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Abstract
Previous work has shown that predictive coding can provide a detailed explanation of a very wide range

of low-level perceptual processes. It is also widely believed that predictive coding can account for high-level,
cognitive, abilities. This article provides support for this view by showing that predictive coding can simulate
phenomena such as categorisation, the influence of abstract knowledge on perception, recall and reasoning about
conceptual knowledge, context-dependent behavioural control, and naive physics. The particular implementa-
tion of predictive coding used here (PC/BC-DIM) has previously been used to simulate low-level perceptual
behaviour and the neural mechanisms that underlie them. This algorithm thus provides a single framework for
modelling both perceptual and cognitive brain function.

Keywords: perception; cognition; categorisation; reading; word-superiority effect; reasoning; behavioural con-
trol; naive physics

1 Introduction
Predictive coding is a leading theory of brain function (Bubic et al., 2010; Clark, 2013; Huang and Rao, 2011; Rao
and Ballard, 1999), that has been shown to explain a great deal of neurophysiological and psychophysical data,
such as the information processing performed in the retina and lateral geniculate nucleus (LGN; Hosoya et al.,
2005; Jehee and Ballard, 2009; Laughlin, 1990; Srinivasan et al., 1982), orientation tuning, surround suppression
and cross-orientation suppression in primary visual cortex (V1; Spratling, 2010, 2011, 2012a), the learning of
Gabor-like receptive fields (RFs) in V1 (Jehee et al., 2006; Rao and Ballard, 1999; Spratling, 2012c), gain modu-
lation as is observed, for example, when a retinal RF is modulated by eye position (De Meyer and Spratling, 2011,
2013), binocular rivalry (Denison et al., 2011; Hohwy et al., 2008), contour integration (Spratling, 2013b, 2014c),
the modulation of neural response due to attention (Spratling, 2008a, 2014c), fMRI data related to stimulus expec-
tation (Alink et al., 2010; Egner et al., 2010; Smith and Muckli, 2010; Summerfield and Egner, 2009), mismatch
negativity (Garrido et al., 2009; Wacongne et al., 2012), habituation (Ramaswami, 2014), and the saliency of
visual stimuli (Spratling, 2012b). As the preceding list illustrates, the predictive coding framework has been ex-
ceptionally successful at explaining low-level perceptual abilities and the neural processes that underlie them. It
has been claimed that predictive coding can also account for higher-level cognitive processes like theory of mind
(Koster-Hale and Saxe, 2013), mirror neurons (Kilner et al., 2007), emotions (Seth, 2013), aesthetics (de Cruys
and Wagemans, 2011), self-awareness (Apps and Tsakiris, 2014), consciousness (Seth et al., 2011), and disorders
of cognitive function such as schizophrenia (Lalanne et al., 2010) and autism (Lawson et al., 2014; van Boxtel
and Lu, 2013). However, these claims are rather speculative consisting of verbal theories rather than explicit
simulations.

This article makes an initial step in demonstrating that predictive coding can model cognition. As cognition is
underpinned by the formation of conceptual knowledge, it is first shown that predictive coding can categorise per-
ceptual information (section 3.1). The model is shown to successfully simulate a number of experiments exploring
human categorisation behaviour. It is then shown that predictive coding can simulate the influence of higher-level
knowledge on perception (section 3.2). Specifically, the model is used to simulate the influence of word knowl-
edge on letter perception, and the results are shown to be consistent with a range of results obtained with human
subjects. Predictive coding is then shown to be able to reason about conceptual knowledge (section 3.3), and to
be able to perform context-dependent task switching (section 3.4). Finally, it is shown that predictive coding can
perform reasoning about simple physics problems (section 3.5). Specifically, the model is used to infer the relative
mass of objects from observations of the velocities before and after a collision. These simulation results are also
in good agreement with human behavioural data.

Computational models exist which successfully explain all the phenomena simulated in this article. For ex-
ample, there are numerous models of categorisation that can simulate some or all of the experiments discussed in
section 3.1 (e.g., Aha and Goldstone, 1992; Anderson, 1991; Anderson and Betz, 2001; Erickson and Kruschke,
1998; Kruschke, 1992; Love et al., 2004; Medin and Schaffer, 1978; Nosofsky and Johansen, 2000; Nosofsky
et al., 1994; Sanborn et al., 2010). The IAC model (McClelland, 2014; McClelland and Rumelhart, 1981; Rumel-
hart and McClelland, 1982; Rumelhart et al., 1986) has previously been used to explain the influence of word
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knowledge on letter perception (as modelled in section 3.2), and to simulate recall and reasoning with the Jets and
Sharks data (section 3.3). Salinas (2004a,b) has proposed a gain-modulated basis function network to model the
context-dependent task switching experiments discussed in section 3.4. Intuitive understanding about collision
physics, section 3.5, has been simulated by the “noisy Newton” model (Sanborn, 2014; Sanborn et al., 2013). In
addition to these models of specific cognitive abilities, there also exists general-purpose modelling frameworks,
such as connectionism, Bayesian modelling1, and ACT-R (Anderson et al., 2004), all of which can simulate some
or all of the experiments described here, and many others besides. This article does not therefore aim to show that
the form of predictive coding studied here is unique in its ability to simulate the chosen cognitive tasks, nor to
claim that the proposed framework for modelling cognition is better than existing ones. Instead, by showing that
predictive coding can be used to build models of a diverse range of cognitive phenomena, the aim is to provide the
first proof-of-concept demonstration that predictive coding can model cognition, and to establish predictive coding
as a potential alternative method for constructing models of cognition. In the current article, the models have been
constructed by hand with hard-coded, rather than learnt, synaptic weights. Such hand-designed networks suffice
to demonstrate that predictive coding can perform cognitive tasks, but learning remains an important topic for
future work.

2 Methods
All the simulations reported here are performed using a particular implementation of predictive coding called the
PC/BC-DIM algorithm. PC/BC-DIM is a version of Predictive Coding (PC; Rao and Ballard, 1999) reformulated
to make it compatible with Biased Competition (BC) theories of cortical function (Spratling, 2008a,b), and that is
implemented using Divisive Input Modulation (DIM; Spratling et al., 2009) as the method for updating error and
prediction neuron activations. DIM calculates reconstruction errors using division, which is in contrast to other
implementations of PC that calculate reconstruction errors using subtraction (Huang and Rao, 2011).

PC/BC-DIM is a hierarchical neural network model. A single processing stage in a PC/BC-DIM hierarchy is
illustrated in Fig. 1 and implemented using the following equations:

r = Vy (1)

e = x� [r]ε2 (2)

y← [y]ε1 ⊗We (3)

Where x is a (m by 1) vector of input activations, e is a (m by 1) vector of error neuron activations; r is a (m by
1) vector of reconstruction neuron activations; y is a (n by 1) vector of prediction neuron activations; W is a (n
by m) matrix of feedforward synaptic weight values; V is a (m by n) matrix of feedback synaptic weight values;
[v]ε = max(ε, v); ε1 = 1× 10−6 and ε2 = 1× 10−3 are parameters; and � and ⊗ indicate element-wise division
and multiplication respectively. The matrix V is equal to the transpose of the W, but each column is normalised
to have a maximum value of one. Hence, the feedforward and feedback weights are simply rescaled versions of
each other.

Initially the values of y are all set to zero, although random initialisation of the prediction neuron activations
can also be used with little influence on the results. Equations 1, 2 and 3 are then iteratively updated with the
new values of y calculated by equation 3 substituted into equation 1 and 3 to recursively calculate the neural
activations. This iterative process was terminated after 75 iterations in all the experiments reported here.

The values of y represent predictions of the causes underlying the inputs to the network. The values of r
represent the expected inputs given the predicted causes. The values of e represent the residual error between the
reconstruction, r, and the actual input, x. The full range of possible causes that the network can represent are
defined by the weights, W (and V). Each row of W (which correspond to the weights targeting an individual
prediction neuron) can be thought of as a “basis vector” or “elementary component” or “preferred stimulus”, and
W as a whole can be thought of as a “dictionary” or “codebook” of possible representations, or a model of the
external environment. The activation dynamics described above result in the PC/BC-DIM algorithm selecting a
subset of active prediction neurons whose RFs (which correspond to basis functions) best explain the underlying
causes of the sensory input. The strength of activation reflects the strength with which each basis function is
required to be present in order to accurately reconstruct the input. This strength of response also reflects the
probability with which that basis function (the preferred stimulus of the active prediction neuron) is believed to be

1 It is widely believed that predictive coding also emulates Bayesian inference (Deneve, 2008; Friston, 2005; Kilner et al., 2007; Lee, 2015;
Spratling, 2016), hence, it should be expected that predictive coding can simulate cognitive function, however, as noted earlier this has yet to
be demonstrated explicitly.
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Figure 1: (a) A single processing stage in the PC/BC-DIM neural network architecture. Rectangles
represent populations of neurons and arrows represent connections between those populations. The pop-
ulation of prediction neurons constitute a model of the input environment. Individual neurons represent
distinct causes that can underlie the input (i.e., latent variables). The belief that each cause explains the
current input is encoded in the activation level, y, and is used to reconstruct the expected input given the
predicted causes. This reconstruction, r, is calculated using a linear generative model (see equation 1).
Each column of the feedback weight matrix V represents an “elementary component”, “basis vector”,
or “dictionary element”, and the reconstruction is thus a linear combination of those components. Each
element of the reconstruction is compared to the corresponding element of the actual input, x, in order
to calculate the residual error, e, between the predicted input and the actual input (see equation 2). The
errors are subsequently used to update the predictions (via the feedforward weights W, see equation 3)
in order to make them better able to account for the input, and hence, to reduce the error at subsequent
iterations. The responses of the neurons in all three populations are updated iteratively to recursively cal-
culate the values of y, r, and e. The weights V are the transpose of the weights W, but are normalised
to so that the maximum value of each column is unity. Given that the V weights are fixed to the W
weights there is only one set of free parameters, W. References in the main text to the synaptic weights
refer to the elements of W. The activations of the prediction neurons or the reconstruction neurons may
be used as inputs to other PC/BC-DIM processing stages. The inputs to this processing stage may come
from the prediction neurons of this or another processing stage, or the reconstruction neurons of another
processing stage, or may be external, sensory-driven, signals. The inputs can also be a combination of
any of the above. (b) When inputs come from multiple sources, it is sometimes convenient to consider the
population of error neurons to be partitioned into sub-populations which receive these separate sources
of input. As there is a one-to-one correspondence between error neurons and reconstruction neurons, this
means that the reconstruction neuron population can be partitioned similarly.

present, taking into account the evidence provided by the input signal and the full range of alternative explanations
encoded in the RFs of the whole population of prediction neurons.

