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Abstract

Background Predictive coding has been proposed as a model of the hierarchical perceptual inference process
performed in the cortex. However, results demonstrating that predictive coding is capable of performing
the complex inference required to recognise objects in natural images have not previously been presented.

Methods This article proposes a hierarchical neural network based on predictive coding for performing visual
object recognition.

Results This network is applied to the tasks of categorising hand-written digits, identifying faces, and locating
cars in images of street scenes. It is shown that image recognition can be performed with tolerance to
position, illumination, size, partial occlusion and within-category variation.

Conclusions The current results, therefore, provide the first practical demonstration that predictive coding (at
least the particular implementation of predictive coding used here; the PC/BC-DIM algorithm) is capable
of performing accurate visual object recognition.

Keywords: predictive coding; neural networks; object recognition; implicit shape model; deep neural networks;
sparse coding

1 Introduction
Localising and identifying items in visual scenes is of fundamental importance for many activities carried out by
humans and other species. To solve this complex computational task the brain is required to perform perceptual
inference in order to find the most likely causes of the visual input. This process of object recognition is believed
to be performed by a hierarchy of cortical regions along the ventral occipitotemporal pathway (DiCarlo et al.,
2012; Goodale and Milner, 1992; Krüger et al., 2013; Ungerleider and Mishkin, 1982).

Predictive coding (PC) is a highly influential theory of cortical information processing (Clark, 2013; Friston
and Kiebel, 2009; Huang and Rao, 2011; Kok and de Lange, 2015; Rao and Ballard, 1999; Spratling, 2014b,
ress). PC is specifically suited to performing perceptual inference. Furthermore, PC can be implemented as a
hierarchical neural network. PC should thus be suited, both at the functional and neurophysiological levels, to
simulating object recognition. However, to-date this has not been demonstrated explicitly. This article presents
the first demonstration that PC can perform object recognition in natural images. Specifically, the current results
show that a particular implementation of PC (the PC/BC-DIM algorithma) can locate cars in natural images of
street scenes, identify individuals from their face, and can categorise numbers in images of hand-written digits.

Object recognition requires the brain to solve an inverse problem: one where the causes (the shapes, surface
properties, and arrangements of objects) need to be inferred from the perceived outcome of the image formation
process. Inverse problems are typically ill-posed, meaning that they have multiple solutions (or none at all).
For example, different sets of objects arranged in different configurations and viewed under different lighting
conditions could potentially give rise to the same image. Solving such an ill-posed problem requires additional
constraints to be imposed in order to narrow down the number of possible solutions to the single, most likely,
one. In other words, constraints are required to infer the most likely causes of the sensory data. Constraints
on visual inference might come from many sources, including knowledge learnt from prior experience (such
as typical lighting conditions and the shapes and sizes of common objects), the recent past (knowledge about
recently perceived causes, and expectations about how these might change or stay the same), and the present (such
as information from elsewhere in the image or from another sensory modality).

aPC/BC-DIM is a version of PC (Rao and Ballard, 1999) reformulated to make it compatible with Biased Competition (BC) theories
of cortical function (Spratling, 2008a,b), and that is implemented using Divisive Input Modulation (DIM; Spratling et al., 2009) as the
method for updating error and prediction neuron activations. DIM calculates reconstruction errors using division, which is in contrast to other
implementations of PC that calculate reconstruction errors using subtraction (Huang and Rao, 2011; Spratling, 2008a, ress). The divisive
method is preferred as it results in non-negative firing-rates and is thus more biologically-plausible (Spratling, 2008a, ress). Furthermore, it
has stable dynamics and converges more quickly allowing it to be used to build large-scale models (Spratling, ress; Spratling et al., 2009).
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PC proposes a scheme for applying such constraints in order to solve the inverse problem of vision. Specifi-
cally, PC suggests that the brain learns, from prior experience, an internal model of the world, or multiple models
of specific aspects of the world embedded in different cortical regions. This internal model encodes possible
causes of sensory inputs as parameters of a generative model (the weights of prediction neurons). New sensory
inputs are then represented in terms of these known causes (by the activation of the prediction neurons). De-
termining which combination of the many possible causes best fits the current sensory data is achieved through
an iterative process of minimising the error between the sensory data and the expected sensory inputs predicted
by the causes. This inference process performs “explaining away” (Kersten et al., 2004; Lochmann and Deneve,
2011; Lochmann et al., 2012; Spratling, 2012; Spratling et al., 2009): possible causes compete to explain the
sensory evidence, and those causes that are best supported by the evidence, explain away that evidence preventing
it from supporting competing causes. This suppression of alternative explanations typically results in a sparse set
of predicted causes.

Object recognition requires perceptual representations that are sufficiently selective for shape and appearance
properties (to distinguish one individual or one object category from another) as well as being sufficiently tolerant
to changes in shape and appearance caused by illumination, viewpoint, partial-occlusion, within category vari-
ation, and non-rigid deformations (to allow the same object or object category to be recognised under different
viewing conditions) (DiCarlo and Cox, 2007; DiCarlo et al., 2012; Krüger et al., 2013; Pinto et al., 2008; Riesen-
huber and Poggio, 1999). It is generally believed that such selectivity and tolerance is built up slowly along the
ventral pathway (Gilbert, 1996; Kobatake and Tanaka, 1994; Logothetis, 1998; Mountcastle, 1998; Oram and Per-
rett, 1994; Rust and Dicarlo, 2010; Wallis and Bülthoff, 1999). Different mechanisms are required to learn more
selective representations and to learn more tolerant representations (Riesenhuber and Poggio, 1999; Spratling,
2005). Hence, several existing models of object recognition consist of alternating layers of neurons that perform
these two operations in order to form more specialized representations in one layer, and more invariant represen-
tations in the next layer (Ciresan et al., 2012; Fukushima, 1980, 1988, 2005; Jarrett et al., 2009; Krizhevsky et al.,
2012; LeCun and Bengio, 1995; LeCun et al., 1998, 2010; Mutch and Lowe, 2008; Riesenhuber and Poggio, 1999;
Serre et al., 2007; Theriault et al., 2013).

