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sion in cortical area V1

M. W. Spratling
King’s College London, Department of Informatics and Division of Engineering, London. UK.

Abstract

Cross-orientation suppression and surround suppression have been extensively studied in primary visual cor-
tex (V1). These two forms of suppression have some distinct properties which has led to the suggestion that
they are generated by different underlying mechanisms. Furthermore, it has been suggested that mechanisms
other than intracortical inhibition may be central to both forms of suppression. A simple computational model
(PC/BC), in which intracortical inhibition is fundamental, is shown to simulate the distinct properties of cross-
orientation and surround suppression. The same model has previously been shown to account for a large range
of V1 response properties including orientation-tuning, spatial and temporal frequency tuning, facilitation and
inhibition by flankers and textured surrounds as well as a range of other experimental results on cross-orientation
suppression and surround suppression. The current results thus provide additional support for the PC/BC model
of V1 and for the proposal that the diverse range of response properties observed in V1 neurons have a single
computational explanation. Furthermore, these results demonstrate that current neurophysiological evidence is
insufficient to discount intracortical inhibition as a central mechanism underlying both forms of suppression.

1 Introduction
Inhibitory mechanisms intrinsic to primary visual cortex (V1) were originally believed to be responsible for both
cross-orientation suppression (Bonds, 1989; DeAngelis et al., 1992; Morrone et al., 1982) and surround suppres-
sion (DeAngelis et al., 1994; Fitzpatrick, 2000; Knierim and van Essen, 1992). Subsequent work has demonstrated
that these two forms of suppression exhibit a number of distinct properties, and hence, may result from different
underlying mechanisms. A range of alternative mechanisms have been proposed for each type of suppression.
Specifically, it has been suggested that cross-orientation suppression might arise from attenuation of the feedfor-
ward input due to depression of the thalmacortical synapses (Carandini et al., 2002; Freeman et al., 2002) or a
reduction in feedforward drive to cortical cells caused by contrast saturation in lateral geniculate nucleus (LGN)
cells (Li et al., 2006; Priebe and Ferster, 2006). It has also been suggested that surround suppression might be
mediated by inhibitory mechanisms intrinsic to V1 but driven by feedback from extrastriate cortex (Angelucci
et al., 2002; Bair et al., 2003; Cavanaugh et al., 2002; Sullivan and de Sa, 2006) or might be due to surround
suppression in LGN (Naito et al., 2007; Ozeki et al., 2004; Webb et al., 2005).

A previous publication (Spratling, 2010) has demonstrated that a simple functional model (PC/BC), derived
from the predictive coding and biased-competition theories of cortical function, can simulate a very wide range
of V1 response properties including cross-orientation and surround suppression. This article extends that work
by showing that the PC/BC model of V1 can also simulate the distinct behaviours exhibited by these two forms
of suppression. The PC/BC model includes two mechanisms that can give rise to suppression: a mechanism of
intracortical inhibition employing divisive normalisation of the inputs to a population of competing neurons; and
saturation of the LGN responses to high contrast stimuli. The latter mechanism was proposed by Li et al. (2006);
Priebe and Ferster (2006) to account for cross-orientation suppression. It is found that in the PC/BC model
surround suppression is generated by the mechanism of cortical inhibition, while cross-orientation suppression is
generated by a combination of cortical inhibition and LGN response saturation. Hence, the PC/BC model predicts
that intracortical inhibition is essential for both forms of suppression, contrary to suggestions that completely
separate mechanisms are required and to claims that cortical inhibition is not involved.

2 Methods

2.1 The LGN Model
The input to the PC/BC model of V1, described below, was an input image (I) pre-processed by convolution
with a Laplacian-of-Gaussian (LoG) filter (l) with standard deviation equal to one. This is virtually identical to
the Difference-of-Gaussians (DoG) filter that has traditionally been used to model circular receptive fields (RFs)
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Figure 1: The PC/BC model of V1. The input image I is preprocessed by convolution with a circular-
symmetric on-centre/off-surround kernel (to generate the input to the ON channel of the V1 model), and
a circular-symmetric off-centre/on-surround kernel (to generate the input to the OFF channel of the V1
model). The prediction neurons (labelled Y) represent V1 simple cells. Responses from these neurons
were recorded during most experiments. These responses were generated by convolving the outputs of
the (ON and OFF channels of the) error-detecting neurons (labelled E) with (the ON and OFF channels
of) a number of kernels representing V1 RFs. This convolution process effectively reproduces the same
RFs at every pixel location in the image. The responses of the error-detecting neurons are influenced
by divisive feedback from the prediction neurons, which is also calculated by convolving the prediction
neuron outputs with the weight kernels. Complex cell responses (labelled D), which were also recorded
during some experiments, were calculated by taking the maximum response of a small population of
simple cells representing a single orientation at a particular spatial location.

in LGN and retina. The output from this filter was subject to a multiplicative gain (the strength of which was
determined by parameter κ) followed by a saturating non-linearity, such that:

X = tanh {κ(I ∗ l)} (1)

The positive and rectified negative responses were separated into two images XON and XOFF simulating the
outputs of cells in retina and LGN with circular-symmetric on-centre/off-surround and off-centre/on-surround RFs
respectively. This pre-processing is illustrated on the left of Figure 1. Consistent with neurophysiological data
(Reid and Alonso, 1995), the ON-centre model LGN neurons indirectly provided input to the ON sub-field of the
model V1 simple cells, while the OFF-centre model LGN neurons indirectly provided input to the OFF sub-field
of the model V1 neurons (see next section).

To explore the effects of the different mechanisms of suppression, in some experiments the suppression of the
LGN responses was turned off. In this case equation 1 was replaced by:

X = κ(I ∗ l) (2)

A value of κ = 10 was used in all experiments reported here.

2.2 The V1 Model
The PC/BC model of V1 is illustrated in Figure 1 and described by the following equations:

Eo = Xo �

(
ε2 +

p∑
k=1

(ŵok ∗Yk)

)
(3)

Yk ← (ε1 + Yk)⊗
∑
o

(wok ?Eo) (4)

Where o ∈ [ON,OFF ], Xo is a 2-dimensional array, equal in size to the input image, that represents the input to
the model of V1, Eo is a 2-dimensional array, equal in size to the input image, that represents the error-detecting
neuron responses, and Yk is a 2-dimensional array, equal in size to the input image, that represent the prediction
neuron responses, wok is a 2-dimensional kernel representing the synaptic weights for a particular class (k) of
neuron normalised so that sum of all the weights was equal to ψ, ŵok is a 2-dimensional kernel representing the
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same synaptic weights as wok but normalised so that the maximum value was equal to ψ, p is the total number
of kernels, ε1, ε2, and ψ are parameters, � and ⊗ indicate element-wise division and multiplication respectively,
? represents cross-correlation (which is equivalent to convolution without the kernel being rotated 180o), and ∗
represents convolution (which is equivalent to cross-correlation with a kernel rotated by 180o). Parameter values
ψ = 5000, ε1 = 0.0001 and ε2 = 250 were used in the simulations reported in this article.