A simple two-stage hierarchical PC/BC-DIM network is illustrated in Fig. 7. The recurrent inputs provided
by the reconstruction neurons in the second processing stage are used to provide top-down inputs to the first
processing stage. Additional synaptic weights need to be defined to allow the recurrent inputs to influence the first-
stage prediction neuron responses. These additional weights will form additional columns of W (and additional
rows of V). The exact form of the top-down weights will determine how the recurrent inputs affect the behaviour
of the model. To perform simulations with a hierarchical model equations 1, 2 and 3 are evaluated for each
processing stage in turn (starting from the lowest stage in the hierarchy), and this process is repeated to iteratively
calculate the changing neural activations in each processing stage at each time-step.

In the hierarchical PC/BC-DIM network illustrated in Fig. 7 the first processing stage receives input from
two distinct sources, the image and the second-stage reconstruction neurons. There are many other situations
in which inputs may come from multiple sources. For example, in section 3.1 inputs come from image pixels
and class labels (see Fig. 2b), and in sections 3.4 and 3.5 different parts of the input vector encode the values
of different variables. When inputs come from multiple sources it is sometimes convenient to consider the input
vector to be partitioned into separate sub-vectors representing these separate sources. Since there is a one-to-one
correspondence between elements of the input vector and both error neurons and reconstruction neurons it is also
possible to think of these neural populations as being partitioned into sub-populations (Fig. 1b). Each partition
of the input will correspond to certain columns of W (and rows of V). While it is conceptually convenient to
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think about separate partitions of the inputs, neural populations and synaptic weights (and to sometimes plot these
values in separate sub-graphs), it does not in any way alter the mathematics of the model. In equations 1, 2 and 3, x
is a concatenation of all partitions of the input, e and r represent the activations of all the error and reconstruction
neurons; and W and V represent the synaptic weight values for all partitions.

Open-source software, written in MATLAB, which performs the experiments described in this article is avail-
able for download from: http://www.corinet.org/mike/Code/pcbc_cognition.zip.

3 Results
This section reports the results of applying the PC/BC-DIM algorithm to simulating a diverse range of tasks:
categorisation (section 3.1), the influence of higher-level knowledge on perception (section 3.2), reasoning about
conceptual knowledge (section 3.3), context-dependent task switching (section 3.4), and reasoning about colli-
sions between objects (section 3.5). While the PC/BC-DIM algorithm (as described in section 2) stays the same
throughout, the inputs to (and outputs from) the PC/BC-DIM network, the number of neurons in each population,
and the synaptic weights, change from tasks to task. These details are therefore provided in the text that describes
each experiment. Any missing implementation details can be found in the accompanying code (see section 2).
Furthermore, to provide the reader with a visual summary of the structure and size of each network, a diagram
accompanies each set of results. These summary diagrams appear within a box (like those shown on the left of
Fig. 3). Given that there is a one-to-one correspondence between the neurons in the error and reconstruction popu-
lations, it is possible to draw a PC/BC-DIM network in a compact form with the error and reconstruction neurons
superimposed. Each summary diagram has this more compact form, but otherwise uses the same conventions as
described in the caption of Figure 1. The numbers above each neural population indicate the number of neurons
in that population. When the error and reconstruction neurons are split into multiple partitions, the number of
neurons in each partition is indicated.

3.1 Perceptual Classification and Categorization
Classification and categorisation are fundamental to concept formation and human cognition (Goldstone and Ker-
sten, 2003; Kruschke, 2005). It is straightforward to set-up a PC/BC-DIM network to recognise stimuli: by
defining appropriate synaptic weights the prediction neurons will respond to specific patterns of input. However,
to perform categorisation it is typically necessary to be able to generalise over changes in appearance, or to be
able to group together perceptually dissimilar stimuli. If a subset of prediction neurons are defined to represent
a range of stimuli falling within the same category, then it is necessary to “pool” the responses from this subset
of prediction neurons to define a neuron that will responds to all members of the category. Figure 2 shows two
ways in which this can be implemented. The first method (Fig. 2a) involves using a separate population of pooling
neurons that are activated by the responses of the prediction neurons. This method has been used in previous work
(Spratling, 2014a) and is consistent with (radial) basis function neural networks (Broomhead and Lowe, 1988;
Kruschke, 1992; Pouget and Sejnowski, 1997) and with several hierarchical models of invariant object recogni-
tion which employ alternating layers of neurons to form more specialised representations in one layer, and more
invariant representations in the next layer (Fukushima, 1980; LeCun et al., 2010; Riesenhuber and Poggio, 1999;
Serre et al., 2007). The second method (Fig. 2b) involves defining additional neurons within the reconstruction
neuron population that perform the same role as the pooling neurons in the first method. In this article the second
method will be used. It has the advantage that: (1) it is slightly simpler to implement, as it is not necessary to
introduce a new population of neurons governed by new equations; (2) it suggests that a single algorithm could be
used to learn both the perceptual features and the classification labels when both are available as sensory-driven
inputs to the network; and (3) if information about the expected class of the stimulus is available during recog-
nition (for example, if there are inputs to the class partition of the input vector that are proportional in strength
to the probability of each class), then this information can be combined with any available featural information
to infer the best estimate of the class (i.e., to perform cue combination; Spratling, 2016). More generally, while
the first method (Fig. 2a) produces a uni-directional mapping from inputs to outputs, the proposed architecture
(Fig. 2b) allows omni-directional mappings between the variables encoded by different partitions of the input and
reconstruction neurons, removing the distinction between variables that are inputs and those that are outputs.

3.1.1 Image Recognition

Figure 3 shows two examples of using PC/BC-DIM to perform classification of images from standard datasets
used in machine learning. To perform these experiments, each prediction neuron was given Wa weights (see
Fig. 2b) equal to the pixel intensity values of one image from the training set, and Wb weights (see Fig. 2b) that
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Figure 2: Methods of performing classification with a PC/BC-DIM network. The prediction neurons
have RFs (defined by the Wa weights) that make them selective to specific input stimuli. (a) A popula-
tion of pooling neurons receives input, via weights Vb, from the prediction neurons. Each pooling neuron
represents a class and receives non-zero weights from all prediction neurons that are selective to stimuli
within that class. The responses of the pooling neurons, z, are calculated as a linear weighted sum of their
input, i.e., z = Vby. (b) The PC/BC-DIM network receives two sources of input, one from the features
of the stimuli that are to be categorised, and another source of input defining the corresponding class la-
bels. For convenience, we can regard the vector of input signals, x, the vector of error neuron activations,
e, and the vector of reconstruction neuron responses, r, to be partitioned into two parts corresponding
to these separate sources of input (see Fig. 1b). Dealing with the extra inputs requires the definition of
additional columns of feedforward synaptic weights and additional rows of the feedback weights. The
additional feedforward weights will be non-zero between the input representing a specific class label and
all the prediction neurons that are selective to stimuli within that class. As with the Wa and Va weights
the additional feedback weights, Vb, are rescaled versions of the corresponding additional feedforward
weights, Wb. Hence, a reconstruction neuron in the second partition will receive non-zero weights from
all prediction neurons that are selective to stimuli within a single class. Each second partition reconstruc-
tion neuron will thus represent a class. Given the definition of the reconstruction neuron responses (see
equation 1), it can be seen that the responses of the second partition of the reconstruction neurons, rb,
will be identical to the responses of the pooling neurons in (a), i.e., rb = Vby. During classification only
the features of the stimulus that is to be categorised would be presented as input (to the first partition),
the second partition of the input would be blank, and the network’s prediction of the class label would be
read out from the responses of the reconstruction neurons in the second partition.

encoded the class label of that training image. There were thus as many prediction neurons as training images. It
is also possible to learn prediction neuron weights from training images so that there are fewer prediction neurons
than training images. However, the straight-forward, non-learning, method used here suffices to demonstrate that
PC/BC-DIM can perform real-world image classification.

The first dataset used was the USPS hand-written digits dataset (Hull, 1994). This consists of 16-by-16 pixel
greyscale images of hand-written digits divided into a training set containing 7291 images and a test set contains
2007 images. Figure 3a and b show the behaviour of the network in response to the presentation of two images
from the test set. The predicted class label is defined by the maximum response of the second-partition recon-
struction neurons (i.e., the label of the highest bar in the histogram shown at the top-right of each sub-figure of
Fig. 3). The PC/BC-DIM network’s prediction of the class label was compared to the true class label for all 2007
images in the test set and was found to be correct in 94.8% of cases (this compares to 97.4% accuracy for human
subjects (Chaaban and Scheessele, 2007)).