The experiments described in this article were performed using a two-stage hierarchy of PC/BC-DIM net-
works. The same hierarchical arrangement of PC/BC-DIM networks has previously been used to model word
recognition (Spratling, 2016d, except this previous work, in contrast to the current work, used hard-coded weights
and inter-stage feedback connections), and to model the learning of receptive fields in cortical areas V1 and V2
(Spratling, 2012, except that previous work used a different learning procedure to that described here). In the
proposed model, the synaptic weights for alternate processing-stages are defined differently, in order to form re-
ceptive fields (RFs) that are specific to particular image features in one stage, and connections that generalise
over these features in the subsequent stage. However, following learning, both stages operate identically. Both
stages implement PC/BC-DIM, and hence, perform explaining away. The advantages of using explaining away
to perform each of these operations have been demonstrated in two previous publications: Spratling (2016a) has
shown that explaining away has advantages for producing neural responses that are selective to image features,
while Spratling (2016c) has shown that explaining away has advantages for producing responses that generalise
over changes in appearance. Here, it is shown that combining these two applications of PC/BC-DIM into one
hierarchical neural network allows PC/BC-DIM to be used for object recognition.

2 Methods
The experiments were performed using a two-stage hierarchical neural network model, as illustrated in fig. 1a.
The activations of the neurons in both stages were calculated using the PC/BC-DIM algorithm (as described
in sect. 2.3). However, because different methods were used to learn the weights of each processing-stage (as
described in sect. 2.1), they played different roles in the object recognition process.

2.1 Training
The training procedure for the first processing-stage was as follows.

Image patches were extracted from the grayscale training images. For those tasks in which the location and
scale of the object was fixed (digit and face recognition), each training image was treated as a patch. In
contrast, for those tasks in which the location of the object could vary (car recognition), patches were
extracted from around keypoints (located using the Harris corner detector). Furthermore, in this case, to
help distinguish cars (the “targets”) from other objects (the “non-targets”) that were also present in the test
images, two sets of patches were obtained: those containing parts of the to-be-recognised objects, and those
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Figure 1: (a) The two-stage hierarchical PC/BC-DIM network used in the simulations described in
this paper. Rectangles represent populations of neurons and arrows represent connections between those
neural populations. The first processing-stage receives visual input. The second processing-stage receives
input that is the steady-state prediction neuron responses generated by first processing-stage. (b) In
each processing-stage the population of prediction neurons constitute a model of the input environment
of that processing-stage. Individual neurons represent distinct causes that can underlie the input (i.e.,
latent variables). The belief that each cause explains the current input is encoded in the activation level,
y, and is used to reconstruct the expected input given the predicted causes. This reconstruction, r, is
calculated using a linear generative model (see eq. 1). Each column of the feedback weight matrix V
represents an “elementary component”, “basis vector”, or “dictionary element”, and the reconstruction
is thus a linear combination of those components. Each element of the reconstruction is compared to
the corresponding element of the actual input, x, in order to calculate the residual error, e, between
the predicted input and the actual input (see eq. 2). The errors are subsequently used to update the
predictions (via the feedforward weights W, see eq. 3) in order to make them better able to account for
the input, and hence, to reduce the error at subsequent iterations. The responses of the neurons in all three
populations are updated iteratively to recursively calculate the values of y, r, and e. The weights V are
the transpose of the weights W (but each set of weights may be normalised differently). Given that the V
weights are proportional to the W weights there is only one set of free parameters. All other connections
(shown using gray arrows) are fixed to have binary values and to provide one-to-one connectivity between
corresponding neurons in the pre- and post-synaptic populations.

containing non-target image regions (obtained from images that did not contain the target object). To deal
with changes in scale, the training images were rescaled to six different sizes, and patches were extracted
from each set of resized training images.

The image patches were clustered to form a dictionary. The image patches were clustered using the hierarchi-
cal agglomerative clustering algorithm, with zero-mean normalised cross correlation (ZMNCC)b between
the most different members of each cluster as the measure of similarity. Clustering was terminated once
the ZMNCC between all clusters was less than a similarity threshold (κ). Those clusters with fewer than λ
members were discarded. The arithmetic mean of the patches forming the remaining clusters were used as
the dictionary. For those tasks in which there were multiple classes (digit and face recognition) clustering
was performed separately on the image patches extracted from images of each class. Similarly, for those
tasks in which there was only one class of object to be recognised (cars) clustering was performed separately
for target and non-target image patches. To deal with changes in scale, separate clustering of patches taken
from each size of image was used.

The PC/BC-DIM algorithm can be used to allow the first processing-stage to find matches between the dic-
bAlso known as the sample Pearson correlation coefficient.
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tionary elements and an input image. The prediction neuron responses will represent the closeness of the match
between the dictionary element and the image. If the dictionary elements are thought of as templates for object
parts, then PC/BC-DIM can be considered as a method of template matching, but one that has considerable ad-
vantages over traditional template matching methods (Spratling, 2016a). Specifically, by using PC/BC-DIM the
match between a template and the image takes into account the evidence provided by the image and the full range
of alternative explanations represented by the other templates. In other words, PC/BC-DIM performs explaining
away. The result is that the prediction neuron responses (representing the match between templates and image
locations) are very sparse. Those locations that match a template can therefore be readily identified and there is
greater tolerance to changes in appearance due to changes in viewpoint (Spratling, 2016a).

Image features are better distinguished using relative intensity (or contrast) rather than absolute intensity.
Hence, template matching was performed with the first processing-stage after the input image had been pre-
processed as follows. The grayscale input image I was convolved with a 2D circular-symmetric Gaussian mask
g with standard deviation equal to σ pixels, such that: Ī = I ∗ g. Ī is an estimate of the local mean intensity
across the image. To avoid a poor estimate of Ī near the edges of the image, it was first padded on all sides
by 4σ pixels with intensity values that were mirror reflections of the image pixel values near the edges of I . Ī
was then cropped to be the same size as the original input image. The relative intensity can be approximated as
X = I − Ī . For biological-plausibility the PC/BC-DIM algorithm requires inputs to be non-negative (weights
and neural activations are also non-negative). To produce non-negative input to the PC/BC-DIM algorithm, the
positive and rectified negative values of X (representing, respectively, increases and decreases in local contrast,
or ON and OFF channels) were both used to form the input to the first processing-stage. The weights of each
prediction neuron in the first processing-stage were defined by processing each dictionary element in an identical
way to the input image. These weights were normalised so that the weights forming the RF of each prediction
neuron summed to one.

The training procedure for the second processing-stage was as follows.