Equation 4 describes the updating of the prediction neuron activations. The response of each prediction neuron
is a function of its activation at the previous iteration and a weighted sum of afferent inputs from the error-detecting
neurons. Equation 3 describes the calculation of the neural activity for each population of error-detecting neurons.
These values are a function of the activity of the input to V1 divisively modulated by a weighted sum of the
outputs of the prediction neurons in V1. The activation of the error-detecting neurons can be interpreted in two
ways. Firstly, E can be considered to represent the residual error between the input and the reconstruction of
the input generated by the prediction neurons. The values of E indicate the degree of mismatch between the
top-down reconstruction of the input and the actual input (assuming ε2 is sufficiently small to be negligible).
When a value within E is greater than 1

ψ it indicates that a particular element of the input is under-represented
in the reconstruction, a value of less than 1

ψ indicates that a particular element of the input is over-represented
in the reconstruction, and a value of 1

ψ indicates that the top-down reconstruction perfectly predicts the bottom-
up stimulation. A second interpretation is that E represents the inhibited inputs to a population of competing
prediction neurons. Each prediction neuron modulates its own inputs, which helps stabilise the response of the
prediction neurons, since a strongly (or weakly) active prediction neuron will suppress (magnify) its inputs, and
hence, reduce (enhance) its own response. Prediction neurons that share inputs (i.e., that have overlapping RFs)
will also modulate each other’s inputs. This generates a form of competition between the prediction neurons,
such that each neuron effectively tries to block other prediction neurons from responding to the inputs which it
represents. This mechanism of competition is called Divisive Input Modulation (DIM) (Spratling et al., 2009).

The RF of a simple cell in primary visual cortex can be accurately modelled by a 2-dimensional Gabor function
(Daugman, 1980, 1988; Jones and Palmer, 1987; Lee, 1996; Marcelja, 1980). Hence, the Gabor function was used
to define the weights of each kernel wok. A definition of a Gabor function of the form proposed by Lee (1996)
was used, which includes a term to remove the D.C. response of the filter:

g(σ, γ, λ, φ, θ) = exp

{
−x

′2 + (y′/γ)2

2σ2

}[
cos
{

2πy′

λ
+ φ

}
− cos(φ) exp

{
−
(πσ
λ

)2
}]

Where σ = 4 (pixels) was a constant that defined the standard deviation of the Gaussian envelope (which deter-
mines the spatial extent of the RF), γ = 1√

2
was a constant that defined the aspect ratio of Gaussian envelope

(which determines the ellipticity of the RF), λ = 6 (pixels) was a constant that defined the wavelength of the
sinusoid, φ was the phase of the sinusoid, and x′ = x cos(θ) + y sin(θ) and y′ = −x sin(θ) + y cos(θ) where θ
defined the orientation of the RF. A family of 32 Gabor functions (Fig. 2a) with eight orientations (θ = 0 to 157.5o

in steps of 22.5o) and four phases (φ = 0o, 90o, 180o, and 270o) were used to define the RFs of the neurons in
the model. The weights were separated into distinct ON and OFF channels which represented the positive and
negative parts of the Gabor function using separate sets of non-negative weights (Fig. 2b). The cross-correlation
and convolution performed in Equations 3 and 4 mean that neurons with these RFs are reproduced at every pixel
location in the image, and consequently, that the size of the population of V1 cells simulated varies with image
size. For an a× b pixel image, the model simulates the response of 32ab prediction neurons.

The responses of complex cells (D) were simulated by making the complex cell activation equal to the maxi-
mum activity of all prediction neurons (which model simple cells) with the same orientation preference in a local
neighbourhood. Specifically, the maximum activation was found across the four phases and in a 3-by-3 pixel spa-
tial neighbourhood. This model of complex cells is similar to that employed in the HMAX model (Riesenhuber
and Poggio, 1999) which is in turn an idealised version of the hierarchical model proposed by Hubel and Wiesel
(1962). There is some neurophysiological support for this model (Gawne and Martin, 2002; Kouh and Poggio,
2008; Lampl et al., 2004).

Complex cells in the model do not provide feedback to either the error-detecting neurons or the simple
cells/prediction neurons. It would not be appropriate for the D population to contribute to the top-down input
to the E population. From Y to D the sensory input is recoded to deliberately remove information about the exact
location and phase of the stimulus. The response of the complex cells would therefore not contribute accurate
information to the top-down reconstruction of the input that is required by the error-detecting neurons. Reciprocal
connections from the D population to the Y population may be of value, particularly if feedback connections from
subsequent processing stages target the complex cells. Connections from D to Y could therefore transmit that
information to modulate the predictions of the causes of the sensory input represented by the prediction neurons.
However, since this article only considers a single cortical region in isolation these connections have not been
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Figure 2: The synaptic weights used in the PC/BC model of V1. (a) A family of 32 Gabor functions
(eight orientation and four phases) used to define the RFs of the neurons in the model. (b) The actual
synaptic weights of the model neurons were created by separating the positive and negative parts of the
Gabor function into separate (non-negative) ON and OFF weights (shown for the bottom-right Gabor
function only). Each Gabor kernel is 21 × 21 pixels, and hence, each prediction neuron in the model
receives 21× 21× 2 = 882 synaptic weights.

included here. Hence, the existing model of simple cell response properties is unaffected by the addition of the
complex cell population and all the previous results for this model (Spratling, 2010) are still valid.

To disentangle the effects of competition between the neurons in the PC/BC model of V1 from the effects of
suppression caused by the saturation of the neurons in the LGN model, experiments were also performed with a
linear model of V1 simple cells. In this case Equations 3 and 4 were replaced by:

Yk = ε1
∑
o

wok ?Xo (5)

This represents the output produced by a set of linear filters when applied to the image. This linear response is
constant over time assuming that the input image does not change.

2.3 Experimental Procedure
At the start of each simulation the prediction neuron responses (Y) were initialised to zero. Then equations 3 and
4 (or equation 5) were applied recursively for a number of iterations (t). During this time the values of Y, for a
particular simple cell and/or the values of D for a particular complex cell were recorded. Results were presented
either by showing the value of response as a function of time t, or by averaging the response over t and presenting
the mean evoked response as a function of changing a property of the stimulus.

As for typical physiological experiments, the stimulus parameters other than the one being varied during the
experiment, were matched to the preferred parameters of the neuron under test (e.g., the stimulus was centred over
the RF, at the recorded neuron’s preferred orientation, spatial frequency, temporal frequency, etc.). Furthermore,
the range of grey-scale values in the input image I were set equal to the fractional Michelson contrast used for
the presentation of stimuli in the corresponding physiological experiment, if this value was reported. In each
experiment where a simple cell response was recorded, this cell had identical tuning properties to those shown in
(Spratling, 2010, Fig. 5). In each experiment the recorded neuron had an orientation preference of 0o. A grating
at 0o is shown as vertical in the icons used in the figures in section 3 (however, note that a grating at 0o is shown
as horizontal in (Spratling, 2010)).