The second dataset used was the cropped and aligned version of the Extended Yale Face Database B (Georghi-
ades et al., 2001; Lee et al., 2005). This contains images of faces taken under varying lighting conditions. There
are approximately 64 images for each of 38 individuals. Half the images for each individual were used for training
(i.e., setting the weights) and the other half for testing. Images were downsampled from the 168-by-192 pixel
originals to 48-by-42 pixels. Figure 3d and e show the behaviour of the network in response to the presentation of
two images from the test set. Across all images in the test set the PC/BC-DIM network’s prediction of the identity
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Figure 3: Classification of images. In each sub-figure the inputs to the PC/BC-DIM network are shown
at the bottom. These inputs come from two sources (see Fig. 2b): an image (values shown as a 2D
array of intensity values) and an array of category labels (values shown as a histogram). The prediction
neuron responses are shown in the middle histogram (the x-axis represents neuron number and the y-axis
represents response strength). The Wa weights (see Fig. 2b) of the most active prediction neurons are
indicated by the images superimposed on the middle histograms. The reconstruction neuron responses are
shown at the top. As for the inputs, there are two partitions. The first reconstructs the input image (shown
as a 2D array of intensity values) and the second partition represents the predicted class label (shown as
a histogram, where the x-axis represents class label and the y-axis represent response strength). The
input images come from (a-c) the USPS hand-written digits dataset, and (d-f) the cropped and aligned
version of the Extended Yale Face Database B (Georghiades et al., 2001; Lee et al., 2005). In both
cases prediction neurons have been wired-up so that the Wa weights (the RFs corresponding to the first
partition of the input) are equal to images from the training set, and the Wb weights (corresponding to
the second partition) encode the class label of that training image. The first two columns show results
when a novel image from the test set is presented to the network. In each case the network successfully
predicts the correct class for this image. The last column shows results when no image is presented to
the network, but a a class label is presented. In this case the reconstruction neuron responses represent
the average image in that class.

of the individual was found to be correct 96.4% of the time (this compares to 91.0% accuracy for a k-nearest
neighbours classifier, with a value of k optimised for the two datasets used here).

The previous paragraph describes experiments in which an image is presented to the PC/BC-DIM network,
and the class label is read out from the second partition of reconstruction neurons. It is also possible to input
a class label, and have the network reconstruct (in the first partition) an image corresponding to this class. For
example, figure 3c shows the typical member of the class “number three” generated by the network wired up to
represent the USPS dataset, and figure 3f shows the reconstruction of the face of one individual in the Yale Face
dataset.
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Figure 4: Examples of synaptic weights that could be used to define the RF of a prediction neuron to a
single perceptual feature. (a) Weights that are highly selective for a particular feature value. (b) Weights
that are selective for the same feature value but less narrowly tuned. (c) Weights that are uniformly
distributed over all possible feature values, and hence, unselective for any particular value. (d) Weights
that are equally selective for a sub-range of feature values.

3.1.2 Simulating Human Categorisation Experiments

Humans appear to employ a number of different strategies for performing classification, including rule-based,
exemplar-based, and prototype-based strategies (Goldstone and Kersten, 2003). Different strategies are used by
the same individual in different circumstances, and by different individuals on the same categorisation task. Fur-
thermore, people seem capable of combining multiple strategies to perform a single categorisation task (Goldstone
and Kersten, 2003). PC/BC-DIM is sufficiently flexible to be able to implement rule-based, exemplar-based, and
prototype-based methods of classification, and to employ combinations of these methods to solve a single task.
Previous theories have also proposed that the brain can use multiple categorisation strategies and combinations
of strategies (Anderson and Betz, 2001; Ashby et al., 1998; Erickson and Kruschke, 1998; Smith et al., 1998).
However, previous models of this type have used hybrid architectures containing multiple, distinct, modules to
implement each categorisation method (e.g., Erickson and Kruschke, 1998). In contrast, PC/BC-DIM can imple-
ment different categorisation strategies, and combinations of strategies, in a single neural network.

Imagine a set of stimuli that are defined by a single feature dimension which can take one of four values. The
four possible feature values might be specific samples taken from a continuous feature space, or might represent
distinct feature values in a discontinuous space, the same arguments apply to both cases. A prediction neuron
selective to a particular feature value might have synaptic weights that are strongly selective to that value, as
illustrated in Fig. 4a. A neuron tuned to the same feature value, but less selectively so, might have synaptic
weights like those shown in Fig. 4b with the same mean but higher variance (or less precision). A neuron with
no preference for the value of the feature might have uniform weights like those shown in Fig. 4c. A prediction
neuron selective to a certain sub-range of possible feature values might have synaptic weights like those shown
in Fig. 4d. Similar principles can be used to define weights in any number of feature dimensions, however, for
simplicity imagine a set of stimuli defined over a two-dimensional feature space. A prediction neuron selective
to a particular exemplar would be given weights that are strongly selective, in both dimensions, to the specific
feature values of that exemplar (i.e., weights like those shown in Fig. 4a for both dimensions, but not necessarily
centred at the same value in each dimension nor necessarily having the same tuning width in each dimension).
A prediction neuron selective to a prototype would have weights that peak at the average feature value in each
dimension. However, it might be less narrowly tuned in order to represent a wider range of feature values (i.e.,
it might have weights like those shown in Fig. 4b for both dimensions, but not necessarily centred at the same
value in each dimension nor necessarily having the same tuning width in each dimension). A prediction neuron
that implements a rule aligned with one of the feature dimensions, might be strongly selective to a specific feature
value or range of values in that dimension, but be unselective to values in the other, rule-irrelevant, dimension
(e.g., it would have weights like those shown in Fig. 4a or Fig. 4d in one dimension, but weights like those shown
in Fig. 4c in the other). Different prediction neurons can be given different weights. Hence, within the same
PC/BC-DIM network different neurons can represent exemplars, prototypes, and rules.

In a classic experiment on human categorisation, Nosofsky et al. (1989) employed stimuli that varied over
two dimensions each of which could take one of four values. Training stimuli from the two classes, 1 and 2, had
the feature values indicated in Fig. 5a. Once trained on this task, human subjects were tested using all possible
combinations of feature values and the probability with which each stimulus was categorised as class 1 is indicated
by the lightness of the corresponding square in Fig. 5b. This pattern of results can be accounted for by the PC/BC-
DIM model using a network with three prediction neurons. One prediction neuron is wired-up to represent the
prototype of class 1: it has weights like those shown in Fig. 4b, but centred at feature values of 2.33 and 2.66 in the
first and second dimensions respectively. The second prediction neuron represents the average features of the two
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members of class 2 shown in the bottom right-hand corner of Fig. 5a: it has weights like those shown in Fig. 4a,
but centred at feature values of 3.5 and 1.5 in the first and second dimensions respectively. This second neuron
is intermediate between a neuron that represents a prototype and one that represents an exemplar as it is selective
to the average features of a subset of exemplars in a class. This type of representation will be referred to as a
“prototype/exemplar”. The third prediction neuron implements a rule to place into class 2 those stimuli that have
a value of one for feature one: it has narrowly tuned weights like those shown in Fig. 4a centred at a value of one
in the first dimension, but is less selective for the value the second dimension, having weights like those shown in
Fig. 4b but centred at a value of 2.5. As for the experiments shown in Fig. 3 the network’s prediction of a stimulus’
class is read out from reconstruction neurons in the last partition. As there are only two classes, only two such
neurons are required. The first receives strong weights from the first prediction neuron, and the second receives
strong weights from the second and third prediction neurons. For any given stimulus, both the reconstruction
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Figure 5: (previous page) Simulation of human categorisation experiments. (a-c) Simulation of Nosof-
sky et al. (1989, expt. 1): (a) task structure, (b) human data, (c) PC/BC-DIM simulation results. (d-g)
Simulation of Nosofsky et al. (1989, expt. 2): (d) human data for rule set 1, (e) human data for rule set
2, (f) PC/BC-DIM simulation results for rule set 1; (g) PC/BC-DIM simulation results for rule set 2.
(h-j) Simulation of Aha and Goldstone (1992): (h) task structure, (i) human data, and (j) PC/BC-DIM
simulation results. For (b-g), (i), and (j) the lightness of each square is proportional to the probability
with which that combination of features was categorised as being in class 1: lightness ranges from black
(zero probability of class 1) to white (probability of one that the stimulus is placed in class 1) (k) Sim-
ulation of Medin and Schaffer (1978, expt. 2). The graph shows the PC/BC-DIM network’s estimate of
the probability that each transfer item is in class A. Results are shown for three different sets of synaptic
weights. Each pattern of categorisation predicted by the three networks are consistent with a common
pattern of classification made by human subjects. (l) Simulation of Smith and Minda (1998, expt. 2). The
graph shows for each item in the data set the PC/BC-DIM network’s estimate of the probability that that
item is in class A. The first seven items are in class A, the next seven are the items in class B. The two
“exceptions” (items 7 and 14) are seen by the network as less probably members of their class, consistent
with the human classification performance.

neurons that represent class labels may be simultaneously active. A simple measure of how certain the network is
that the stimulus should be classified into class 1 was calculated by taking the response of the neuron representing
class 1 and dividing this by the sum of the responses of the reconstruction neurons representing both class 1 and
class 2. These values, for all possible stimuli, are shown in Fig. 5c and provide a good match to the human data.

In addition to the preceding experiment where subjects learnt the categories, Nosofsky et al. (1989) also
performed an experiment where subjects were instructed to allocate an exemplar to class 2 if certain conditions
were met. Two different sets of rules were used. The results of this experiment are shown in Fig. 5d for rule set 1
and Fig. 5e for rule set 2. To simulate these results with PC/BC-DIM it was assumed that class 1 was represented
in the same way as in the previous experiment (using one neuron tuned to the prototype). Three further neurons
were used to implement the three rules in each rule set, using weights analogous to those used to define the third
neuron in the previous experiment. The simulation results are shown in Fig. 5f for rule set 1 and Fig. 5g for rule
set 2.

Aha and Goldstone (1992) also employed two categories that were defined using a two-dimensional feature
space, but where each feature ranged over eight possible values. The feature values of the training exemplars are
indicated in Fig. 5h. Following training, human subjects were tested using all possible combinations of feature
values and the probability with which each stimulus was categorised as class 1 is shown in Fig. 5i. Similar results
are produced by the PC/BC-DIM model (Fig. 5j). This PC/BC-DIM network uses four prediction neurons, each of
which is selective for a prototype/exemplar. One neuron, representing class 0, is centred at location (3,6) in feature
space. The width of tuning over the first dimension is greater than the width of tuning over the second dimension,
reflecting the distribution of the three training exemplars in class 0 that are clustered around this location. The
other three prediction neurons have analogous weights to represent the other groups of three training items.