First-stage prediction neuron responses were calculated for all the images in the training set. The weights of
the first processing-stage were defined as described in the preceding paragraph. An image from the training
set (after being pre-processed as described in the preceding paragraph) was presented as input to the first
processing-stage, and the PC/BC-DIM algorithm (as described in sect. 2.3) was executed. This was repeated
for every image in the training set, and the first-stage prediction neuron responses to each training image
were recorded.

The second-stage weights were defined based on the responses of the first-stage prediction neurons. A sep-
arate second-stage prediction neuron was defined to represent each object that was to be recognised. For
those tasks in which the class or identity of the object was to be determined (digit and face recognition),
a prediction neuron for each class or individual was defined. For tasks in which the location and scale of
the object could vary (car recognition) prediction neurons were defined for each location and scale. The
weights of these second-stage prediction neurons were set to be proportional to the sum of the responses of
the first-stage prediction neurons to all training images containing the to-be-recognised object.

By having weights that connect a second-stage prediction neuron to all the prediction neurons in the first
stage that represent (parts of) members of the to-be-recognised object category (at a specific scale or location), the
second-stage prediction neuron will respond when those image features are identified by the first processing-stage.
The strength of response will depend not only on how many and how strongly the first processing-stage templates
match the image, but will also depend on the weights of other second-stage prediction neurons. Specifically, the
second processing-stage performs explaining away, meaning that if an image feature is consistent with more than
one of the objects represented by second-stage prediction neurons, then the PC/BC-DIM algorithm will activate the
neuron corresponding to the most likely object and suppress the image feature’s support for alternative objects. The
result is that the prediction neuron responses (representing the match between the image and a to-be-recognised
objects) are very sparse. The true matches can therefore be readily identified and the generalisation over changes
in appearance is more selective for those objects that have the most evidence (Spratling, 2016c).

For the task in which the location of the object could vary (i.e., car recognition) second-stage prediction
neurons were defined to signal the presence of the object at each location. If the task had required the recognition
of objects seen from different directions, or at different orientations, then it would have been necessary to define
different second-stage prediction neurons to represent these different views of the same object. Such model
neurons can be seen to be analogous to view-tuned cells observed in inferior temporal cortex (Logothetis and
Pauls, 1995; Logothetis et al., 1995). It would be possible to add a third processing stage to integrate information
from such view-tuned neurons in order to signal the presence of the object irrespective of location or orientation.
However, it is unlikely that such neurons, invariant to viewpoint, could be defined directly from the outputs of
the first processing stage (i.e., by skipping the view-tuned neurons). This is because first-stage to view invariant
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connections would have to be very abundant, and this would allow the view invariant neurons to respond to
combinations of image features that might appear in an image but not form the to-be-recognised object. In other
words, attempting to increase tolerance to too quickly will lead to to a loss of selectivity. Hence, building PC/BC-
-DIM models that can recognise objects with greater tolerance to changes in appearance is likely to require the
building of deeper hierarchical models (Anselmi et al., 2014; Poggio et al., 2015).

2.2 Recognition
Following the training of both stages, described above, the hierarchical PC/BC-DIM model can be used to recog-
nise objects in novel, test, images. The test image is pre-processed into ON and OFF channels as described in
sect. 2.1. These are input to the first processing-stage, and the PC/BC-DIM algorithm (as described in sect. 2.3) is
executed. The first-stage prediction neuron responses are then provided as inputs to the second processing stage
and the PC/BC-DIM algorithm (as described in sect. 2.3) is executed for the second-stage. The second-stage
prediction neuron responses are then used to identify the to-be-recognised objects. For those tasks in which the
location and scale of the object was fixed and for which each image contained exactly one object (digit and face
recognition), the maximum response was taken to indicate the class of the image. For those tasks in which the lo-
cation of the object could vary and in which the number of objects in each image could vary (car recognition), the
presence of an object was indicated by prediction neurons responses that were peaks in the spatial neighbourhood
and which exceeded a global threshold.

2.3 The PC/BC-DIM Algorithm
The main mathematical operation required to implement the PC/BC-DIM algorithm is the calculation of sums of
products. The algorithm can therefore be equally simply implemented using matrix multiplication or convolution.

The matrix-multiplication version of PC/BC-DIM is illustrated in fig. 1b and was implemented using the
following equations:

r = Vy (1)

e = x� [r]ε2 (2)

y← [y]ε1 �We (3)

Where x is a (m by 1) vector of input activations, e is a (m by 1) vector of error neuron activations; r is a (m by 1)
vector of reconstruction neuron activations; y is a (n by 1) vector of prediction neuron activations; W is a (n by
m) matrix of feedforward synaptic weight values, defined by the training process described in sect. 2.1; V is a (m
by n) matrix of feedback synaptic weight values; [v]ε = max(ε, v); ε1 and ε2 are parameters; � and � indicate
element-wise division and multiplication respectively; and ← means that the left-hand side of the equation is
assigned the value of the right-hand side. The matrix V is equal to the transpose of the W but each column of V
is normalised to have a maximum value of one. Hence, the feedforward and feedback weights are simply rescaled
versions of each other.

The convolutional version of PC/BC-DIM was implemented using the following equations:

Ri =

p∑
j=1

(vji ?Yj) (4)

Ei = Xi � [Ri]ε2 (5)

Yj ← [Yj ]ε1 �
k∑
i=1

(wji ?Ei) (6)

Where Xi is a 2-dimensional array representing channel i of the input; Ri is a 2-dimensional array representing
the network’s reconstruction of Xi; Ei is a 2-dimensional array representing the error between Xi and Ri; Yj is
a 2-dimensional array that represent the prediction neuron responses for a particular class, j, of prediction neuron;
wji is a 2-dimensional kernel representing the feedforward synaptic weights from a particular channel, i, of the
input to a particular class, j, of prediction neuron, defined by the training process described in sect. 2.1; vji is a
2-dimensional kernel representing the feedback synaptic weights from a particular class, j, of prediction neuron
to a particular channel, i of the input; and ? represents cross-correlation. The weights vij are equal to the weights
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wij but are rotated by 180o and are normalised so that for each j the maximum weight value, across all i, is
equal to one. Hence, the feedforward weights, between a pair of error-detecting and prediction neurons, and the
feedback weights, between the corresponding pair of reconstruction and prediction neurons, are simply re-scaled
versions of each other.

