Imperial Mathematics logo

Arbitrage-free prediction of the implied volatility smile

Abstract. This paper gives an arbitrage-free prediction for future prices of an arbitrary co-terminal set of options with a given maturity, based on the observed time series of these option prices. The statistical analysis of such a multi-dimensional time series of option prices corresponding to $n$ strikes (with $n$ large, e.g. $n\geq 40$) and the same maturity, is a difficult task due to the fact that option prices at any moment in time satisfy non-linear and non-explicit no-arbitrage restrictions. Hence any $n$-dimensional time series model also has to satisfy these implicit restrictions at each time step, a condition that is impossible to meet since the model innovations can take arbitrary values. We solve this problem for any $n\in\NN$ in the context of Foreign Exchange (FX) by first encoding the option prices at each time step in terms of the parameters of the corresponding risk-neutral measure and then performing the time series analysis in the parameter space. The option price predictions are obtained from the predicted risk-neutral measure by effectively integrating it against the corresponding option payoffs, and are shown to be statistically significant. The non-linear transformation between option prices and the risk-neutral parameters applied here is \textit{not} arbitrary: it is the standard mapping used by market makers in the FX option markets (the SABR parameterisation) and is given explicitly in closed form. Our method is not restricted to the FX asset class nor does it depend on the type of parameterisation used. Statistical analysis of FX market data illustrates that our arbitrage-free predictions outperform the naive random walk forecasts, suggesting a potential for building management strategies for portfolios of derivative products, akin to the ones widely used in the underlying equity and futures markets.

A version of this paper, entitled "Smile transformation for price prediction" appeared as a Technical paper in the 30th of April 2014 issue of Risk.

Back to the publication list of Aleksandar Mijatović.