In some experiments the image remained constant throughout the recording time, in other experiments the
image changed (“transitioned”) to a second image at a particular iteration. These “constant” images presented
throughout the recording, or before and after the transition, were either static sinusoidal gratings or drifting sinu-
soidal gratings. For a static image the elements of I , and hence, the values of XON and XOFF remained constant
during the presentation of the static image. For a drifting grating the input image was changed, and new XON and
XOFF values were calculated, at each iteration of the PC/BC algorithm. The amount the input image changed
between consecutive iterations reflected the drift rate of the stimulus. This was measured in terms of cycles per
iteration, where the number of cycles refers to the phase shift between sinusoids in consecutive images.

In some experiments it was necessary to calculate the latency between a transition in the input image and the
changed response evoked in the recorded neuron. The same method was used as in the corresponding neurophys-
iological experiments (Bair et al., 2003, 2002; Smith et al., 2006), namely, the latency was measured as the time
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i.e., with both LGN sat-
uration and intracortical
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Model without
intracortical inhi-
bition
i.e., with LGN
saturation only

Model without
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Figure 3: Graphs of results are shown in the format illustrated. Each experiment was simulated three
times; once using both mechanisms of suppression, once using only intracortical inhibition, and once
using only LGN saturation. Results for these three simulations are shown in plots arranged as shown
above. The main simulation results, using both forms of suppression, are surrounded by a thick line
to help them stand-out. In some cases data from a neurophysiological experiment are shown above the
corresponding simulation results. Many figures contain multiple panels, in which case each panel is
arranged as shown above.

at which the change in response first reached 5% of the maximum change. These times were linearly interpolated
between iterations of the PC/BC algorithm.

2.4 Code
Software, written in MATLAB, which implements the PC/BC model described above and performs the exper-
iments described below is available at http://www.corinet.org/mike/Code/v1_suppression_
mechanisms.zip.

3 Results
The following sections present simulations of a number of experiments performed to assess the characteristics
of suppression mechanisms affecting V1 response properties. These experiments examine features of cross-
orientation and surround suppression in terms of response latencies, the gain of the contrast-response function,
the effects of high temporal frequency suppressive stimuli, and the effects of one suppressive stimulus on another.
Each set of simulations were performed using the full model in which both mechanisms of suppression (LGN
saturation and V1 inhibition) operate. These results simulate the corresponding neurophysiological experiments.
Simulations were also performed using versions of the model in which only one or other of the two suppression
mechanisms operated. These additional simulations help to determine the contributions of each form of suppres-
sion to the overall result. The results from these different simulations are presented in plots arranged in the layout
shown in Fig. 3.

3.1 Latency of Response
Bair et al. (2003) and Smith et al. (2006) performed experiments in V1 to assess the dynamics of suppression.
They recorded the responses of cells during a change in the identity of the presented stimulus and compared this
to the response when the stimulus remained constant. Figure 4 shows results recorded from a prediction neuron
in the PC/BC model to the same stimulus transitions, and table 1 summarises the latencies found in both the
neurophysiological experiments and with the model. Note that in the model there are no transmission delays
between retina and V1, and hence, model V1 neurons can respond with very little latency. However, there is a
strong, and statistically significant, correlation between the latencies recorded in V1 and those recorded in the
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mean latency in V1 (ms) latency in model (iterations)
transition cross-orientation surround cross-orientation surround

suppression suppression suppression suppression
onset 50.0 52 2.36 2.61
offset 30.1 35 0.05 0.13
suppression 42.5 61 0.20 2.90
release 40.9 60 0.28 4.53

Table 1: The latency of response to different stimulus transitions. Data on the left show the average
latency recorded in V1 for transitions in cross-orientation suppression stimuli (taken from Smith et al.,
2006, Fig. 3), and for surround suppression stimuli (taken from Bair et al., 2003, Fig. 4). Data on the
right show the latency generated by the model for the same stimulus transitions.

model (r = 0.914, p < 0.002). The simulation results presented in this section were recorded from a model
simple cell using static stimuli. However, very similar results were generated by model complex cells in response
to drifting gratings.

When the stimulus presented to the RF of a cortical neuron changes from one that is poor at driving that
neuron, to one that is good at generating a response (an “onset” transition) the latency of the change in response is
significantly longer than for the reverse transition (an “offset” transition) where the stimulus changes from good to
poor (Bair et al., 2002; Smith et al., 2006). The model shows the same asymmetry in the latency of onset and offset
responses as shown in Figs. 4a and c. Bair et al. (2002) proposed that the longer latency for the onset response
might be due to the time taken for the cell to reach its firing threshold after stimulus onset. Although the PC/BC
model does not include a firing threshold, the longer latency response to stimulus onset has a similar cause: the
speed at which a prediction neuron’s response changes is proportional to the current activity of that neuron, due
to the feedforward drive to the neuron being multiplicatively modulated by the current response (see equation 4).
Hence, when the model neuron has low activation (e.g., before stimulus onset), it takes time for its response to
increase, whereas when it has high activation (e.g., before stimulus offset) its response can change quickly. Hence,
as shown in the insets to Figs. 4a and c, removing the saturation of the model LGN neurons has little effect on
the behaviour (upper insets), whereas removing intracortical competition (which replaces equation 4 with one in
which response is a linear function of the input) eliminates the onset delay (lower insets).

Smith et al. (2006) found that when a mask was added to the preferred stimulus of a recorded neuron (a
“suppression” transition), the latency with which cross-orientation suppression was generated was similar to the
latency of the change in response for the reverse transition where the mask was removed from the stimulus (a
“release” transition) . Hence, unlike onset and offset, suppression and release did not show any asymmetry in the
latency with which they acted. The model shows the similar behaviour as shown in Figs. 4e and g.

In both V1 and the model, the latency for suppression was shorter than the latency for onset. This is difficult
to reconcile with the idea that cross-orientation suppression is caused by intracortical inhibition from cells tuned
to the orientation of the mask. If this were the case then suppression would be expected to occur with a latency
longer than the onset time of the cells generating the suppression. Smith et al. (2006) therefore concluded that
cross-orientation suppression is a result of suppression in the feedforward drive to the recorded neuron or is due to
a fast mechanism of intracortical inhibition that is yet to be identified. The model proposes that cross-orientation
suppression results from both intracortical inhibition and saturation in LGN. The LGN saturation is fast acting
(since it affects the feedforward drive to the cortex) and gives rise to the rapid changes in response that occur when
the mask is added or removed from the stimulus, as can be seen when the model is executed without intracortical
inhibition (bottom insets to Figs. 4e and g.). The intracortical inhibition is much slower acting and the suppression
it generates is delayed after mask onset by more than the onset delay for the neurons generating the suppression
(compare the top insets for Figs. 4a and e.).

The asymmetry between onset and offset latency in V1 is also present when the stimulus driving the RF
changes in the presence of a surround (Bair et al., 2003). The model shows a similar pattern of latency (see
Figs. 4b and d) which is due to the same mechanism described above: a model neuron is slower to respond to a
change in the input when its activation is low compared to when its activation is high.