Medin and Schaffer (1978) devised a stimulus set in which stimuli had four features each of which could take
one of two values, denoted by 0 or 1. Training stimuli were divided into two sets. Category A consisted of stimuli
1110, 1010, 1011, 1101, and 0111. Category B consisted of stimuli 1100, 0110, 0001, and 0000. Having been
trained with these stimuli subjects were asked to classify seven novel transfer stimuli: 1001, 1000, 1111, 0010,
0101, 0011, and 0100. As each transfer stimulus can either be classified as A or B, the pattern of classifications
made by a subject can be summarised as a string of As and Bs. The three most common patterns of transfer item
categorisation were AAABBBB, BBAABAB, and ABABBAB (Nosofsky and Johansen, 2000; Nosofsky et al.,
1994). By defining networks with different weights, PC/BC-DIM can simulate all three of these patterns, as
illustrated in Fig. 5k.

Categorising the transfer items as AAABBBB suggests that the subject is employing a strategy in which a
stimulus is placed in class A if the value of the first dimension is one, and in class B if the value is zero, but where
the fifth item in class A and the first item in class B are treated as exceptions (Nosofsky and Johansen, 2000). This
rule+exception strategy can be implemented in PC/BC-DIM using four prediction neurons. The first prediction
neuron has weights that are selective for a value of one in the first feature dimension, but has equal weights for both
possible values of the other three features, it also has a strong weight for class label A. This neuron implements
the rule that if the first feature is a one then the class label is A. The second neuron has weights that represent
the exemplar 0111 and class label A, it thus represents the exception for class A. The two other neurons have
analogous weights in order to represent the rule that if the first feature is zero the class label is B and the exception
to this rule. The network’s estimate of the probability that a stimulus is in class A is plotted using square markers
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in Fig. 5k for all seven transfer items, and the pattern is consistent with the AAABBBB pattern of human subjects.
The second most common pattern of categorising the transfer items (BBAABAB) suggests that the subject is

employing a strategy in which a stimulus is placed in class A if the value of the third dimension is one, and in
class B if this value is zero, but where the fourth item in class A and the second item in class B are treated as
exceptions (Nosofsky and Johansen, 2000). This strategy can be implemented in PC/BC-DIM in a way analogous
to the previous strategy, and the results are consistent with the human subjects, see diamond markers in Fig. 5k.
The third most common pattern (ABABBAB) can be accounted for by a prototype-based strategy. To simulate this
strategy two prediction neurons are used. One represents the prototype of category A and the other the prototype
of category B. The predicted category labels for the seven transfer items are plotted using circular markers in
Fig. 5k, and the pattern is consistent with the human subjects.

Smith and Minda (1998) employed a two-class stimulus set in which stimuli had six binary-valued dimensions.
Category A consisted of the stimuli 000000, 100000, 010000, 001000, 000010, 000001, and 111101. Category
B consisted of the stimuli 111111, 011111, 101111, 110111, 111011, 111110, and 000100. Following training
subjects were more accurate in classifying the first six items in each class, than the seventh item in each class.
This pattern of results is consistent with a classification strategy in which the two classes are represented by the
prototypes 000000 for class A, and 111111 for class B, plus two exceptions for the seventh item in both classes.
A PC/BC-DIM network, with four prediction neurons, wired-up to implement this strategy produces the results
shown in Fig. 5l. Compared to the neurons representing the prototypes, the prediction neurons representing the
exemplars (the exceptions) have narrower tuning for perceptual features and/or wider tuning for category labels.
Consistent with the human data (Nosofsky and Johansen, 2000; Smith and Minda, 1998) the network shows less
certainty in its classification of the seventh item in each class, than it does for the other, more prototypical, items.

In all the preceding experiments PC/BC-DIM performs categorisation in the same way: the prediction neurons
(or neuron) that best account for the stimulus are the most active, and each active prediction neuron in turn
activates the reconstruction neuron in the last partition that represents its class label. The preceding experiments
have demonstrated that PC/BC-DIM has the flexibility to account for a range of classification strategies used by
humans. Specifically, PC/BC-DIM was used to implement a prototype + rule + prototype/exemplar method to
simulate Nosofsky et al. (1989, expt. 1); used a prototype and multiple rules to simulate Nosofsky et al. (1989,
expt. 2); employed multiple prototype/exemplars to simulate Aha and Goldstone (1992); a rule + exemplar method
and a prototype method to simulate different behaviours for the task described in Medin and Schaffer (1978,
expt. 2); multiple prototypes + exemplars were used to simulate Smith and Minda (1998, expt. 2); and an exemplar
method was used to generate the results in section 3.1.1. These different results have been produced by simply
varying the number of feature dimensions, the number of prediction neurons in the network, and the weights of
those neurons. The algorithm that performs predictive coding with the PC/BC-DIM network, and hence, which
generates the classification results has not changed. While it is important to demonstrate that PC/BC-DIM can
account for the flexibility of human categorisation, such flexibility can only be used if these different strategies
can be learnt. Investigating learning algorithms that can allow PC/BC-DIM network to learn categorisation will
be the subject of future work.

3.2 Contextual Influences on Perception
3.2.1 The Influence of Word Knowledge on Letter Perception

Perceptual categorisation can be influenced by prior knowledge and contextual information. For example, the
words in Fig. 6a can be easily read despite the middle letter in each word being formed by the same ambiguous
shape (Selfridge, 1955). To achieve this, the brain combines knowledge about valid words in the English language
with contextual information provided by the surrounding letters to perceive the same shape as a different letter
in each context. Similarly, the word shown in Fig. 6b can be unambiguously identified even when parts of the
constituent letters are obscured making the identity of those letters ambiguous (McClelland et al., 1986). Again,
this seems to require knowledge of whole words to disambiguate perception of individual letters.

Contextual influences on letter perception have previously been simulated using the interactive activation and
competition (IAC) neural network (McClelland, 2013; McClelland et al., 2014; McClelland and Rumelhart, 1981;
Rumelhart and McClelland, 1982). PC/BC-DIM can also be used to simulate the same phenomena. The PC/BC-
DIM model consists of a hierarchy of two processing stages as illustrated in Fig. 7. The input to the network comes
from a set of 14 features representing the strokes forming alphanumeric characters at four possible locations (like
segments of an LCD display). Inputs are given a value of one if the corresponding stroke is visible, and a value
of zero otherwise. An input of zero could thus correspond to a stroke not forming part of a letter, to a letter
being incomplete, or due to a letter being occluded; the model is not sophisticated enough to distinguish these
cases. The arrangement of the strokes, and the font, used to define each letter was identical to that described in
(McClelland and Rumelhart, 1981). Each prediction neuron in the first processing stage receives connections from
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T  E C  T
(a)

TPAPPED
(b)

Figure 6: (a) “the cat” written using an ambiguous shape for the middle letter of each word (redrawn
from Fig.3 of Selfridge, 1955). (b) “trapped” written so that some letters are partially occluded resulting
in their identities being ambiguous (inspired by Fig.2 of McClelland et al., 1986).

prediction (yS1)

reconstruction (rS1)error (eS1)

prediction (yS2)

reconstruction (rS2)error (eS2)

Figure 7: The two-stage hierarchical PC/BC-DIM network used to simulate the contextual influences
of word knowledge on letter perception. Each processing stage in this hierarchy consists of a network
of three neural populations, as illustrated in, and described in the caption to, Fig. 1. To improve clarity,
connections within and between processing stages are shown in different shades of grey. All connections
within a processing stage are shown in light-grey. The connections between processing stages can be
classified as bottom-up or top-down. Bottom-up connections link the sensory inputs to the first processing
stage and connect the first processing stage to the second processing stage, and are shown in black. Top-
down connections exist from the second processing stage to the first, and are drawn in dark-grey.

a unique combination of features corresponding to the strokes forming a single character at a single location. The
whole population of 144 prediction neurons represents all 26 letters plus the digits 0 to 9 at all four locations.
Each prediction neuron in the second processing stage receives four connections from prediction neurons in the
first processing stage. These four connections make each second stage prediction neuron represent a specific
combination of letters across the four locations. The whole population of 1182 second-stage prediction neurons
represent a corpus of English four-letter words. The reconstruction neurons in the second processing stage will
represent the expected input to the second stage (i.e., the expected outputs of the first-stage prediction neurons)
given the predicted causes of this input (i.e., the beliefs about words represented by the second-stage prediction
neuron activations). This second-stage reconstruction is fed-back as an additional input to the first-stage. Each
prediction neuron in the first processing stage receives (via the error neuron population) a single input from
the corresponding element of the second-stage reconstruction. This provides top-down activation to prediction
neurons representing beliefs about individual letters from second-stage prediction neurons representing beliefs
about whole words.

When this PC/BC-DIM network is presented with four letters that form a known word (Fig. 8a), the first-stage
prediction neurons that represent the individual letters become strongly active. The second-stage prediction neuron
that represents the word is also strongly activated. When, as in this example, the input pattern is unambiguous
the top-down connections from the second to the first processing stage have little influence (except on the scale of
the response) as illustrated in Fig. 8b, which shows the same simulation with the top-down connections removed
from the PC/BC-DIM model. However, if the input pattern is ambiguous then the top-down connections have
a significant influence. For example, Fig. 8c shows a situation analogous to that shown in Fig. 6b where two
letters are incomplete. In this example, the intact letters can activate neurons in the second processing stage
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Figure 8: (previous page) Simulations of word and letter recognition. Each sub-figure shows the input
to the PC/BC-DIM network (bottom) the activation of the first-stage prediction neurons (middle) and the
activation of the second-stage prediction neurons (top). The responses of first-stage prediction neurons
representing letters and digits at different positions are shown separately. The preferred stimuli of the
most active prediction neurons are indicated by the labels. (a) and (b) show results when the input
patterns are unambiguous. (c) and (d) show results when the pattern presented in the middle positions
is incomplete and potentially consistent with several different letters. (e) and (f) show results when one
of the input letters is perceptually identical to a digit. (g) to (j) show results when an ambiguous shape
is presented in two different contexts. The left column shows results for an intact PC/BC-DIM network,
the right column shown corresponding results for a network in which the top-down connections between
the second and first processing stages have been removed.

that represent words consistent with these letters. The top-down connections allow this information about possible
words to influence the response of the prediction neurons responding to the incomplete letters. The network comes
to represent the most likely letters and words given the input and the knowledge about possible English words,
encoded in the weights of the second-stage prediction neurons. In contrast, when the top-down connections are
removed from the PC/BC-DIM network (Fig. 8d), the incomplete pattern is represented as the letter with which it
shares most features, despite the fact that the resulting combination of letters does not correspond to a valid word.

