this procedure takes not more than 2t Pachner
moves. Step 2 will thus require no more than

30t22110t2

Pachner moves.
We already know that there will be at most 3 · 2110t2 normal arcs in any

triangle of T . So the number of regions in a 2-simplex in the 2-skeleton T 2 is
therefore bounded by the same number (plus one). These regions correspond
to the regions in the surfaces from Figure 16 and will thus be triangulated by
less than 20 2-simplices. So any triangle in T will be subdivided by at most
60 · 2110t2 2-simplices. By Lemma 4.2, this configuration can be obtained by
60 ·2110t2 two dimensional Pachner moves (we should notice here that before
starting the process from Lemma 4.2, the triangles of T were subdivided as
cones on their boundaries). Suspending this process and doing it for all 2t
2-simplices in T 2 yields an upper bound of

3 · 102t2110t2

Pachner moves used in Step 3. This is because every two-dimensional Pach-
ner move requires 2 three-dimensional ones.
The number of 3-ball regions, the elements of Σ and Λ produce in all

tetrahedra of T , is equal to the number of normal and almost normal pieces
in all the 2-spheres from Σ and Λ (plus t). So it is bounded above by
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3 · 2110t2 . Using Lemma 5.1, we are going to change the cone structure in
every tetrahedron in T . This will be accomplished, step by step, starting
from the vertices of the tetrahedron and moving towards the cone point in
its interior. At each stage we have to change a disc consisting of one of
the surfaces in Figure 16, where all but one of its boundary components
already have their corresponding normal and almost normal pieces glued in
(that makes it a disc), to a disc coming from the only normal or almost
normal piece that hasn’t yet been introduced. Since we want the region
between the two discs we’ve just described, to be coned, Lemma 5.1 is
precisely what is needed. It is also obvious that the disc D from Lemma 5.1
will in this situation never contain more than 800 triangles (this follows
from the counts we did when defining the subdivision S), while the disc E,
which is just a normal or an almost normal piece, will be triangulated by
less than 200 2-simplices. So in a single 3-ball region, we’ll make less than
4 · (800 + 200) Pachner moves (Lemma 5.1). In order to complete Step 4 in
all the tetrahedra of T , we need to make

12 · 1032110t2

Pachner moves.
The number of discs in Γ, coming from a single element in Λ, is bounded

above by half the number of times the 2-sphere in question intersects the
1-skeleton. We already know that there are at most 3 ·2110t2 vertices on any
edge in the 1-skeleton of the triangulation T . Since there are less then 5t
edges in T 1, the number of elements in Γ is bounded above by 1

215t2
110t2 <

10t2110t2 .
Each of the discs in Γ has at most t disc regions (by the assumption from

the beginning of this section), coming from the 3-simplices in the star of
the edge the particular disc corresponds to. Each disc region is triangulated
by strictly less than 20 triangles. A disc region in an element of Γ will
correspond to the disc E in Lemma 5.1.
The boundary of each disc region is a subcomplex in the boundary of a

coned 3-ball. One of the complementary discs bounded by this simple closed
curve, in the boundary of the coned 3-ball, will correspond to the disc D in
Lemma 5.1. In the case of a disc region in an element of Γ having two arcs
in its boundary embedded in the 2-skeleton T 2, the disc corresponding to
D we were discussing before will contain six 2-simplices (two in normal or
almost normal pieces and four in the 2-skeleton T 2).
Let’s look at the case of a disc region from an element in Γ that intersects

the 2-skeleton of T in a single arc (i.e., the leftmost or the rightmost region
in Figure 14) and corresponds to an elementary isotopy. The number of
triangles of the complementary region (in the bounding 2-sphere) we are
interested in will then be smaller than the sum of the numbers of 2-simplices
in the following surfaces: The disc in the 2-simplex of T our disc region is
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parallel to, the disc in the 2-simplex of T containing a bounding arc of the
disc region we are gluing in, regions in at most three normal triangles or
regions in a normal triangle and a normal quadrilateral or regions in two
normal quadrilaterals, at most two discs contained in two distinct regions
in the elements of Γ. Bounds for the numbers of 2-simplices for the above
surfaces are as follows: 20, 2, 3 · 30 or 2 · 30 or 2 · 30, 2 · 2 respectively. What
happens with the disc regions belonging to the elements of Γ that come from
natural isotopies? In that case the disc D from Lemma 5.1 is composed of
the following surfaces: Roughly a half of an almost normal octagon, three
discs contained in the 2-simplices of T , a single normal triangle. The explicit
bounds in this case are: 70, 3 · 20, 70.
An upper bound on the sum of the numbers of triangles in D and E

will therefore always be strictly less than 300 (we already know that a disc
region in an element from Γ contains no more then 20 2-simplices). So by
Lemma 5.1, we can produce our disc region in this 3-ball by less than 4 ·300
Pachner moves. All together, we have to make less than

12 · 103t22110t2

Pachner moves in order to complete Step 5.
Summing everything up, estimating the resulting expression and substi-

tuting t with 12t to account for the technical assumption we made at the
beginning of this section, we get the following proposition.

Proposition 5.2. Let T be any triangulation of the 3-sphere and let t be
the number of tetrahedra in it. Then the subdivision S, described at the
beginning of this section, can be obtained from T by making less than ct22dt2

Pachner moves, where the constant c is bounded above by 5 · 106 and the
constant d is smaller than 2 · 104.

6. Conclusion of the proof.

Now, we are in the position to bound the number of Pachner moves needed
to simplify any given triangulation T of the 3-sphere, down to the canonical
triangulation with only two tetrahedra. We will apply the shelling tech-
niques, developed in Section 4, to the subdivision S of the triangulation T ,
described in Section 5.
The basic question we have to answer at this point is how many tetrahedra

do we have to shell in the simplifying process. Then we can estimate the
number of Pachner moves needed for the process, using the fact that each
elementary shelling corresponds to a single Pachner move.
Let’s bound first the total number of tetrahedra of S.
This will be accomplished in two steps. First we count the number of

3-ball regions we coned, while constructing the subdivision S, in all the
tetrahedra of the triangulation T . The second step consists of bounding
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the number of triangles in each of the boundaries of the 3-balls mentioned
above. Multiplying these two numbers gives our bound.
Lemma 2.6 implies that there are at most 3 · 2110t2 normal and almost

normal pieces in all 3-simplices of T , coming from all normal and almost
normal 2-sphere in Σ ∪ Λ. We know that each piece contains at most 200
triangles. Each planar surface in the boundary of the tetrahedron (see Fig-
ure 16) contains at most 50 arcs and is triangulated by at most 200 triangles.
Each 3-ball component of the complement of Σ ∪ Λ in our tetrahedron will
thus contain less than 50 disc regions, coming from elements in Γ.
So in all 3-simplices of T we’ll have not more than 50 · 3 · 2110t2 3-ball

regions. Since each disc region in any element in Γ contains less than 20
triangles, 1000 is surely an upper bound on the number of triangles in the
boundary of any of the 3-ball regions. There will therefore be at most
15 · 1042110t2 tetrahedra in S.
Combining Proposition 5.2 and the assumption that there are precisely 12t

tetrahedra in the triangulation T , concludes the proof of the main theorem.
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