Bair et al. (2003) found that when the central grating remained constant but the orientation of the surround
grating changed from perpendicular to iso-oriented (causing greater suppression), the latency with which this
suppression was generated was greater than the onset latency. This is consistent with the suppression being due to
intracortical inhibition, since such inhibition should only occur after the response onset of those neurons activated
by the surround. The model proposes that surround suppression results from intracortical inhibition and the onset
of surround suppression does occur with a latency greater than the onset latency (Fig. 4f). Without intracortical

6



0 50 100

0

50

100

R
es

po
ns

e
Time (ms)

0 50 100

0

50

100

R
es

po
ns

e

Time (ms)

O
ns

et

−5 0 5 10 15
0

0.05

0.1

R
es

po
ns

e

Time (iterations)

(a)

−5 0 5 10 15
0

0.05

0.1

R
es

po
ns

e

Time (iterations)

(b)

0 50 100

0

50

100

R
es

po
ns

e

Time (ms)
0 50 100

0

50

100

R
es

po
ns

e

Time (ms)

O
ff

se
t

−5 0 5 10 15
0

0.05

0.1

R
es

po
ns

e

Time (iterations)

(c)

−5 0 5 10 15
0

0.05

0.1

R
es

po
ns

e

Time (iterations)

(d)

0 50 100

0

50

100

R
es

po
ns

e

Time (ms)
0 50 100

0

50

100

R
es

po
ns

e

Time (ms)

Su
pp

re
ss

io
n

−5 0 5 10 15
0

0.05

0.1

R
es

po
ns

e

Time (iterations)

(e)

−5 0 5 10 15
0

0.05

0.1

R
es

po
ns

e

Time (iterations)

(f)

0 50 100

0

50

100

R
es

po
ns

e

Time (ms)
0 50 100

0

50

100

R
es

po
ns

e

Time (ms)

R
el

ea
se

−5 0 5 10 15
0

0.05

0.1

R
es

po
ns

e

Time (iterations)

(g)

−5 0 5 10 15
0

0.05

0.1

R
es

po
ns

e

Time (iterations)

(h)

7



Figure 4: (previous page) The effect on the response of a model prediction neuron of a number of
stimulus transitions compared to the response to an unchanging stimulus. The icons at the beginning and
end of each trace illustrate the stimulus or stimuli that gave rise to that response: thin blue lines show
the response to an unchanging stimulus, think red lines show the response to the stimulus transition.
For recordings where a transition occurred, time 0 (marked by the dotted vertical line) was the last
iteration in which the initial stimulus was presented to the model, hence, time 1 was the first iteration
after the transition. Each row shows a different stimulus transition condition: onset (first row), offset
(second row), suppression (third row), and release (fourth row). The left column shows effects of stimulus
transitions designed to test the dynamics of cross-orientation suppression. The right column shows effects
of stimulus transitions designed to test the dynamics of surround suppression. The plots above each
simulation result show data from corresponding neurophysiological experiments. For the left column the
neurophysiological data is for a typical complex cell in anaesthetised primate V1 (adapted from Smith
et al., 2006, Fig. 2). For the right column the neurophysiological data is for a (different) typical complex
cell in anaesthetised primate V1 (adapted from Bair et al., 2003, Fig. 3). The smaller plots to the right of
each simulation result show the response of the model to the same stimuli when there is no saturation to
the LGN response (top) and when there is no competition between cortical neurons (bottom).

inhibition, see bottom inset to Fig. 4f, the response is very similar in both conditions, since the feedforward input
received by the neuron is almost identical in both conditions, and it is only the competition in the full model that
differentiates the response.

When the stimulus transition was reversed, so that the surround changed from iso-oriented to perpendicular
(reducing suppression) the latency of the change in response in V1 was approximately the same as the latency
for the onset of suppression (Bair et al., 2003). If surround suppression is mediated by intracortical inhibition,
then it might be expected that the latency of surround suppression would be longer than the latency of the release
from suppression. This is because the former should be due to the onset of RF driven responses in the cells gen-
erating the suppression and the latter should be due to the offset of RF driven responses in the cells generating
the suppression. Hence, suppression and release would be expected to show the same asymmetry as onset and
offset. To explain this unpredicted result Bair et al. (2003) proposed that the inhibitory inter-neurons transmitting
the suppression become active quickly in response to the onset of input from the surround, but take a longer time
to become inactive when the surround becomes inactive, effectively cancelling out the onset/offset asynchrony.
However, the current model generates release from suppression with a long latency, without the need for additional
mechanisms. The feedforward input received by the recorded neuron is almost identical in both surround orien-
tations. However, it is marginally weaker for the perpendicular surround1. The small reduction in feedforward
input has the effect of delaying the increase in response that is generated by the reduction in inhibition from the
surround.

Figure 5a shows the time course of the response of a model neuron to the onset of the preferred stimulus in
comparison with that due to the onset of a cross-orientation stimulus. As with the equivalent experiment performed
in V1 (Li et al., 2006; Smith et al., 2006), suppression is evident from the start of the response (and reaches 5%
of its maximum value after 3.1 iterations). The rapid onset of suppression is due to the saturation in the model
LGN, since when the V1 model is replaced with a linear model (bottom inset), in which the activity represents
the feedforward stimulation, it can be seen that there is rapid suppression. However, it can also be seen that the
inhibition in the V1 model also gives rise to suppression, since when the LGN model is replaced by one that does
not saturate (top inset), the mask stimulus produces a suppressed response compared to the preferred stimulus in
isolation, however, this intracortical suppression is slightly further delayed after stimulus onset (reaching 5% of
its maximum value after 3.3 iterations).

Figure 5b shows the time course of the response of a model neuron to the onset of the preferred stimulus
within a perpendicular surround in comparison with the response due to the onset of the preferred stimulus within

1The dimensions of the stimuli used in these simulations were defined using the same technique used to determine the dimensions of the
stimuli used in the corresponding physiological experiments (Bair et al., 2003). The diameter of the central grating was made equal to the
diameter of the smallest, high-contrast, optimally-oriented circular grating that generated 95% of the peak response from the recorded neuron.
This diameter was 11 pixels (see Spratling, 2010, Fig. 5b). The inner diameter of the surround was made equal to the smallest inner diameter
of an optimally oriented annular grating that produced a response indistinguishable from zero. This diameter was 15 pixels (see Spratling,
2010, Fig. 5b). There was thus a small uniformly gray gap, of width 2 pixels, between the centre and surround. However, the region of the
image from which a prediction neuron receives connections with non-zero synaptic weights has a diameter of 21 pixels. The weak inputs at the
edge of the recorded prediction neuron’s RF do not generate a response when the surround stimulus is presented in the absence of the central
stimulus, as in these conditions prediction neurons other than the recorded one are much more strongly activated by the annular stimulus and
suppress any response from the recorded neuron. However, in the presence of a central grating, the weak peripheral inputs to the recorded
prediction neuron can have an effect on its response. These peripheral inputs are more strongly stimulated by an iso-oriented, rather than a
perpendicular, surround.
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Figure 5: The response of a model prediction neuron to the onset of its preferred stimulus in the presence
and absence of a second suppressive stimulus. For (a) the suppressive stimulus is a superimposed orthog-
onal mask, for (b) the suppressive stimulus is an iso-oriented surround. The icons at the beginning and
end of each trace illustrate the stimuli that gave rise to that response: thin blue lines show response to the
onset of the preferred stimulus, think red lines show response to the onset of preferred stimulus together
with the suppressive stimulus. The dashed lines represent the difference between the two responses. Time
0 (marked by the dotted vertical line) was the last iteration in which the initial stimulus was presented to
the model, hence, time 1 was the first iteration after the transition. The plots above each simulation re-
sult show data from corresponding neurophysiological experiments. The neurophysiological data shows
the average response of a population of complex cells in anaesthetised primate V1 (adapted from Smith
et al., 2006, Fig. 4). Similar neurophysiological data to that shown in (a) was also presented in Li et al.
(2006, Fig. 2d). The smaller plots to the right of each simulation result show the response of the model
when there is no saturation to the LGN response (top) and when there is no competition between cortical
neurons (bottom).