A similar effect occurs without incomplete letters, due to certain letters and digits being perceptually identical.
The result shown in Fig. 8e is analogous to that shown in Fig. 8a, but for another input word. However, when top-
down connections are removed (Fig. 8f), the first-stage prediction neurons are unable to determine if the second
character is letter “O” or the digit “0”, despite the surrounding context.

The influence of context and word knowledge, conveyed by the top-down connections, can also be illustrated
by presenting an ambiguous shape to the network in two different contexts, analogous to the situation shown in
Fig. 6a. In Fig. 8g the ambiguous shape (the second character) is perceived by the PC/BC-DIM network to be
a letter H, whereas in Fig. 8i the same ambiguous shape is considered to most probably be a letter “A”. Without
top-down connections the ambiguous shape, in either context (Fig. 8h and j), is perceived as the most perceptually
similar letter (“U”): it differs by one feature (the bottom horizontal stroke) from the letter “U”, but by two features
(the two central horizontal strokes) from the letter “H”, and by a three features (the two central horizontal strokes
and the top horizontal stroke) from the letter “A”. It might be argued that a more graded response to each similar
letter would be more desirable. However, these results are for the crippled version of the network: in the intact
version top-down knowledge about words results in the ambiguous input being perceived as one of the less similar
letters.

The influence of the knowledge about possible English words, encoded in the weights of the second-stage
prediction neurons, can also be observed in the absence of any input at a particular letter location, as illustrated in
Fig. 9. As the number of visible letters increases, so the range of possible words decreases (and fewer second-stage
prediction neurons are active), and the range of possible letters that could fill the remaining spaces also decreases
(and fewer first-stage prediction neurons are active).

3.2.2 Simulating Human Letter Perception Tasks

A major success of the IAC model was its ability to account for the improved identification of letters appearing in
words and pseudowords compared to letters appearing in nonwords and in isolation (McClelland and Rumelhart,
1981). This word superiority effect can also be simulated using the PC/BC-DIM model. Fig. 10a shows the
temporal response of a single prediction neuron in the first-stage of the hierarchy. The recorded neuron is selective
for the the letter A as the second character in the input word. Its response has been recorded when this letter
A appears in a variety of contexts. It can be seen that the response is strongest when the A appears in a word
(CAVE) or a pronounceable pseudoword (MAVE), and is weakest when the A appears in a string of non-letter
symbols (3A33), in a nonword (UAHB), or in isolation ( A ). This effect is due to the number of the word
selective neurons in the second-stage that are activated by each contextual input, and the strength with which they
are activated. This in turn affects the strength of top-down feedback received by the recorded first-stage prediction
neuron, or by its rivals that represent other possible letters.

In the experiments with human subjects the perceptibility of the target letter was measured using the percentage
of times that the letter was correctly identified. To be able to compare the human data directly with the model, it is
necessary to define a measure of the models behaviour which correlates with letter perceptibility. For this purpose
the mean response of first-stage prediction neuron selective for the target letter is used. The comparison of these
measures of letter perceptibility in the model and in human subjects, for three conditions is presented in Fig. 10b.
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Figure 9: Prediction of missing letters. The format of this figure is identical to, and explained in the
caption of, Fig. 8. The number of letters presented to the network increases from subplot (a) to subplot
(d). In each case the network predicts the missing letters. These predictions become more constrained as
the number of missing letters, and hence the range of possible words, is decreased.

It can be seen that the model is in good agreement with the behavioural data.
The IAC model was also extensively tested with a range of experiments which varied the relative onset and

offset times of the target letter and its context (Rumelhart and McClelland, 1982). The behaviour of the IAC
model was found to be in good agreement with the behaviour of human subjects. The behaviour of the PC/BC-
DIM model on the same set of tasks is shown in Fig. 10c-i, and is also in close agreement with human behaviour.
To simulate the onset and offset of stimuli in these experiments, the input to the PC/BC-DIM network was changed
between iterations of equations 1, 2 and 3.

Fig. 10c shows results for an experiment in which the target letter and its context form a valid English word
(Rumelhart and McClelland, 1982, expt. 1). The target letter remains visible for a fixed period of time and
disappears at the same time as the context. However, the context appears at varying times: later than the target
when relative duration is less than one, and earlier than target when relative duration is greater than one. For both
the PC/BC-DIM model and the human subjects the perceptibility of the target letter increases with the earlier onset
of the context.

Fig. 10d shows results for an experiment that used two values for the relative duration of the context and target
letter (Rumelhart and McClelland, 1982, expt. 2). For a relative duration of one, both context and target appeared
and disappeared together. For a relative duration of two, the onset of the context was earlier than that of the target,
such that the context was present for twice as long as the target, with both disappearing simultaneously. In contrast
to the previous experiment two types of context were used. Firstly, a context that formed a valid word with the
target letter (results shown with solid lines), and a context of non-letter stimuli (results shown with dashed lines).
For both the PC/BC-DIM model and the human subjects the perceptibility of the target letter is improved when
the context forms a word, and only in this condition does early context onset improve performance further.

Fig. 10e shows results for an experiment in which the target letter and its context form a valid English word,
and both are visible for the same duration (Rumelhart and McClelland, 1982, expt. 3). In condition 1 the context
appears first and disappears simultaneously with the onset of the target letter. In condition 2 both context and
target letter have the same onset and offset times. In condition 3 the target letter appears first and disappears
simultaneously with the onset of the context. At offset each letter was replaced by a mask in all three conditions.
It can be seen that for both the PC/BC-DIM model and the humans the perceptibility of the target letter is reduced
as the delay in the onset of the context increases.

Fig. 10f shows results for an experiment in which the context is displayed for twice as long as the target letter
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Figure 10: Simulations of human letter perception tasks. (a) and (b) The word superiority effect. (a)
shows the temporal response of a first-stage prediction neuron when its preferred stimulus is presented to
the network in various different contexts. In all conditions both the preferred letter and the context were
visible for 40 iterations. (b) The average response recorded in three of the conditions in (a), together with
human accuracy data for the same task (data from expt. 1 of McClelland and Johnston, 1977). In this and
all subsequent sub-figures circular markers show PC/BC-DIM simulation results (plotted against the left-
hand scale) and square markers show corresponding human data (plotted against the right-hand scale).
(c)-(i) Show simulations of, and human data from, the following experiments reported in Rumelhart and
McClelland (1982): (c) expt. 1, (d) expt. 2, (e) expt. 3, (f) expt. 4, (g) expt. 5, (h) expt. 7, and, (i) expt. 8.

(Rumelhart and McClelland, 1982, expt. 4). In condition 1 the context and the target appear together so that the
target disappears before the context. In condition 2 the context appears before the target and both disappear at
the same time. Two types of context were used. Firstly, a context that formed a valid word with the target letter
(results shown with solid lines), and a context of non-letter stimuli (results shown with dashed lines). For both
the PC/BC-DIM model and the humans the perceptibility of the target letter is improved when the context forms
a word, and only in this condition does early context onset improve performance further.

Fig. 10g shows results for an experiment in which the target letter and context form a valid English word
(Rumelhart and McClelland, 1982, expt. 5). Both the target and context can be displayed either for a short
duration or a long duration. In all conditions the target letter and the context disappear at the same time. Results
for a long-duration target are shown using solid lines, and results for a short-duration target as shown using dashed
lines. It can be seen that for both the the PC/BC-DIM model and the humans the perceptibility of the target letter
is increased by increasing the duration for which the target is displayed, and that perceptibility is also increased
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Name Gang Age Education Marital Status Profession
Art Jets 40s JnrHigh Single Pusher
Al Jets 30s JnrHigh Married Burglar
Sam Jets 20s College Single Bookie
Clyde Jets 40s JnrHigh Single Bookie
Mike Jets 30s JnrHigh Single Bookie
Jim Jets 20s JnrHigh Divorced Burglar
Greg Jets 20s HighSch Married Pusher
John Jets 20s JnrHigh Married Burglar
Doug Jets 30s HighSch Single Bookie
Lance Jets 20s JnrHigh Married Burglar
George Jets 20s JnrHigh Divorced Burglar
Pete Jets 20s HighSch Single Bookie
Fred Jets 20s HighSch Single Pusher
Gene Jets 20s College Single Pusher
Ralph Jets 30s JnrHigh Single Pusher
Phil Sharks 30s College Married Pusher
Ike Sharks 30s JnrHigh Single Bookie
Nick Sharks 30s HighSch Single Pusher
Don Sharks 30s College Married Burglar
Ned Sharks 30s College Married Bookie
Karl Sharks 40s HighSch Married Bookie
Ken Sharks 20s HighSch Single Burglar
Earl Sharks 40s HighSch Married Burglar
Rick Sharks 30s HighSch Divorced Burglar
Ol Sharks 30s College Married Pusher
Neal Sharks 30s HighSch Single Bookie
Dave Sharks 30s HighSch Divorced Pusher

Table 1: The Jets and Sharks data set (McClelland, 2014).

by increasing the duration of the context.
Fig. 10h shows results for an experiment (Rumelhart and McClelland, 1982, expt. 7) which uses an identical

procedure to that used to produce the results shown in Fig. 10d except for the context used to generate the results
shown using the dashed lines. In Fig. 10d the dashed lines show results for a context of non-letter stimuli. In
Fig. 10h the dashed lines show results for a context that forms a pseudoword with the target letter. It can be seen
that a pseudoword context improves the perceptibility of the target letter, and this perceptibility is increased by
early context onset.