The matrix-multiplication and convolutional version of PC/BC-DIM are interchangeable, and which particular
method was used depended on which was most convenient for the particular task. For example, the convolutional
version was used when prediction neurons with identical RFs were required to be replicated at every pixel location
in an image. To simplify the description of the proposed method, the rest of the text will refer only to the matix-
multiplication version of PC/BC-DIM.

For all the experiments described in this paper ε1 and ε2 were given the values ε1 = ε2
max(Ṽ)

(where Ṽ is

a vector containing the sum of each row of V, i.e., the sums of feedback weights targeting each reconstruction
neuron) and ε2 = 1× 10−2. Parameter ε1 prevents prediction neurons becoming permanently non-responsive. It
also sets each prediction neuron’s baseline activity rate and controls the rate at which its activity increases when a
new stimulus appears at the input to the network. Parameter ε2 prevents division-by-zero errors and determines the
minimum strength that an input is required to have in order to effect prediction neuron response. As in all previous
work with PC/BC-DIM, these parameters have been given small values compared to typical values of y and x, and
hence, have negligible effects on the steady-state activity of the network. To determine this steady-state activity,
the values of y were all set to zero, and eqs. 1 to 3 were then iteratively updated with the new values of y calculated
by eq. 3 substituted into eqs. 1 and 3 to recursively calculate the neural activations. This process was terminated
after 50 iterations. After 50 iterations, values of y less than 0.001 were set to zero. To perform simulations with
a hierarchical model the steady-state responses for the first processing-stage were determined. The first-stage
prediction neuron responses were then provided as input to the second processing-stage, and equations eqs. 1 to 3
applied to the second processing-stage to determine its responsec.

The values of y represent predictions of the causes underlying the inputs to the network. The values of r
represent the expected inputs given the predicted causes. The values of e represent the discrepancy (or residual
error) between the reconstruction, r, and the actual input, x. The full range of possible causes that the network
can represent are defined by the weights, W (and V). Each row of W (which correspond to the weights targeting
an individual prediction neuron, i.e., its RF) can be thought of as a “dictionary element”, or “basis vector” or
“elementary component” or “preferred stimulus”, and W as a whole can be thought of as a “dictionary” or “code-
book” of possible representations, or a model of the external environment. The activation dynamics, described by
eqs. 1, 2 and 3, perform gradient descent on the reconstruction error in order to find prediction neuron activations
that accurately reconstruct the input (Achler, 2014; Spratling, 2012; Spratling et al., 2009). Specifically, the equa-
tions operate to find values for y that minimise the Kullback-Leibler (KL) divergence between the input (x) and
the reconstruction of the input (r) (Solbakken and Junge, 2011; Spratling et al., 2009). The activation dynamics
thus result in the PC/BC-DIM algorithm selecting a subset of active prediction neurons whose RFs (which corre-
spond to dictionary elements) best explain the underlying causes of the sensory input. The strength of activation
reflects the strength with which each dictionary element is required to be present in order to accurately reconstruct
the input. This strength of response also reflects the probability with which that dictionary element (the preferred
stimulus of the active prediction neuron) is believed to be present, taking into account the evidence provided by the
input signal and the full range of alternative explanations encoded in the RFs of the whole population of prediction
neurons.

Compared to some earlier implementations of the PC/BC-DIM model, the algorithm described here differs in
the following respects:

1. the calculation of the reconstruction error (in eq. 2) is performed using max(ε2, r) rather than ε2 + r.

2. the calculation of the prediction neuron responses (in eq. 3) uses max(ε1,y) rather than ε1 + y.

c Determining, sequentially, the steady-state responses for each processing stage was necessary in order to make the proposed model
tractable given the available computational resources (a Core i7-4790K desktop PC with 16GB RAM). A more biologically-plausible model
would iterate eqs. 1 to 3 for both processing stages simultaneously, with the prediction neuron response calculated for the first-stage at each
iteration provided as input the second processing stage before the next iteration. In such an implementation, it would also be possible to explore
the effects of inter-stage feedback connections from the second to the first processing stage. In the current, more tractable implementation,
such connections would have no effect as the first stage has finished processing by the time the second stage starts. However, psychophysical
experiments showing that image classification can be determined very rapidly in humans and monkeys (DiCarlo et al., 2012; Fabre-Thorpe
et al., 2001; Hochstein and Ahissar, 2002; Keysers et al., 2001; Oliva and Torralba, 2006; VanRullen and Thorpe, 2001) suggest that cortical
feedback connections (which would be modelled by inter-stage feedback) have little influence on object recognition (in unambiguous cases).
The lack of inter-stage feedback connections in the current model also allows more direct comparison to other neural model of object recog-
nition that contain only feedforward connections (e.g., Bengio, 2009; Bengio et al., 2013; Ciresan et al., 2012; Fukushima, 1980, 1988, 2005;
Hamidi and Borji, 2010; Hinton and Salakhutdinov, 2006; Hinton et al., 2006; Jarrett et al., 2009; Krizhevsky et al., 2012; LeCun and Bengio,
1995; LeCun et al., 1998, 2010; Mutch and Lowe, 2008; Riesenhuber and Poggio, 1999; Serre et al., 2007; Spratling, 2016c; Theriault et al.,
2013; Thorpe et al., 2004; Vincent et al., 2010; Wallis and Rolls, 1997).
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3. the value of ε1 is a function of the sum of the feedback weights targeting the reconstruction neurons rather
than a fixed value (such as 1× 10−5).

These changes help PC/BC-DIM to scale-up to very large networks of neurons. Specifically, for a very large
population of prediction neurons, adding ε1 to each prediction neuron response (even when ε1 is very small) will
cause the responses of the reconstruction neurons to be elevated, and the error neurons responses to be suppressed,
which will in turn effect the prediction neuron responses. The second change above reduces this effect of ε1 on
the neural responses. The first and third changes allow ε1 to be given the largest value possible (which speeds-up
convergence to the steady-state) while preventing ε1 from effecting the responses.

In addition, in some earlier implementations of the PC/BC-DIM model, the reconstruction has been used
purely as a means to calculate the errors, and hence, eqs. 1 and 2 have been combined into a single equation. Here,
the underlying mathematical model is identical to that used in previous work, but the interpretation has changed
in order to consider the reconstruction to be represented by a separate neural population. This change, therefore,
has no effect on the current results. However, other recent results have shown that a separate neural population
encoding the reconstruction can perform a useful computational role (Muhammad and Spratling, 2015; Spratling,
2016b,d).