a suppressive iso-oriented surround. As with the equivalent experiment performed in V1 (Smith et al., 2006),
suppression is only evident after a delay from the start of the response (it reaches 5% of its maximum value
after 5.7 iterations). This suppression is due entirely to the intracortical inhibition in the model. Removing this
inhibition (bottom inset) shows that no suppression occurs (on the contrary, the iso-oriented surround provides
marginally more feedforward excitation to the recorded neuron). In contrast, removing the LGN saturation from
the model (top inset), has little effect on the time course of the suppression generated, however latency is reduced
slightly so that the suppression reaches 5% of its maximum value after 4.1 iterations.

3.2 Gain of Contrast-Response Function
Another distinction between cross-orientation suppression and surround suppression is manifest in the contrast-
response functions generated by each form of suppression (Sengpiel et al., 1998). If the mean evoked response is
plotted as a function of the contrast of the recorded neuron’s preferred grating, then cross-orientation suppression
(generated by a fixed contrast orthogonal mask) gives rise to a rightward shift in this contrast-response function;
it produces contrast gain (Sengpiel et al., 1998). Whereas surround suppression (generated by a fixed contrast
iso-oriented surround) reduces the magnitude of the response by a constant scale factor; it produces response gain
(Cavanaugh et al., 2002; Sengpiel et al., 1998). Consistent with these neurophysiological observations, the PC/BC
model also produces contrast gain for cross-orientation suppression and response gain for surround suppression,
see Fig. 6. The simulation results presented in this section were recorded from a model simple cell using static or
slowly drifting gratings. Results for a model complex cell in response to fast drifting gratings are presented in the
bottom row of Fig. 7.

For cross-orientation suppression, when the test grating is in phase with the RF of the recorded neuron and
is presented at high contrast, the addition of the mask reduces the feedforward drive to the recorded model V1
neuron. This can be seen when the intracortical inhibition is removed from the model and so LGN saturation
operates in isolation, see the solid lines in the bottom inset to Fig. 6a. At locations where the mask decreases
the contrast of the input, the LGN response is reduced. Whereas, at locations where the mask increases the
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Figure 6: Contrast response functions for (left column) cross-orientation suppression, and (right col-
umn) surround suppression. In each plot solid markers show the response generated by the preferred
grating presented in isolation at various contrasts. The open markers show the response for various con-
trasts of the preferred grating in the presence of (left) a superimposed orthogonal mask grating at 40%
contrast, (right) an iso-oriented annular surround grating at 40% contrast. (a) and (b) show responses
(averaged over 10 iterations) to static gratings: solid lines for when the preferred grating is in phase
with the recorded neuron’s RF, dashed lines for when the preferred grating is 180o out of phase with
the recorded neuron’s RF. (c) and (d) show responses (averaged over 180 iterations) to gratings drift-
ing at 1

90 cycles/iteration. The smaller plots to the right of each graph show the response of the model
when there is no saturation to the LGN response (top) and when there is no competition between cortical
neurons (bottom). The plots above the simulation results show data from corresponding neurophysio-
logical experiments. For cross-orientation suppression (left column) the neurophysiological data is the
average response of a population of 48 cells in anaesthetised cat V1 (adapted from Sengpiel et al., 1998,
Fig. 3). For surround suppression (right column) the neurophysiological data is the average response of
a population of 25 cells in anaesthetised cat V1 (adapted from Sengpiel et al., 1998, Fig. 5a).
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contrast of the input, the LGN response increases. However, this increase is reduced due to saturation, and hence,
does not balance the decreases. Therefore, the overall response, and hence, the feedforward drive delivered to the
recorded V1 neuron, is reduced. This behaviour is consistent with the explanation for cross-orientation suppression
proposed by Priebe and Ferster (2006). However, LGN saturation alone is insufficient to account for the full range
of neurophysiological data. Firstly, when the test grating is presented at low contrast the addition of the mask
increases the feedforward drive to the recorded model V1 neuron. At locations where the mask decreases the
contrast of the input, the LGN response which is already very weak can only be reduced slightly until it reaches
zero. Whereas, at locations where the mask increases the contrast of the input, the LGN response increases
markedly. The net result is a strong increase in the feedforward drive delivered to the recorded V1 neuron. A
second reason why LGN saturation does not provide a complete account of cross-orientation suppression is that
when the test grating is out-of-phase with the RF of the recorded neuron, the input from the LGN cells is weak
at all contrasts. The addition of the mask increases the feedforward drive to the recorded model V1 neuron (see
the dashed lines in the bottom inset to Fig. 6a) for the same reason that it increases drive for a low contrast,
in-phase, test grating. The increase in input from LGN caused by a mask when the test grating is out-of-phase
balances any reduction in the input from LGN caused when the test grating is in-phase and at high contrast.
Hence, if the average response is measured to drifting gratings (as is typically the case for neurophysiological
experiments), LGN suppression has no net contribution to cross-orientation suppression (see the bottom inset to
Fig. 6c). Intracortical inhibition, of the type proposed by the PC/BC model, suppresses response to the mask when
the test grating is at low contrast or is out-of-phase with the RF (see top insets to Fig. 6a and c). This enables the
full model to show contrast gain of the contrast-response function, as illustrated in Fig. 6c.

For surround suppression, the presence of the iso-oriented surround gives rise to an approximately constant
increase in feedforward drive to the recorded model V1 neuron at all contrasts. This can be seen when the
intracortical inhibition is removed from the model, see bottom inset to Fig. 6b. This is due to the edges of the
recorded neuron’s RF overlapping with the surround, and hence, receiving weak input from the surround. The
suppression in the full model is thus due entirely to intracortical inhibition. When this mechanisms operates in
isolation (top inset to Fig. 6b), it can be seen that there is strong suppression at all contrasts. This is due to neurons
that are activated by the surround competing with the recorded neuron to represent the stimulus. Performing this
experiment with drifting gratings produces the same pattern of results (Fig. 6d), however, the absolute strength of
the response is significantly reduced due to the drifting central grating only matching the recorded neuron’s RF
part of the time, and hence, producing a weaker temporally averaged response.