Fig. 10i shows results for an experiment (Rumelhart and McClelland, 1982, expt. 8) which uses an identical
procedure to that that used to produce the results shown in Fig. 10h except that dashed lines show results when
the context and target letter form a non-word. For both the the PC/BC-DIM model and the humans, when the
context forms a non-word with the target letter, the duration of the context has little effect on the perceptibility of
the target.

3.3 Reasoning About Conceptual Knowledge
The IAC neural network was also proposed as a model of how the brain could store and reason about conceptual
knowledge (McClelland, 2014; Rumelhart et al., 1986). These abilities of the IAC network were illustrated using
the Jets and Sharks dataset, which lists the attributes of a number of individuals (table 1). A single-stage PC/BC-
DIM network can be used to reason about this data. The PC/BC-DIM implementation is far simpler than the IAC
implementation (as was the case for the PC/BC-DIM model of letter and word perception described previously),
as it does not require neurons representing distinct attributes to be placed into separate pools, nor does it require
separate inhibitory connection between neurons within a pool. The input to the PC/BC-DIM network consists of
a 41-element vector representing all the possible attributes listed in Table 1 (27 names, 2 gangs, 3 age groups,
3 education types, 3 marital statuses, and 3 professions). A single prediction neuron is used to represent each
individual, hence there are 27 prediction neurons. Synaptic weights take binary values. Each prediction neuron
has a non-zero synaptic weight from all inputs corresponding to the attributes of the individual represented by
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that prediction neuron. For example, the prediction neuron representing the individual Art will have connections
of weight equal to each one from the inputs “Art”, “Jets”, “40s”, “JnrHigh”, “Single” and “Pusher” and weights
equal to zero (or equivalently no connection) from the other 35 inputs. The information represented in Table 1 is
therefore directly, and straightforwardly, encoded in the weights of the network.

Activating the input corresponding to the name “Art” results in the single prediction neuron representing this
individual being active. This active prediction neuron, in turn, produces a strong response from all the recon-
struction neurons representing the attributes of the person Art (Fig. 11a). Hence, from information about a name
it is possible to recall the age, occupation, etc. of the corresponding individual. If the same experiment is per-
formed with IAC the neurons representing the person Art and the attributes “Jets”, “40s”, “JnrHigh”, “Single”
and “Pusher” all become active. However, so do the neurons representing Clyde and Ralph. In fact the neuron
representing the person Clyde is almost as active as the neuron representing the attribute “40s” (Bechtel and Abra-
hamsen, 1991). The behaviour of the PC/BC-DIM network is thus, arguably, superior to that of the IAC network in
this particular case. However, it should be noted that in IAC networks the spreading of activation to related people
and subsequently to the attributes of those people, is claimed as a feature of the IAC architecture as it allows the
model to make generalisations (Kumaran and McClelland, 2012).

Given a partial description of an individual it is possible to retrieve their other attributes. For example, Fig. 11b
shows the results of activating the inputs corresponding to the attributes “Shark” and “20s”. Ken is uniquely
defined by these attributes, so the prediction neuron representing Ken becomes active (in isolation), and the name
“Ken” and his other attributes (“HighSch”, “Single”, and “Burglar”) are represented by the reconstruction neuron
responses generated by the active prediction neuron. Again, the PC/BC-DIM network arguably performs this
task better than the IAC network. In the IAC network, inputting the attributes “Shark” and “20s” results in weak
activation of all three neurons representing different professions (McClelland, 2014). The PC/BC-DIM network
can also calculate the most likely person given incorrect or partially contradictory information. For example,
if the input consists of all of Ken’s attributes except that “JuniorHigh” is presented instead of the correct value
“HighSchool”, the response of the reconstruction neurons still identified Ken as the most likely individual being
described (Fig. 11c).

In cases where the input attributes do not uniquely define an individual, the PC/BC-DIM network will deter-
mine the correct conditional probabilities associated with different possible values for the attributes. For example,
the attributes “20s” and “Pusher” are shared by three individuals, hence, each prediction neuron representing those
three individuals becomes active with strength 1

3 (and all other prediction neurons have a response of zero). These
three active prediction neurons in turn activate the reconstruction neurons representing the attributes of these three
individuals. Specifically, the reconstruction neuron representing the names of those three individuals becomes ac-
tive with a strength of 1

3 (Fig. 11d). It can be seen from Table 1 that the conditional probability of “JnrHigh” (and
of “Divorced”) given “20s” and “Pusher” is 0, the conditional probability of “College” (and of “Married”) given
“20s” and “Pusher” is 1

3 , and the conditional probability of “HighSch” (and of “Single”) given “20s” and “Pusher”
is 2

3 . These values are all correctly calculated by the responses of the reconstruction neurons. As all three possible
individuals are in the same gang the reconstruction neurons represent this attribute “Jet” with a value of one. In
contrast, for the same inputs an IAC network fails to activate the neurons representing “College” and “Married”
but does activate the neuron representing the individual Pete (Bechtel and Abrahamsen, 1991).

Fig. 11e shows the output of the PC/BC-DIM network when the inputted attribute (in this example “Shark”) is
shared by many individuals. The responses of the reconstruction neurons identify all the members of the Sharks
gang. Additionally they represent the correct conditional probabilities associated with all the other attributes. For
example, it can be seen from Table 1 that one member of the Sharks is in his 20s, nine are in their 30s, and two
are in their 40s. Hence, the probability that a member of the sharks is in his “20s”, his “30s”, or his “40s” is 1

12 ,
9
12 , and 2

12 respectively. The responses of the reconstruction neurons representing the attributes “20s”, “30s”, and
“40s” are exactly equal to these conditional probabilities. In contrast, IAC only activates one neuron representing
an age attribute (“30s”) and it fails to activate the neurons representing several individuals who are members of
the Sharks (Bechtel and Abrahamsen, 1991).

3.4 Context Dependent Task Switching
Many behaviours are contingent on circumstances. A classic example is the behaviour of a person in response
to a ringing telephone or a ringing door-bell. This will depend on whether the person is in their own home, or
someone else’s house (Cohen and Newsome, 2008; Salinas, 2004a), or if the sound is coming from the television
or elsewhere. Another example, proposed by Salinas (2004a), is a hypothetical laboratory experiment in which
the participant maintains fixation at a coloured spot while a target is flashed either to the left or right of the fixation
spot. The participant must then make an eye movement either to the location of the target or to a location an equal
distance from the fixation spot but on the opposite side to where the target appeared. Whether the participant
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Figure 11: Simulations with the Jets and Sharks data. In each figure the lower histogram show the input
to the PC/BC-DIM network and the upper histogram shows the response of the reconstruction neurons.
In all cases the input vector is normalised to sum to unity, which allows the reconstruction neurons to rep-
resent the conditional probabilities exactly. Without normalisation of the input vector, the reconstruction
neuron activities are proportional to the conditional probabilities. (a) Retrieving properties from a name.
(b) Retrieving properties from a unique partial description. (c) Retrieving probable properties from an
incorrect description. (d) Retrieving the conditional probabilities of properties from an ambiguous partial
description. (e) Retrieving typical properties of “Sharks”.
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Figure 12: Simulations of the context-dependent behaviour selection task proposed in Salinas (2004a).
In each figure the lower histogram show the input to the PC/BC-DIM network and the upper histogram
shows the response of the reconstruction neurons. The network receives input from multiple sources,
representing the context (saccade or anti-saccade), the fixation position, and the target position. Each of
these three variables are represented by a separate partition of the input, and a corresponding partition
of the reconstruction neuron population. A fourth partition represents the output of the network: the
required position to which a saccade is to be made. Positions are represented by Gaussian population
codes, and the mean of this distribution is indicated by the number above the corresponding histogram.
If the variable A represents the fixation position, the variable B represents the target position, and the
variable C represents the saccade position, then the network has been wired-up to approximate C=A-B in
the first context (anti-saccade), and to approximate C=A+B in the second context (saccade). When three
inputs representing the context, fixation position, and target position are presented (lower histograms),
the reconstruction neurons generate an output (upper histograms) that represents the correct value of the
saccade position (as well as outputs representing the given values of the other three variables).

does the former (a saccade) or the latter (an anti-saccade) is determined by the colour of the fixation spot. A
PC/BC-DIM network was used to simulate this saccade/anti-saccade task.

The PC/BC-DIM network employed four partitions of the input and the reconstruction neurons. The first
partition consisted of two elements that represented the context (saccades or anti-saccades). The second partition
represented the position of the fixation point and the third partition represented the position of the target. In both
cases the position information was represented by a Gaussian population code centred at the true location. The
final partition represented the required action, which was also encoded using a Gaussian population code centred
at the location of the intended saccade. The PC/BC-DIM network was wired-up so that each prediction neuron
represented a particular combination of context, fixation position and target location. Each prediction neuron also
had weights to the final partition that represented the position of the required saccade, given the values of the other
three variables. A total of 338 prediction neurons were used to cover the full range of possible contexts, fixation
positions and target locations.

In the saccade condition, the position of the target needs to be added to the position of fixation to determine
the correct saccade location. Figure 12a and b show, for two different target locations, that the network succeeds
in doing this. In the anti-saccade condition, the position of the target needs to be subtracted from the position
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Figure 13: Simulations of the context-dependent behaviour selection task proposed in Salinas (2004b).
In each figure the lower histogram show the input to the PC/BC-DIM network and the upper histogram
shows the response of the reconstruction neurons. The network receives inputs representing the fixation
spot colour (magenta, orange, cyan, green, yellow) and the attributes of the stimulus (horizontal, vertical,
red, blue). A second partition represents the output of the network: the required position to which
a saccade is to be made. This position is represented by a Gaussian population code, and the mean
of this distribution is indicated by the number above the corresponding histogram. The network has
been wired-up to calculate the required eye-movement for each possible combination of context and
stimulus features. When inputs representing the context, the stimulus orientation and the stimulus colour
are presented (lower histograms), the reconstruction neurons generate an output (upper histograms) that
represents the correct value of the saccade position (as well as outputs representing the given values of
the other variables).

of fixation to determine the correct saccade location. Figure 12c shows that the network succeeds in doing this
task. In this example, the location for both fixation and target are identical to those used in Fig. 12a, however, the
change in context, causes a significant change in eye movement.