2.4 Code
Open-source software, written in MATLAB, which performs all the experiments described in this article is avail-
able for download from: http://www.corinet.org/mike/Code/pcbc_image_recognition.zip.

3 Results and Discussion

3.1 Handwritten Digit Recognition and Comparison with Deep Learning
To test the ability of the proposed method to categorise images with tolerance to within-class variation it was
applied to the MNIST hand-written digits datasetd. This datset consists of 28-by-28 pixel grayscale images of
isolated digits. The training set contains 60000 images and the test set contains 10000 images. For this task
the following parameters were used: the similarity threshold for the clustering performed on the image patches
was set equal to κ = 0.85; the threshold on the number of patches in each cluster was set equal to λ = 0; and
the standard deviation of the Gaussian used to pre-process both the images and RFs of the first processing-stage
was set equal to σ = 4 pixels. After pre-processing, each individual input image was rescaled to fill the range
[0, 1]. The training procedure for the first processing stage (see sect. 2.1) produced a dictionary containing 35956
elements. Examples of these dictionary elements are shown in fig. 2a.

This dictionary was used to define the weights for 35956 prediction neurons in the first processing stage (see
sect. 2.1). As there were 10 classes, the second processing stage contained 10 prediction neurons. The responses
of the first and second stage prediction neurons to two test images are shown in fig. 2c and d. When tested on all
images from the test set, it was found that 2.19% of these images were mis-classified. Examples of incorrectly
classified test images are shown in fig. 2b. The classification error of the proposed method is compared to those of
a variety of other algorithms in tab. 1. It can be seen that while the results of the proposed method are good, they
fall far short of the current state-of-the-art.

Most of these state-of-the-art algorithms are deep hierarchical neural networks. Deep architectures can be sub-
divided into two main types: (1) stacked generative models, such as deep belief networks (Hinton and Salakhutdi-
nov, 2006; Hinton et al., 2006), and stacked autoencoders (Bengio, 2009; Bengio et al., 2013; Vincent et al., 2010);
and (2) discriminative models with alternating layers of feature detection and pooling, such as convolutional neu-
ral networks (CNN; Ciresan et al., 2012; Jarrett et al., 2009; Krizhevsky et al., 2012; LeCun and Bengio, 1995;
LeCun et al., 1998, 2010), HMAX (Hamidi and Borji, 2010; Mutch and Lowe, 2008; Riesenhuber and Poggio,
1999; Serre et al., 2007; Theriault et al., 2013), and Neocognitron (Fukushima, 1980, 1988, 2005).

In common with architectures of the first type, the proposed algorithm also employs a hierarchy of generative
models. However, the generative models are implemented using a different algorithm: PC/BC-DIM. Furthermore,
PC/BC-DIM employs the generative model during inference: the generative model is used to make predictions of
the expected sensory inputs, and through the iterative activation dynamics described by eqs. 1 to 3, determine the
prediction neuron activations that minimise the discrepancy between the predicted and actual inputs. In contrast,
autoencoders and restricted Boltzmann machines (RBM; Hinton, 2002; Teh et al., 2003) which are the building
blocks of previous architectures of the first type, only employ the generative model during learning. Once the

dhttp://yann.lecun.com/exdb/mnist/
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Figure 2: Results for the MNIST dataset. (a) Exemplars from the dictionary learnt from image patches.
(b) Exemplars of mis-classified images from the test set. There are two numbers to the right of each
image. The lower number is the class predicted by the PC/BC-DIM network. The top number is the true
class of the image. (c) and (d) show the responses of the prediction neurons to two images from the test
set. Responses are shown as histograms where the x-axis is neuron number, and the y-axis is activation
level (in arbitrary units). The bottom panel is the input to the PC/BC-DIM network. The middle panel
shows the response of the prediction neurons in the first processing stage. The RFs of the most active
prediction neurons are indicated by the images superimposed on the histogram. The top panel shows the
response of the prediction neurons in the second processing stage.

weights have been set to allow these models to reconstruct the input, new inputs are processed using the feedfor-
ward weights only.

In common with architectures of the second type, the proposed algorithm has alternate processing stages that
specialise in creating more discriminate representations in one layer, and more invariant representations in the next
layer. This is achieved by defining the weights differently, but by applying the same algorithm to determine the
neural activations during inference. In contrast, existing architectures of the second type use completely different
mathematical operations to perform these two functions. For example, more specialised representations are often
created by applying a linear filtering operation, while more tolerant representations are usually formed by finding
the maximum response within a sub-population of pre-synaptic neurons. The proposed model is thus simpler, in
that it only requires one type of processing stage.

Another difference between the proposed architecture and deep architectures of both type 1 and 2, is that
in the proposed model classification is performed by the last processing stage of the PC/BC-DIM hierarchy. In
contrast, most existing deep architectures are used only as a method of feature extraction (Bengio et al., 2013) to
provide input to a distinct classification algorithm, such as a support vector machine (SVM) or a logistic regression
classifier. The proposed model is thus simpler, in that it integrates feature extraction and classification within a
single homogeneous framework, rather than using different methods for each.

However, as illustrated by the results in tab. 1 deep architectures have an advantage in terms of classification
accuracy. There are many reasons for this. Firstly, it is known that the deeper the architecture, the better the perfor-
mance (He et al., 2016). The proposed architecture is very shallow compared to most deep architectures. Creating
deeper PC/BC-DIM hierarchies by stacking more processing-stages, might thus allow better performance, and
potentially create a better model of the ventral pathway. However, doing so will require more sophisticated meth-
ods of defining the weights in those processing stages. The current model uses an unsupervised learning method.
In contrast, much of the success deep architectures derives from using supervised learning. Using more training
data is also known to generally improve performance. One way to generate additional training data is to generate
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Method MNIST