3.3 High Temporal Frequency Suppressive Stimuli
A grating presented at high temporal frequency generates a weak response in individual V1 cells (Freeman et al.,
2002). However, high temporal frequency gratings produce strong suppression in experiments on both cross-
orientation and surround suppression (Durand et al., 2007; Freeman et al., 2002). In light of these results, it
has been claimed that cross-orientation suppression can not be due to intracortical inhibition, since if it were it
should disappear when the mask is presented at temporal frequencies in excess of those that produce a response
in neurons tuned to the orientation of the mask (Carandini et al., 2002; Freeman et al., 2002). Alternatively, it has
been claimed that surround suppression could be entirely due to intracortical inhibition if those neurons generating
the suppression respond to higher temporal frequencies than is typical for neurons measured in V1 (Durand et al.,
2007). The current model demonstrates that neither of these claims are necessarily true since cortical inhibition
could remain strong at high temporal frequencies due to it being generated by many weakly active cells rather than
a few strongly active ones.

Increasing the temporal frequency of a drifting grating reduced the response of a neuron in the model in a
similar manner to that observed for neurons in V1. This was true for both a model simple cell (Fig. 7a) and for a
model complex cell (Fig. 7d). In the model this effect is due to a fast moving grating only matching the recorded
prediction neuron’s RF part of the time, and hence, producing a weaker temporally-averaged response. A fast
moving grating also activates many other prediction neurons (since the stimulus matches different neuron’s RFs
at different times), and hence, there is increased competition further suppressing the recorded neuron’s response.
In effect the response to the stimulus become distributed across many prediction neurons and the total activity
across the local population of prediction neurons remained approximately constant with temporal frequency (inset
to Fig. 7a).

Strong suppression resulting from high temporal frequency gratings has been demonstrated in V1 by measur-
ing contrast response functions, like those presented in Section 3.2, using suppressive gratings drifting at various
temporal frequencies (Durand et al., 2007; Freeman et al., 2002). Simulations of these experiments are shown in
Fig. 7.

For a model simple cell, cross-orientation suppression becomes gradually less effective as the temporal fre-
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quency of the mask increases (Fig. 7b). The failure of suppression is due to the strong response of the recorded
prediction neuron to the mask when the preferred grating is out-of-phase with the neuron’s RF. At low mask
frequencies this response is suppressed by intracortical inhibition (see Fig. 6c). However, intracortical inhibition
takes several iterations to become significant (see section 3.1), and hence, at high mask frequencies intracorti-
cal suppression does not have time to act. In contrast, for a model complex cell the preferred grating is never
out-of-phase with the neuron’s RF, and hence, cross-orientation suppression remains strong at all mask temporal
frequencies (Fig. 7e). Essentially, the model complex cell responds only to model simple cells for which the
preferred grating is in-phase. For such cells, LGN response saturation is effective at reducing the feedforward
activation received by the simple cell at high contrast (bottom inset to Fig. 6a), and in turn, the complex cell (bot-
tom inset to Fig. 7e). At low contrasts, the intracortical inhibition received from the local population of prediction
neurons is sufficiently strong to suppress activation to the mask.

For a model simple cell, surround suppression with a high temporal frequency surround (Fig. 7c) is weaker
than for a low temporal frequency surround (Fig. 6d). For the result presented in Fig. 6d the centre and surround
drifted at the same rate, and hence, were always in-phase. For the result presented in Fig. 7c the surround drifted
at a different rate than the centre and was, hence, out-of-phase with the centre part of the time. Out-of-phase
surrounds generate much weaker suppression in the model (Spratling, 2010, Fig. 10f) and in cortex (Xu et al.,
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Figure 7: (previous page) Effects of stimulus temporal frequency. Left column shows response as a
function of grating temporal frequency. The inset to (a) shows the response summed over all prediction
neurons within ±5 pixels of the neuron recorded in the main figure. Middle column shows contrast
response functions for cross-orientation suppression with a superimposed orthogonal mask grating at
40% contrast. Right column shows contrast response functions for surround suppression with a iso-
oriented annular surround grating at 50% contrast. (a), (b) and (c) show responses for model simple cells.
(d), (e) and (f) show responses for model complex cells. In the middle and right columns, solid markers
show the response generated by the preferred grating presented in isolation at various contrasts. The open
markers show the response for various contrasts of the preferred grating in the presence of the suppressive
grating. The thickness of each line corresponds to the temporal frequency of the suppressive grating:
0.05, (thickest) 0.1, 0.2, 0.5 (thinnest) cycles/iteration in the simulations. In several plots the curves
overlap for suppressive gratings at different frequencies. The preferred grating was shown at a temporal
frequency of 1

90 cycles/iteration and responses were averaged over 180 iterations. The smaller plots to
the right of each graph in (b), (c), (e), and (f) show the response of the model when there is no saturation
to the LGN response (top) and when there is no competition between cortical neurons (bottom). The
plots above the simulation results show data from corresponding neurophysiological experiments. For
temporal frequency tuning (left column) the neurophysiological data is for a typical cell in anaesthetised
cat V1 (adapted from Freeman et al., 2002, Fig. 3c). For cross-orientation suppression (middle column)
the neurophysiological data is for a typical cell in anaesthetised cat V1 (adapted from Freeman et al.,
2002, Fig. 4). Suppression was measured for masks with temporal frequencies of 3Hz, 6Hz, 12Hz, and
24Hz. For surround suppression (right column) the neurophysiological data is for a typical simple cell
in anaesthetised cat V1 (adapted from Durand et al., 2007, Fig. 3). Suppression was measured for masks
with temporal frequencies of 1Hz, 2Hz 4Hz, 8Hz, 16Hz, and 21Hz. In both cases the thickness of the
line, with open markers, used to draw the suppressed contrast response function decreases with increasing
frequency of the suppressive grating.

2005), and this gives rise to the apparent reduction in suppression with high frequency surrounds. However,
surround suppression is still strong, this is due to strong suppression when the surround and centre are in-phase
and due to some suppression being generated when the surround and centre are out-of-phase. This latter effect
results from the high temporal frequency surround weakly activating many prediction neurons which can provide
a similar degree of suppression as the few neurons strongly activated by a slowly drifting surround (see inset to
Fig. 7a). For a model complex cell the effect of surround suppression is similar to that observed for model simple
cells, since the complex cell is just taking the maximum response from a local population of simple cells tuned to
the same orientation.

A limitation of the model is that, surround suppression in simple cells, and both forms of suppression in
complex cells, fail to show any reduction with increasing temporal frequency. Such a reduction in suppression at
very high temporal frequencies is observed in V1 (Durand et al., 2007; Freeman et al., 2002) and may be due to a
reduction in LGN response at high frequency, which has not been modelled here.

3.4 Suppression of Suppressive Stimuli
Psychophysical correlates of surround suppression and cross-orientation suppression have been observed in hu-
mans (Petrov et al., 2005). This work also revealed differences between surround suppression in foveal and pe-
ripheral vision. Here we consider only those experiments performed using stimuli presented in the periphery, as is
the case for the vast majority of neurophysiological experiments. In these experiments Petrov et al. (2005) showed
differences in cross-orientation and surround suppression by employing a second grating designed to suppress the
response to another suppressive grating but not the target grating.