In each condition, the PC/BC-DIM algorithm selects the subset of prediction neurons that best explain the
input. For example, for the condition shown in Figure 12a the inputs cause responses in the subset of prediction
neurons with connections to the “saccade” input and with Gaussian RFs centred near 0o in the second partition
and near 30o in the third partition. Each of these prediction neurons has a Gaussian RF centred near 30o in the last
partition. The reconstruction neuron responses are a linear combination of all the active prediction neuron RFs,
and hence, will peak at the appropriate places in each of the four partitions. In the condition shown in Figure 12c a
different set of prediction neurons are activated by the input. These prediction neurons also have RFs in the second
and third partitions centred around 0o and 30o, but have a selectivity for the other context (in the first partition),
and an RF centred near −30o in the last partition.

Salinas (2004b) proposed a second, more complex, hypothetical experiment to illustrate context-dependent
behaviour. In this second task there are five contexts, that are again indicated by the colour of the fixation spot. The
participant is required to make an eye-movement to report one feature of a separate stimulus. When the fixation
spot is magenta, the participant makes an eye-movement to report the orientation of the stimulus, saccadding to a
proximal location to the left of the fixation spot if the stimulus is horizontal, or to a proximal location to the right
of the fixation spot if the stimulus is vertical. When the fixation spot is orange, the participant again makes an eye-
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movement to report the orientation of the stimulus, but the locations for the saccades are reversed compared to the
previous condition. When the fixation spot is cyan, the participant makes an eye-movement to report the colour of
the stimulus, saccading to a distal location to the left of the fixation spot if the stimulus is red, or to a distal location
to the right of the fixation spot if the stimulus is blue. When the fixation spot is green, the participant again makes
an eye-movement to report the colour of the stimulus, but the locations for the saccades are reversed compared to
the previous condition. In the fifth context, when the fixation spot is yellow, the participant is required to maintain
fixation at the central fixation spot (the no-go condition).

To simulate this task a PC/BC-DIM network was wired-up so that a population of 20 prediction neurons rep-
resented each possible combination of context, stimulus orientation and stimulus colour. Each prediction neuron
was also given weights to represent to correct eye-movement associated with the combination of context and
stimulus properties that it represented. These saccade position weights were defined using a Gaussian centred
at the correct position. Figure 13a-e show the behaviour of the network when the stimulus remains constant but
the context changes. When the context is a magenta fixation spot, the network generates an eye movement that
corresponds to the orientation of the stimulus (Fig. 13a). The same is true when the context is orange, but now
the mapping between stimulus orientation and saccade position has been reversed, so that the eye movement is
to the right rather than the left (Fig. 13b). When the context is cyan, the eye movement reports the colour of
the stimulus (Fig. 13c), and this eye movement is reversed when the context is green (Fig. 13d). In the no-go
condition, a yellow context, the saccade position is zero. Figure 13f illustrates that a different saccade position
is produced in the magenta context when the stimulus attributes change. In each condition, a single prediction
neuron is activated by the visual attributes of the fixation spot and the stimulus. This single prediction neuron has
an RF in the second partition centred at the appropriate saccade position, and hence, generates a response in the
second partition reconstruction neurons at this location.

Neural networks that could simulate the above two tasks were also described in Salinas (2004a,b). Those
networks are similar to the PC/BC-DIM networks presented here. They consist of a population of neurons repre-
senting all combinations of possible inputs (a basis function population) the responses of which are mapped onto
the required output. However, one significant difference is that in Salinas (2004a,b), each neuron has two distinct
types of input connection: one set of connections are driving and the other set of connections are modulatory. The
different types of connections are implemented using distinct mathematical operations. In contrast, the current
model treats all inputs identically. Despite this, the prediction neurons in PC/BC-DIM models can display gain
modulated responses, like those in Salinas (2004a,b), without the need for one set of inputs to explicitly have a
multiplicative influence on the response (De Meyer and Spratling, 2011; Spratling, 2014c).

3.5 Reasoning About Collision Physics
Humans have an intuitive understanding about the behaviour of objects in the physical world. This enables people
to reason about the likely causes or consequences of physical events, or about the physical properties of the objects
involved. One particular aspect of this ability has been explored in a number of experiments investigating intuitive
understanding of the relation between velocity and mass in collision events (Gilden and Proffitt, 1989; Runeson
and Vedeler, 1993; Sanborn, 2014; Sanborn et al., 2013; Todd and Warren, 1982; Vicovaro and Burigana, 2014).
In these experiments, subjects are shown the collision between two objects (A and B) simulated by moving dots on
a computer screen. Following the collision, the subject is asked to determine which of the objects had the greater
mass. The ability to identify the heavier object is tested as the relative mass of the two objects is varied. Typically,
these experiments are repeated using collisions with different coefficients of restitution.

To simulate these experiments a PC/BC-DIM network was used that had six partitions. Input to the first four
partitions represented, using Gaussian population codes, the velocities of the two objects before and after collision.
The fifth partition was used to encode the coefficients of restitution, and the sixth partition was used to encode
relative mass of the two objects. The network was wired up so that each prediction neuron represented a different
combination of velocities and coefficient of restitution and had a weight to the sixth partition to represent the true
relative mass for that combination of velocities. A total of 525 prediction neurons were used to cover the range of
possible pre- and post-collision velocities and coefficients of restitution used in the experiments.

The appropriate weight for the sixth partition was determined using the equation for the conservation of mo-
mentum. Specifically, if u represents initial velocity, and v represents final velocity, then if (vB−uB) > (uA−vA)
there was a strong weight to one element of the sixth partition that represented object A being heaviest. If
(vB − uB) = (uA − vA) then there was a strong weight to a second element of the sixth partition that repre-
sented the masses being equal, and if (vB − uB) < (uA − vA) then the there was a strong weight to a third
element of the sixth partition that represented the mass of object B being larger. The three elements of the last
partition thus act to represent class labels, exactly as in the models presented in section 3.1. In each simulation, ve-
locity information was provided as input to the first four partitions of the network, and the decision about relative
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Figure 14: Reasoning about collision physics. Top row shows psychophysical data, bottom row shows
corresponding simulation results. In each sub-figure, the coefficient of restitution (ε) used in the experi-
ment is indicated by the line marker shape: diamond markers for ε=0.9, square markers for ε=0.5, circle
markers for ε=0.1. (a) Todd and Warren (1982, expt. 1). (b) Todd and Warren (1982, expt. 2) moving
condition. (c) Todd and Warren (1982, expt. 2) stationary condition.

mass was read out from the reconstruction neuron responses in the sixth partition. The probability that object A
was chosen as being the heavier was calculated by taking the squared response of the first reconstruction neuron in
the sixth partition and dividing this by the sum of the squared responses of all three sixth partition reconstruction
neurons.

Figure 14a shows results for an experiment in which prior to the collision both objects moved towards each
other (Todd and Warren, 1982, expt. 1). The initial velocities were varied but the speed with which the objects
approached each other remained constant (i.e., as the initial speed of object A increased, the initial speed of object
B was decreased in proportion). As with the human subjects, the model is accurate at determining the relative
masses of the objects, but with a decline in performance as the coefficient of restitution is reduced. In Todd and
Warren (1982, expt. 2) a larger range of relative masses was used. In one condition (the moving condition), as
in expt. 1, both objects initially moved towards each other, however, the velocities were fixed. In this condition,
the simulation results are in close agreement with the psychophysical results, as shown in Fig. 14b. In the second
condition (the stationary condition) one object was initially stationary and the other object had a fixed initial speed.
The simulation results for this condition are not such a good fit to the data (Fig. 14c), but they do reflect some key
features of the psychophysical results. Specifically, there is a bias for choosing object A as the heavier one (the
curves cross the dashed horizontal line slightly to the left of centre), and also the results for the lowest coefficient
of restitution are flatter than the others. The fit of the PC/BC-DIM model is very similar to that of the “noisy
Newton” model proposed in Sanborn et al. (2013).

Runeson and Vedeler (1993, expt. 2) performed similar collision experiments but, in one condition, both
objects were invisible prior to the collision. Hence, in this condition the initial velocities of the objects were
unavailable to (or “occluded” from) the observers. To simulate this result with PC/BC-DIM, the input was set
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Figure 15: Reasoning about collision physics with occluded velocities. Top row shows psychophysical
data, bottom row shows corresponding simulation results. In each sub-figure, the coefficient of restitu-
tion (ε) used in the experiment is indicated by the line marker shape: plus markers for ε=1, diamond
markers for ε=0.9, circle markers for ε=0.1. (a) Runeson and Vedeler (1993, expt. 2). The solid line indi-
cates results for when both pre- and post-collision velocities are visible, the dashed line indicates results
for when only post-collision velocities are visible. (b-d) Experiment shown in Sanborn (2014, Fig. 3):
(b) both pre- and post-collision velocities are visible, (c) object B invisible post-collision, (d) object A
invisible post-collision.

equal to zero for those partitions of the input vector that represented the initial velocities. As with the human
subjects, the model is strongly biased to select object A as the heavier one when the initial velocities are occluded
(Fig. 15a).