hierarchical PC/BC-DIM 2.19

SVM (Yu et al., 2009) 12.0
MO-SFL (Gong et al., 2015) 6.55
ICA+ELM (Zhang et al., 2014) 5.6
spiking NN + unsupervised learning (Diehl and Cook, 2015) 5.0
spiking S2M + Event-driven CD (Neftci et al., 2016) 4.4
PC/BC-DIM no pre-processing, classification via linear readout (Spratling, 2014a) 4.1
Nearest Neighbour 2.77
spiking DBN (O’Connor et al., 2013) 2.52
PC/BC-DIM no pre-processing, classification via sub-dictionary error (Spratling, 2014a) 2.19
task-driven PSD (Lv et al., 2016) 1.98
DBN+SVM (Yu et al., 2009) 1.9
CNN (LeNet-1) (LeCun et al., 1995) 1.7
Sprase Coding (Sprechmann and Sapiro, 2010) 1.26
DBN (Hinton et al., 2006) 1.25
Stacked RBM (Larochelle et al., 2009) 1.2
Deep Sparse rectifier Neural Network (Glorot et al., 2011) 1.16
CNN (LeNet-4) (LeCun et al., 1995) 1.1
SDL-G (Mairal et al., 2008) 1.05
Deep Boltzmann Machine (Salakhutdinov and Hinton, 2012) 0.95
CNN (LeNet-5) (LeCun et al., 1995) 0.9
sparse-HMAX+SVM (MTC) (Cardoso and Wichert, 2013) 0.71
locally shift invariant sparse hierarchical features (Ranzato et al., 2007) 0.64
Task-driven dictionary learning (Mairal et al., 2012) 0.54
CNN (PSD) (Jarrett et al., 2009) 0.53
Multi-column deep neural network (Ciresan et al., 2010) 0.35
MCDNN (Ciresan et al., 2012) 0.23

Table 1: Percentage classification error of various methods on the MNIST hand-written digits dataset.

images that are affine deformations of the original training images. This can result in a significant improvement in
performance. For example, Ciresan et al. (2010) report an error rate of 0.35% on MNIST with deformation, and
1.47% withoute. Expanding the dataset in this way could also be used to potentially improve the performance of
the proposed PC/BC-DIM architecture. State-of-the-art performance on many classification tasks has been gen-
erated using an ensemble of deep architectures (Ciresan et al., 2012): where multiple, different, deep networks
are used to independently classify the input, and the final classification is a combination of these individual clas-
sifications. If classification accuracy, rather than biological-plausibility, were the main motivation then using the
current architecture as the building block for an ensemble might also be considered.

3.2 Face Recognition and Comparison with Sparse Coding
To test the ability of the proposed method to perform sub-ordinate level categorization (i.e., identification) with
tolerance to illumination it was applied to the cropped and aligned version of the Extended Yale Face Database Bf

(Georghiades et al., 2001; Lee et al., 2005). This dataset consists of 168-by-192 pixel grayscale images of faces
taken from a fixed viewpoint in front of the face under varying lighting conditions. There are approximately 64
images for each of 38 individuals. Following the method used in previous work with this dataset (Jiang et al.,
2011, 2013; Wright et al., 2009; Zhang et al., 2011; Zhang and Li, 2010), half the images for each class were used
for training and the other half for testing.

In previous work, classification has been performed using images down-sampled to 21-by-24 pixels (or fewer).
This has been necessary as previous methods have used pre-processing steps (such as the calculation of Eigenfaces
and Laplacian-faces) that are too memory intensive to be performed on larger images (Wright et al., 2009). To
allow a direct comparison with this previous work results are presented for the proposed method using images

ehttp://people.idsia.ch/˜ciresan/results.htm
fhttp://vision.ucsd.edu/˜leekc/ExtYaleDatabase/ExtYaleB.html

9

http://people.idsia.ch/~ciresan/results.htm
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html


(a)

24
18

7
32

14
13

0
13

33
14

33
15

28
33

31
11

32
1

6
14

18
21

31
13

23
13

0
14

14
18

2
14

9
13

28
21

2
35

19
25

10
15

5
15

7
32

19
33

17
35

30
33

34
13

15
14

35
25

14
33

27
5

28
13

30
7

(b)

100 200 300 400 500 600 700 800
0

0.2

0.4

0 10 20 30
0

0.5

(c)

100 200 300 400 500 600 700 800
0

0.5

0 10 20 30
0

0.5

(d)

Figure 3: Results for the Extended Yale Face Database B, when using 21-by-24 pixel images. (a)
Exemplars from the dictionary learnt from image patches. (b) All of mis-classified images from the test
set. There are two numbers to the right of each image. The lower number is the class predicted by the
PC/BC-DIM network. The top number is the true class of the image. (c) and (d) show the responses of
the prediction neurons to two images from the test set. The bottom panel is the input to the PC/BC-DIM
network. The middle panel shows the response of the prediction neurons in the first processing stage. The
RFs of the most active prediction neurons are indicated by the images superimposed on the histogram.
The top panel shows the response of the prediction neurons in the second processing stage.

that have also been resized by a scale factor δ = 1
8 to 21-by-24. However, as the proposed method can work

successfully with larger images, results are also presented for images at the original size (i.e., for δ = 1).
For this task the following parameters were used: the similarity threshold for the clustering performed on the

image patches was set equal to κ = 0.9; the threshold on the number of patches in each cluster was set equal
to λ = 0; and the standard deviation of the Gaussian used to pre-process both the images and the RFs of the
first processing-stage was set equal to σ = 2.5

√
δ pixels. After pre-processing, each individual input image was

rescaled to fill the range [0, 1]. For the 21-by-24 pixel images, the training procedure for the first processing stage
(see sect. 2.1) produced a dictionary containing 806 elements. Examples of these dictionary elements are shown
in fig. 3a. This dictionary was used to define the weights for 806 prediction neurons in the first processing stage
(see sect. 2.1). As there were 38 individuals, the second processing stage contained 38 prediction neurons. The
responses of the first and second stage prediction neurons to two test images are shown in fig. 3c and d. The
incorrectly identified test images, for the 21-by-24 pixel version of this task, are shown in fig. 3b. It can be seen
that all the mis-classified images were taken under very poor lighting conditions.