In one experiment, a fixed contrast central grating was presented together with an iso-oriented surround with
the same fixed contrast. The strength of suppression was then measured for variable contrasts of an orthogonal
surround grating additively superimposed on the iso-oriented surround. It was found that increasing the contrast
of the orthogonal surround reduced suppression of the central target (Petrov et al., 2005). This suggests that iso-
oriented surround suppression becomes less effective in the presence of a perpendicular surround. Petrov et al.
(2005) interpreted this result as showing that cross-orientation suppression occurred in the surround before sur-
round suppression could take place. A similar result is generated by the PC/BC model, see Fig. 8a, and consistent
neurophysiological data has been obtained in cat V1 (Walker et al., 2002). In the model, the high contrast orthog-
onal surround suppressed (via cross-orientation suppression) the response to the iso-oriented surround which in
turn reduced the surround suppression generated by the iso-oriented surround.
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Figure 8: Effects of suppression on suppressive stimuli. (a) Response as a function of the contrast of an
orthogonal surround grating superimposed upon an iso-oriented surround grating in the presence of an
optimally oriented centre. The contrast of the centre and the iso-oriented surround were fixed at 20%.
The plot above this simulation result shows data from a corresponding neurophysiological experiment.
The neurophysiological data shows the response of a typical simple cell in anaesthetised cat V1 (adapted
from Walker et al., 2002, Fig. 2). (b) Response as a function of the contrast of an perpendicular mask
grating superimposed upon an optimally oriented grating in the presence of an orthogonal surround. The
contrast of the optimally-oriented centre and surround were fixed at 20%. (c) Response as a function of
the contrast of an orthogonal surround grating to a fixed contrast central plaid stimulus. The contrast of
the optimally-oriented centre and superimposed orthogonal mask were fixed at 20%. (d) Response as a
function of the contrast of an iso-oriented surround grating superimposed upon an orthogonal surround
grating in the presence of an optimally oriented centre. The contrast of the centre and the orthogonal
surround were fixed at 20%. In each plot, the horizontal line indicates the response to the central grating
in isolation. The smaller plots to the right of each graph show the response of the model when there
is no saturation to the LGN response (top) and when there is no competition between cortical neurons
(bottom).
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In a second experiment, a fixed contrast optimally-oriented central grating was presented together with an
orthogonal surround with the same fixed contrast. The strength of suppression was then measured for vari-
able contrasts of a perpendicular mask grating additively superimposed on the central test grating. It was found
that increasing the contrast of the mask grating resulted in stronger suppression of the target, i.e., greater cross-
orientation suppression (Petrov et al., 2005). This suggests that the surround, which was oriented to generate
the maximum suppression in the mask, was ineffective. Petrov et al. (2005) interpreted this result as showing that
cross-orientation suppression occurred in the centre before surround suppression could take place. A similar result
is generated by the PC/BC model, see Fig. 8b. In the model, a high contrast mask reduces, via LGN saturation, the
feedforward input to the recorded neuron in the model V1. Furthermore, at high mask contrasts the intracortical
inhibition generated by the mask becomes more effective.

Note that the second experiment performed by Petrov et al. (2005) is not exactly the converse of the first.
In the first experiment the contrast is varied for the grating that should reduce suppression, while in the second
experiment the grating that should reduce suppression has a fixed contrast. The model was therefore tested using
two additional experiments which were the converse of the two previous experiments.

In the first additional experiment, a fixed contrast optimally-oriented central grating was presented together
with a superimposed perpendicular mask grating with the same fixed contrast. The strength of suppression was
then measured for variable contrasts of a orthogonal surround grating. It was found that increasing the contrast of
the orthogonal surround resulted in slightly stronger suppression of the target, see Fig. 8c. In the model, a high
contrast orthogonal surround provides a small additional feedforward input to neurons representing the orienta-
tion of the mask. This enables the neurons representing the mask to more effectively suppress, via intracortical
inhibition, the response of the recorded neuron.

In the second additional experiment, a fixed contrast optimally-oriented central grating was presented together
with an orthogonal surround with the same fixed contrast. The strength of suppression was then measured for
variable contrasts of a iso-oriented surround grating. It was found that increasing the contrast of the iso-oriented
surround resulted in stronger suppression of the target, see Fig. 8d. In the model, a high contrast iso-oriented
surround suppresses, via intracortical inhibition, the response of the recorded neuron.

The simulations presented in this section were recorded from model simple cells using static stimuli. However,
very similar results are generated by model complex cells in response to drifting gratings.

4 Discussion
The results presented above together with those presented in a previous publication (Spratling, 2010) show that
the PC/BC model is able to accurately simulate many aspects of cross-orientation and surround suppression, as
well as other tuning properties of cells in primary visual cortex. PC/BC thus provides a comprehensive model of
the behaviour (i.e., the neural response properties) of cells in cortical area V1.

All models simulate behaviour. However, models (of V1 or any other kind of system) can be categorised
depending on what other aspects of the modelled system they do or do not account for (Table 2; Dayan, 2001;
Seriès et al., 2003). Descriptive models characterise the behaviour of the system being modelled. They provide
a summary of “what” the system does. However, these models usually fail to provide any information about the
mechanisms by which that system operates or the purpose of the computations it is performing. Structural mod-
els consider how the underlying mechanisms (e.g., biophysical and neural processes) give rise to the observed
behaviour. They address “how” the system operates, however, these models usually fail to provide any com-
putational explanation for the modelled behaviour. Structural models provide a reductionist explanation of the
observed behaviour, however, the models of the underlying mechanisms may themselves be descriptive models
of lower-level processes. Functional models start from a consideration of what computation the system must be
performing. They address “why” the system operates in the way it does.

In neuroscience there is a need for functional models (Carandini et al., 2005; Olshausen and Field, 2005).
PC/BC represents such a model. It proposes that V1 response properties are a result of the cortex performing
efficient coding using an over-complete set of neural representations (Olshausen and Field, 2005). This is achieved
by minimising the error between the observed sensory input and the expectations stored in the synaptic weights of
V1 cells. The model can be related to the biased-competition and predictive coding theories of cortical function
(Spratling, 2008a,b), and in turn to more general theories of hierarchical perceptual inference. It thus provides
a functional explanation for V1 response properties and relates V1 neurophysiology to a wider, computationally
principled, framework for understanding cortical function.

Functional models do not necessarily consider the mechanisms used by the system being modelled. For ex-
ample, much of the field of artificial intelligence (AI) is concerned with developing computationally principled
models of human intelligence without being concerned with the mechanisms used in the human brain. However,
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Type of Model Characteristics Modelled Examples
computations behaviours mechanisms

descriptive 7 3 7 Busse et al. (2009); Cavanaugh et al.
(2002); Sceniak et al. (1999)

structural 7 3 3 Adorján et al. (1999); Carandini et al.
(2002); Dagoi and Sur (2000); Priebe and
Ferster (2006); Schwabe et al. (2006);
Somers et al. (1995); Stetter et al. (2000)

functional 3 3 7 Ben-Shahar and Zucker (2004); Olshausen
and Field (1996); Schwartz and Simoncelli
(2001)

Table 2: Types of model. Models can be classified according to the level(s) of analysis at which they
successfully described the system being modelled. Some examples are listed of models of V1 which fall
into each of these categories.

in contrast to AI, neuroscience is concerned with how the brain performs the information processing that under-
lies cognition, not with any other possible ways in which this could be done. Neuroscientists must, therefore,
attempt to synthesise theories that are consistent across levels of analysis (Bechtel, 2006; Mareschal et al., 2007).
Hence, functional models that simulate neural behaviour in a biologically plausible manner are most relevant to
neuroscience.