Rather than occluding the initial velocities, Sanborn (2014) ran experiments in which one or other of the
post-collision velocities were occluded. One object was initially stationary (as in the stationary condition of
Todd and Warren, 1982, expt. 2), and the initial velocity of the other object varied. Hence, when there was no
occlusion (Fig. 15b) the results were similar to those shown in Fig. 14c. Figure 15c shows results for when the
post-collision velocity of the initially stationary object (object B) was occluded, and figure 15d shows results
for when the post-collision velocity of the initially moving object (object A) was occluded. To simulate these
experiments with PC/BC-DIM, the input corresponding to the occluded velocity was not set to zero (in contrast to
when simulating the experiments with occluded initial velocities). Instead, the occluded final velocities were set
equal to the pre-collision velocities, but the strength of these inputs was made weaker (20% of the amplitude of the
pre-collision inputs). The model thus makes the assumption that when an object disappears its velocity is weakly
perceived to remain unchanged. For both the human subjects and the PC/BC-DIM model, when the collision
has a low coefficient of restitution the disappearance of either object post-collision has relatively little effect on
the judgement of relative mass. In contrast, for collisions with a high coefficient of restitution the two occlusion
conditions have more significant, and opposite, effects on the perceived masses of the objects: occluding object B
increases the likelihood that object B is perceived as being more massive, whereas occluding object A increases
the likelihood that object A is perceived as being heavier.

The method of setting the weights in the PC/BC-DIM network has encoded knowledge about possible col-
lisions in the prediction neuron RFs. In all the above experiments, the velocity information causes a subset of
prediction neurons to become active. These active prediction neurons are those with RFs most consistent with the
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Figure 16: Predicted post-collision velocities as a function of the relative masses of the two objects. Top
row shows the expected velocities calculated using the equation for the conservation of momentum, the
bottom row shows the corresponding estimates of velocity found by the PC/BC-DIM network. In each
sub-figure, the coefficient of restitution (ε) used in the experiment is indicated by the line marker shape:
diamond markers for ε=0.9, square markers for ε=0.5, circle markers for ε=0.1. Closed markers are used
to plot the post-collision velocity of object A and open markers are used for object B. (a) The initial
velocity of object A is 3.18, and the initial velocity of object B is -3.18; as in Todd and Warren (1982,
expt. 2 moving condition), and figure 14b. (b) The initial velocity of object A is 3.18, and object B is
initially stationary; as in Todd and Warren (1982, expt. 2 stationary condition), and figure 14c.

given velocities. In many cases a majority of the active prediction neurons will connect to the same reconstruction
neuron in the last partition, and hence, cause the network to have a strong belief that object A is more massive, or
that object B is more massive, or that they have the same weight. In other conditions, the combination of velocities
may be consistent with possible collisions in which object A is heavier as well as collisions in which object B is
heavier. In these cases, the active prediction neurons will cause activation of the last partition of the reconstruction
neurons that is more ambiguous, but still lead to little preference for choosing object A as the heavier one.

In the preceding experiments, information about velocity has been presented to the PC/BC-DIM network,
and an estimate of the relative mass of the two objects has been read out from the last partition of reconstruction
neurons. It is also possible to input the relative mass and the coefficient of restitution together with some velocities
and have the network estimate the missing velocities. For example, it is possible to input the initial velocities of
the two objects, their relative masses and the coefficient of restitution2 and have the PC/BC-DIM network predict
the final velocities of the objects after collision. Results for such an experiment are shown in figure 16. It can be
seen that the PC/BC-DIM network produces reasonable estimates of the post-collision velocities of both objects,
however, these estimates tend to be closer to those that would have been produced by equally weighted objects
i.e., the network underestimate the influence of differences in mass on the final velocity.

2The network can estimate the coefficient of restitution from observing a previous colllision between the same objects.
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4 Discussion
Predictive coding models are often implemented as neural networks (e.g., De Meyer and Spratling, 2011; Jehee
and Ballard, 2009; Jehee et al., 2006; Rao and Ballard, 1999; Spratling, 2010; Wacongne et al., 2012). However,
they are specific neural network architectures that are constrained in numerous ways compared to neural networks
in general. For example, in the PC/BC-DIM model used here, the mathematical functions performed by the
neurons are defined (equations 1– 3) to implement predictive coding and can not be changed in order to match
the behaviour of the network to the data being simulated. Similarly, all the inputs to a PC/BC-DIM network are
treated identically, and it is not possible to assign different roles to different inputs (for example, to define some
inputs as being modultory or inhibitory) in order to perform different tasks. The connectivity between the neurons
is also prescribed so that it is not possible to add additional connections (for example, from the reconstruction
neurons to the prediction neurons, or between different neurons in the prediction neuron population, or between
neurons in the reconstruction population) in order to reproduce the desired behaviours. Furthermore, the neurons
are all constrained to have non-negative firing rates and the connections are all defined to have non-negative
synaptic weights. While it is well known that a neural network can be defined to simulate any data or perform any
computation, the constraints placed on PC/BC-DIM mean that it is not certain that it has the flexibility to simulate
any behaviour. The aim of this work was, therefore, to demonstrate that predictive coding (at least the PC/BC-DIM
version of predictive coding) is capable of simulating a range of cognitive abilities, and hence, to provide more
concrete support for previous speculation about the possible role of of predictive coding in cognition.

The simulations described here necessarily cover only a small subset of abilities that are relevant to cognition,
but they were chosen to be illustrative and to cover a range of behaviours that, on the surface, appear to have
little in common. A single modelling method, PC/BC-DIM, was shown to be able to account for all these diverse
cognitive abilities. Added to this, PC/BC-DIM has previously been shown to account for a very large range of
perceptual abilities and the neural mechanisms that underlie them (De Meyer and Spratling, 2011, 2013; Spratling,
2008a, 2010, 2011, 2012a,b,c, 2013b, 2014c). As PC/BC-DIM is a particular implementation of predictive coding
(Clark, 2013; Huang and Rao, 2011; Rao and Ballard, 1999; Spratling, 2014b) the current results suggest that a
single computational principle, the predictive coding principle, could underlie functions ranging from low-level
perceptual processes to high-level cognitive abilities. What other phenomena can, or can not, be simulated using
PC/BC-DIM, and hence, the limits of predictive coding as an explanation of brain function remain to be explored
in future work.

Here, it has been shown, in principle, that a single mechanism can account for a wide range of cognitive
phenomena. However, the models presented here have been hard-wired. This leaves unanswered the arguably
more difficult question of how the brain is wired-up to perform these tasks? There are at least two issues here.
Firstly, given a set of inputs to a PC/BC-DIM network, how could appropriate synaptic weights be learnt to
perform the task? For example, in a classification task, given input vectors that represent the stimulus features and
the associated class labels for a number of exemplars, how could appropriate synaptic weights be learnt in order
to perform classification? Previous work that has addressed learning in PC/BC-DIM networks (De Meyer and
Spratling, 2011; Spratling, 2012c; Spratling et al., 2009), and other work that has derived biologically-plausible
learning rules from formal, information theoretic, principles in a closely related model (Kay and Phillips, 1997,
2011), provide grounds for optimism concerning the possibility of solving the first issue, but additional work is
required to show that learning could be used to wire-up networks like those described in this article. Furthermore,
as tasks become more complex and the corresponding networks become larger, it becomes impractical to hand-
design the connection weights (as is also the case for deep neural network architectures). Solving the first issue is
therefore important to enable the simulation of more complex tasks.

The second issue, is how do the inputs get to right places in the first place? For example, in a classification task,
how could the inputs representing the appropriate stimulus features and the class labels all get routed to the input
of a single PC/BC-DIM network? As a second example, consider the task proposed by (Salinas, 2004b) for which
the simulation results are shown in Fig. 13. Here representations of fixation point colour, stimulus orientation and
saccade position all need to be brought together so that the appropriate context-dependent mapping can be learnt.
Such stimulus-task mappings are entirely arbitrary, for example, we could define a task in which the context was
defined by shape (rather than colour) and the stimulus was defined by a sound (rather than the visual appearance)
and where the appropriate response was to press a button (rather than perform a saccade). How such an arbitrary
array of sensory-motor representations can be brought together to allow rapid learning of the task is a hard question
to answer. This is another question that needs to be addressed by future work. To help address this question, a
single PC/BC-DIM network (Fig. 1a) can form a building block that can be plugged together with other PC/BC-
DIM networks (one simple example is shown in Fig 7) to create large-scale PC/BC-DIM networks that can be
used both to simulate systems-level models of cortex and be used to explore learning and self-organisation in such
networks.
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PC/BC-DIM is an abstract, mathematical, model that aims to explore the computational, rather than the bio-
physiological, mechanisms which underlie cortical function (Spratling, 2011). However, it is possible to speculate
about the potential biological implementation of the model. There are many different ways in which the simple
circuitry of PC/BC-DIM model could potentially be implemented in the much more complex circuitry of the cortex
(Spratling, 2008b, 2011, 2012b, 2013a). However, the most straightforward explanation would equate prediction
neurons with the sub-population of cortical pyramidal cells (mostly found in cortical layers II and III) whose axon
projections form the feedforward connections between cortical regions, and to equate reconstruction neurons with
the sub-population of cortical pyramidal cells (mostly found in cortical layer VI) whose axon projections form
the feedback connections between cortical regions. This is consistent with the connectivity between PC/BC-
DIM processing stages illustrated in figure 7, and with previous work showing that the behaviour of prediction
neurons can explain the response properties of cortical pyramidal cells (De Meyer and Spratling, 2011; Spratling,
2010, 2011, 2012a). It is possible to equate the error-detecting neurons with the spiny-stellate cells in cortical
layer IV, which are the major targets of cortical feedforward connections and sensory inputs. However, it is also
possible that the error-detection is performed in the dendrites of the superficial layer pyramidal cells (Spratling and
Johnson, 2003) rather than in a separate neural population; or via synaptic depression (Rothman et al., 2009) which
can produce the specific form of divisive inhibition required by the error-neurons in the PC/BC-DIM model; or that
the error neurons reside in the thalamus, individual regions of which receive connections from layer VI pyramidal
cells (putative reconstruction neurons) as well as either sensory input or input from lower cortical regions.
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