The classification error of the proposed method is compared to those of a variety of other algorithms in tab. 2.
It can be seen that the performance of the proposed method is competitive with the current state-of-the-art for this
task. The current state-of-the-art algorithms are based on sparse coding. These algorithms represent the image
using a sparse set of elements selected from an overcomplete dictionary. They then perform classification by
analysing the reconstruction errors produced by dictionary elements associated with different classes (Spratling,
2014a; Sprechmann and Sapiro, 2010; Wright et al., 2009; Zhang and Li, 2010). In common with these algorithms,
PC/BC-DIM also represents the input images using a sparse code (examples can be seen in the lower histograms
in fig. 3c and d, where it can be seen that only a very small subset of the first stage prediction neurons are
active). However, in contrast to most existing sparse dictionary-based classifiers, the proposed method makes
the classification using the sparse code (the prediction neuron responses) rather than the reconstruction error (the
error neuron responses). This latter method is more biologically-plausible, but less accurate (Spratling, 2014a). It
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Method YALE (21x24) YALE (168x192)

hierarchical PC/BC-DIM 2.7 0.5

Nearest Neighbour (Wright et al., 2009) 9.3
D-KSVD (Zhang and Li, 2010) 4.4
LC-KSVD2 (Jiang et al., 2011, 2013) 3.3
Laplacianfaces+SVM (Wright et al., 2009) 2.3
SRC (Wright et al., 2009) 1.9

Table 2: Percentage classification error of various methods on the Extended Yale Face Database B.

has been found that the performance of sparse dictionary-based classifiers is improved by the supervised learning
of more discriminative dictionaries (Chiang et al., 2013; Jiang et al., 2013; Mairal et al., 2012; Sprechmann and
Sapiro, 2010; Yang et al., 2011; Zhang et al., 2013). Such learning might potentially also improve the performance
of the proposed algorithm.

3.3 Car Recognition and Comparison with Generalised Hough Transform
To test the ability of the proposed method to localise and recognise objects in natural images with tolerance to
position, illumination, size, partial occlusion, and within-category shape variation it was applied to the UIUC cars
dataset (Agarwal et al., 2004; Agarwal and Roth, 2002)g. This dataset consists of greyscale images of outdoor
scenes. The training set consists of 550 car images and 500 images that do not contain cars. There are two sub-
tasks: recognising side views of cars at a single scale (the location and number of cars varies between test images),
and recognising side views of cars across multiple scales (the size, location and number of cars varies between
test images). For the single-scale task the test set contains 170 images containing 200 side views of cars. The
multi-scale task has a test set of 108 images containing 139 cars.

The same training set, and the same parameter values, were used for both sub-tasks. Specifically, the similarity
threshold for the clustering performed on the image patches was set equal to κ = 0.4, the threshold on the number
of patches in each cluster was set equal to λ = 12, and the standard deviation of the Gaussian used to pre-process
both the images and the RFs of the first processing-stage was set equal to σ = 3.5 pixels. Training of the dictionary
used to define the weights of the first processing-stage was performed on 15-by-15 pixel patches extracted from
the training images around keypoints located using the Harris corner detector. For the single-scale task the patches
taken from the car images were clustered into 273 dictionary elements. The non-car image patches were clustered
into 140 dictionary elements. Examples, of these first-stage dictionary elements are shown in fig. 4a. These
dictionary elements were used to define the RFs of the prediction neurons in the first PC/BC-DIM processing
stage, resulting in 413 prediction neurons at each pixel location in the input image. For the multi-scale task
training was performed on the 1050 car and non-car training images resized to six different scales. The dictionary
consisted of 2465 elements representing non-car parts and 3601 elements representing car parts, resulting in 6066
first-stage prediction neurons at each pixel location.

Figure 4b shows two example test images for the single-scale task on which have been superimposed dots
to show locations where there is a strong response from the sub-population of first processing-stage prediction
neurons that represent car parts. The size of the dot is proportional to the magnitude of the response of the
prediction neuron. For prediction neurons whose RFs were defined using the same dictionary element, non-
maximum suppression was performed over those prediction neuron responses, so that all response other than the
local maximum were set to zero.

For the single-scale task, the number of second-stage prediction neurons was equal to the number of pixels
in the input image. Each second-stage prediction neuron had the same weights (but at spatially sifted positions),
equal to the summed response of all the first-stage prediction neurons to all the car images in the training set.
However, to improve tolerance to position, these weights were smoothed across space by convolving them with a
two-dimensional circular symmetric Gaussian function with a standard deviation of two pixels. Figure 4c shows
the responses of all the second-stage prediction neurons for the two images shown in fig. 4b. For the multi-scale
task the second processing-stage consisted of six sub-populations of prediction neurons (one for each scale), each
sub-population contained one prediction neuron for each pixel in the test image. In this case the weights were
smoothed across space and scale using a three-dimensional Gaussian function.

To determine the location of cars predicted by the proposed method, the spatial distribution of prediction
ghttps://cogcomp.cs.illinois.edu/Data/Car/
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(a)

(b) (c)

Figure 4: (a) A small sample of the dictionary elements represented by the first-stage prediction neurons.
The top row shows RFs of prediction neurons trained on patches taken from the car images. The second
row shows RFs of prediction neurons trained on patches taken from the non-car images. (b) Two example
test images from the UIUC single-scale cars dataset (Agarwal et al., 2004; Agarwal and Roth, 2002). The
green dots show the locations where dictionary elements representing car parts have been matched to the
image: the size of the dot is proportional to the strength of the response of the corresponding first-stage
prediction neuron. (c) The response of all the second-stage prediction neurons to the corresponding
example test image shown in (b). The response is indicated by the grayscale, with white corresponding
to no response and black corresponding to a high response. It can be seen that the strongest responses
correspond to the centres of the cars.

neuron responses (as illustrated in fig. 4c) was analysed to find the coordinates of spatially-contiguous regions of
strong activity. Such a region was defined as a contiguous neighbourhood in which each neuron had an activity
of more than 0.001, and which was completely surrounded by neurons with a response of 0.001 or less. The
coordinates represented by such a region were then determined using population vector decoding (Georgopoulos
et al., 1986). This simply calculates the average of the coordinates represented by the neurons in the region,
weighted by each neuron’s response. For the multi-scale task, the coordinates of regions of high activity were
determined in the same way, but in a three-dimensional space (position and scale). The total sum of the response
in each region was also recorded.