Many aspect of PC/BC are biologically plausible. For example, the algorithm employs only non-negative fir-
ing rates and non-negative synaptic weights. It is also possible to define unsupervised learning rules that require
only information local to each synapse in order to independently learn the reciprocal feedforward and feedback
weights required by the model (Spratling, sub). The drive to the error-detecting neurons is divisively modulated.
Such divisive modulation is compatible with mechanisms of shunting inhibition or synaptic depression (Carandini,
2004; Mitchell and Silver, 2003; Rothman et al., 2009). In the full PC/BC model (Spratling, 2008a, 2010), cortical
feedback connections have a modulatory effect on activity, whereas, cortical feedforward connections drive neural
response. This is consistent with the asymmetry in the functional roles of cortical forward and feedback connec-
tions (Anderson and Martin, 2009; Crick and Koch, 1998; Friston, 2003; Friston and Büchel, 2000; Sherman and
Guillery, 1998; Spratling, 2002).

The behaviour of model prediction neurons is consistent with the physiology of cortical pyramidal cells in V1.
The connectivity of these neurons in the model is also consistent with the anatomy of cortical feedforward and
feedback connections (Barbas and Rempel-Clower, 1997; Barone et al., 2000; Felleman and Van Essen, 1991;
Johnson and Burkhalter, 1997). Specifically, cortical feedforward connections originate from pyramidal cells in
layers II and III and feedback connections terminate outside layer IV. This suggests that the prediction neurons
correspond to pyramidal cells in the superficial layers of cortex. Similarly, the error-detecting neurons in the
model are driven by feedforward connections from LGN, and hence, have centre-surround RFs. Non-orientation
selective centre-surround cells are common in cortical layer IV of V1 in some species (although rare in others) (Van
Hooser, 2007). The physiology would thus suggest that error-detecting neurons correspond to a sub-population
of cells in cortical layer IV. This is also consistent with cortical anatomy, since cortical feedforward connections
predominantly target layer IV.

Other aspects of the model are less easily reconciled with cortical anatomy and physiology. For example, a
mechanism that would allow the inputs to the predictions neurons to multiplicatively modulate the firing rates of
those neurons (equation 4) is unknown. The model also proposes a one-to-one connectivity pattern between the
error-detecting neurons and the neurons from which they receive their afferent inputs. This is clearly implausible.
Also, the model proposes that there should be an asymmetry in the targets for lateral inhibitory and excitatory
connections, with the former targeting error-detecting neurons only, and the latter targeting prediction neurons
only. In contrast, cortical neurons receive both intracortical inhibition and excitation. In common with many other
neural models, PC/BC does not include inhibitory neurons, but rather allows excitatory neurons (i.e., the prediction
neurons) to directly inhibit other excitatory neurons (i.e., the error-detecting neurons). In a more anatomically
accurate implementation these connections from the prediction neurons to the error-detecting neurons would need
to be made via inhibitory interneurons. Such connections would be consistent with cortical anatomy, and the
identification of model neurons with cortical populations made above, as inhibitory pathways from superficial
layers to layer 4 mirror the strong excitatory pathway for layer 4 to the superficial layers (Binzegger et al., 2004;
Thomson and Lamy, 2007).

The PC/BC model depends on a specific form of intracortical inhibition. This mechanism of suppression
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needs to be combined with LGN response saturation to account for cross-orientation suppression. A number of
other mechanisms have previously been suggested to account for suppression: thalmacortical synaptic depression
(Carandini et al., 2002; Freeman et al., 2002); surround suppression in LGN (Naito et al., 2007; Ozeki et al., 2004;
Webb et al., 2005); and feedback from extrastriate cortex (Angelucci et al., 2002; Bair et al., 2003; Cavanaugh
et al., 2002; Sullivan and de Sa, 2006).

A reduction in synaptic efficiency, i.e., synaptic depression, caused by adaptation to the stimulus has been
shown to be too slow to account for the dynamics of cross-orientation suppression (Li et al., 2006). Consistent
with this result, the current model does not propose that this form of synaptic depression has a significant role
in generating suppression in V1. However, depression of excitatory synapses provides one potential mechanism
via which inhibitory inputs can modulate neuronal gain (Rothman et al., 2009). Hence, one potential mechanism
for implementing the specific form of divisive inhibition proposed by the PC/BC model might involve synaptic
depression. However, the PC/BC model suggests that the mechanism driving the suppression is the response of
simple cells within V1 rather than the response of cells in LGN.

The current model employs a bank of linear filters as a simplistic model of LGN, and hence, it does not
simulate surround suppression in the LGN. The current model, therefore, also does not propose that surround
suppression in LGN is important for generating suppression in V1. However, suppression does occur in LGN
(Jones et al., 2000) and might be responsible for V1 surround suppression caused by uniform surrounds (Webb
et al., 2005), which the current model fails to simulate. LGN suppression could be modelled by using neurons
with Gaussian RFs competing via Divisive Input Modulation. In which case the LGN would be modelled in the
same way as the PC/BC model of V1 and would be the first stage in a PC/BC hierarchy (Spratling, 2008a).

The version of the PC/BC model implemented here does not include feedback connections from extrastri-
ate cortical regions, and hence, does not propose that top-down predictions from other parts of the cortex have
a significant role in generating suppression in the experiments simulated here. However, all the simulated neu-
rophysiological experiments were performed on anaesthetised animals and anaesthesia may block the effects of
cortical feedback (Lamme and Spekreijse, 2000; Lamme et al., 1998). The PC/BC model does predict that cor-
tical feedback will have a role in generating suppression in other experiments. For example, suppression of the
response to a non-attended stimulus in a selective attention experiment (Spratling, 2008a), or suppression of the
response to any stimulus when competition is biased by top-down signals in favour of a competing interpretation.
PC/BC defines the influence that cortical feedback connections have (Spratling, 2008a, 2010), and hence, these
influences could easily be incorporated into the model. Such feedback driven suppression might be necessary to
simulate surround-suppression caused by surrounds very far from the classical RF of the recorded neuron (An-
gelucci et al., 2002; Levitt and Lund, 2002; Sceniak et al., 2001). Cortical feedback connections directly exciting
prediction neurons, which in turn induce suppression in other prediction neurons, might conceivably account for
both suppression and facilitation generated by the far surround (Ichida et al., 2007).

The success of the PC/BC model does not exclude the possibility that other mechanisms are actually respon-
sible for suppression in primary visual cortex. However, it does demonstrate that intracortical inhibition, driven
by activity intrinsic to V1, remains a viable mechanism for explaining cortical suppression and that the same
mechanisms can underlie both cross-orientation and surround suppression.
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