To quantitatively assess the performance of the proposed algorithm the procedures advocated in Agarwal and
Roth (2002) were followed. Specifically, for each region with a total response exceeding a threshold, the location
(and scale) represented by that region were determined (as described in the preceding paragraph) and these values
were compared to the true location (and scale) of each car provided in the ground-truth data. The comparison
was performed using the java code supplied with UIUC cars data set. If the predicted parameter values were
sufficiently close to the ground-truth, this was counted as a true-positive. If multiple regions of high activity
corresponded to the same ground-truth parameters, only one match was counted as a true-positive, and the rest
were counted as false-positives. All other regions of high activity that failed to match the ground-truth data were
also counted as false-positives. Ground-truth parameters for which there was no corresponding values found by
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Figure 5: Results of applying the proposed method to the single-scale UIUC cars dataset. (a) recall
versus 1-precision. At the threshold for equal error rate there were two images in which there were
errors. (b) The only false negative. (c) The only false positive. The bounding boxes, shown in yellow,
indicate locations in which cars were detected by the proposed algorithm.

Method UIUC-single UIUC-multi

hierarchical PC/BC-DIM 0.5 2.9

ISM (Leibe et al., 2008) 9 -
ISM+MDL verification (Leibe et al., 2008) 2.5 5
Hough Forest (Gall and Lempitsky, 2009; Gall et al., 2011) 1.5 2.4
Discriminative HT (Okada, 2009) 1.5 -
ESS (Lampert et al., 2008) 1.5 1.4
keypoint patch matching+PC/BC-DIM voting (Spratling, 2016c) 1 3.6
chains model (Karlinsky et al., 2010) 0.5 -
sliding window HMAX+verification (Mutch and Lowe, 2006) 0.06 9.4
IHRF (Lin et al., 2014) 0 1.3
PRISM (Lehmann et al., 2011) - 2.2

Table 3: Percentage EER of various methods on the UIUC single-scale and multi-scale cars dataset.

the proposed method were counted as false-negatives. The total number of true-positives (TP ), the number of
false-positives (FP ), and the number of false-negatives (FN ) were recorded over all test images, and were used
to calculate recall ( TP

TP+FN ) and precision ( TP
TP+FP ). By varying the threshold applied to select regions of high

activity, precision-recall curves were plotted to show how detection accuracy varied with threshold. To summarise
performance, the f-score (= 2.recall.precision

recall+precision = 2TP
2TP+FP+FN ) which measures the trade-off between precision

and recall, was calculated at the threshold that gave the highest value. In addition, to allow comparison with
previously published results, the equal error rate (EER) was also found. This is the percentage error when the
threshold is set such that the number of false-positives equals the number of false-negatives.

The precision recall curve obtained on the UIUC single-scale cars dataset is shown in fig. 5. The f-score was
0.9975 and the EER was 0.5%. Figure 5b and c show the only two images in the test set on which the proposed
method makes a mistake at the threshold for equal error rate. The results obtained on the UIUC multi-scale cars
dataset are shown in fig. 6. In this case, the f-score was 0.9718 and the EER was 2.9%. These results are compared
to those of other published methods in tab. 3. It can be seen that the proposed method is competitive with the state-
of-the art, and particularly, that it outperforms the method described in Spratling (2016c). That method is similar
to the one proposed here, except that the first processing-stage described here was replaced by a process that
found keypoints in the image, and matched (using the ZMNCC as the similarity metric) the image patches around
these keypoints to elements in the dictionary. Hence, the method proposed here is simpler, in that both stages are
implemented using PC/BC-DIM, rather than being implemented in completely different ways.

The algorithm described in Spratling (2016c) was inspired by the implicit shape model (ISM; Leibe et al.,
2008), which employs the generalised Hough transform (Ballard, 1981; Duda and Hart, 1972; Hough, 1962) to
allow dictionary elements that match features in the image to cast votes for the possible location and scale of
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Figure 6: Results of applying the proposed method to the multi-scale UIUC cars dataset. (a) recall
versus 1-precision. At the threshold for equal error rate there were seven images in which there were
errors. These images are shown in (b)-(h) with bounding boxes, in yellow, indicating locations in which
cars were detected by the proposed algorithm. (b)-(d) Show the three images in which there were false
negatives. (e) Shows the only image in which there was both a false negative and a false positive. Note
that while both cars appear to have been recognised, one has not be located with sufficient accuracy. (f)-
(h) Show the three images in which there were false positives. Note that the last image has been flagged
as containing a false-positive as the left-most car is not included as a true-positive in the ground-truth
data.

the to-be-recognised object. Once all the votes have been cast, ISM uses a Minimum Description Length (MDL)
criteria to reject false peaks caused by votes that come from image elements which have also voted for other
peaks that are more likely to be the true ones. The second processing-stage in the proposed model can also be
thought of as implementing the voting process of the generalised Hough transform, but using explaining away
(rather than MDL) to suppress false peaks (Spratling, 2016c). In a previous section the function of the second
processing-stage was described as being analogous to the function of the pooling stages in deep neural networks.
There is therefore also an analogy between the Hough transform and pooling. Both attempt to allow recognition
with tolerance to location, but the Hough transform is both less constrained and less arbitrary than the pooling
used in deep networks.

4 Conclusions
The current work provides an initial proof-of-concept demonstration that predictive coding can perform object
recognition in natural images. Hence, it provides concrete support for previous speculation about the possible
role of predictive coding in perceptual inference. Object recognition is a complex task that requires being able to
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distinguish one individual or class of object from other individuals or classes while being able tolerate changes
in the appearance of the to-be-recognised object from one image to another. The results presented here show
that PC/BC-DIM can recognise individuals and classes, and that it can do so with tolerance to position, illumina-
tion, size, partial occlusion, and within-category shape variation. The experiments used here have not addressed
tolerance to non-rigid shape deformations, or rotations.

As discussed in sect. 3, the proposed model has strong similarity to existing methods like deep neural net-
works, ISM, and sparse dictionary-based classification. These previous methods tend to make use of different
mechanisms to perform different sub-tasks. For example, deep networks use different mechanisms for feature
detection, pooling, and classification, while ISM uses different mechanisms for detecting image features and
counting votes. In contrast, the proposed model uses the same mechanism (PC/BC-DIM) to perform each of these
sub-tasks.

Improving the performance of the proposed method on the tasks used here, or extending it to more complex
object recognition tasks that require tolerance to a greater range of image transformations of the recognition of a
wider range of objects, or developing it into a model of ventral stream processing, is likely to require the building
of deeper and more complex networks. Defining appropriate weights for such networks is the key to their success.
In the current article the weights have been set in a rather ad-hoc and non-biologically plausible way. This is
sufficient for a proof-of-concept demonstration, but would need to be addressed in future work.
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