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Abstract
Recent neurophysiological data showing the effects of locomotion on neural activity in mouse primary visual

cortex has been interpreted as providing strong support for the predictive coding account of cortical function.
Specifically, this work has been interpreted as providing direct evidence that prediction-error, a distinguishing
property of predictive coding, is encoded in cortex. This article evaluates these claims and highlights some of
the discrepancies between the proposed predictive coding model and the neuro-biology. Furthermore, it is shown
that the model can be modified so as to fit the empirical data more successfully.
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1 Introduction
The idea that the brain is engaged in perceptual inference, combining bottom-up evidence with prior knowledge
to infer the most likely causes of sensory stimuli, has a long history dating back at least as far as the work of
Helmholtz in the 1860s (Clark, 2013). This general idea has inspired more specific theories about how such
inference is performed in the brain, including the Bayesian brain hypothesis, analysis-by-synthesis, predictive
coding, and the free-energy principle (Barlow, 1994; Chater et al., 2006; Clark, 2013; Friston, 2009, 2005; Griffiths
et al., 2008; Griffiths and Tenenbaum, 2006; Kersten et al., 2004; Knill and Richards, 1996; Lee and Mumford,
2003; Ma, 2012; Ma and Jazayeri, 2014; Mumford, 1992; Pouget et al., 2013; Rao and Ballard, 1999; Spratling,
2017b; Vilares and Kording, 2011; Yuille and Kersten, 2006). Largely inspired by the computational model
proposed by Rao and Ballard (1999, Figure 1a), which was itself informed by the computational interpretation of
cortical structure proposed by Mumford (1992), predictive coding has emerged as a highly influential, neurally-
plausible, framework for understanding perceptual inference and brain function in general (Bubic et al., 2010;
Clark, 2013; Huang and Rao, 2011; Keller and Mrsic-Flogel, 2018; Kok and de Lange, 2015).

Many neurophysiological experiments designed to test the predictive coding model have found evidence con-
sistent with it (e.g., Alink et al., 2010; Edwards et al., 2017; Egner et al., 2010; Fang et al., 2008; Heilbron and
Chait, 2018; Kok et al., 2013; Kok and de Lange, 2015; Kok et al., 2017, 2012; Kok and Turk-Browne, 2018;
Murray et al., 2002, 2004; Schellekens et al., 2016; Summerfield and Egner, 2009; Summerfield and Koechlin,
2008; Summerfield et al., 2008; Wacongne et al., 2011). However, possibly the most compelling evidence that
predictive coding is performed in cortical circuits comes from two-photon imaging of mouse primary visual cortex
(V1) neurons labelled with a genetically encoded calcium indicator. These experiments (reviewed in Fridman and
Petreanu, 2017; Keller and Mrsic-Flogel, 2018; Khan and Hofer, 2018; Pakan et al., 2018), found a sub-population
of neurons (primarily located in the superficial layers of V1) that were driven by connections from motor regions
(M24b and M2) (Leinweber et al., 2017) that conveyed a prediction of optic flow speed based on the animal’s run-
ning speed (Keller et al., 2012; Zmarz and Keller, 2016). The activity of these V1 neurons was suppressed by optic
flow observed visually. Hence, these neurons signalled the mismatch between the predicted and the actual optic
flow (Keller et al., 2012; Zmarz and Keller, 2016). Furthermore, these mismatch neurons had localised receptive
fields (RFs), so that each signalled the discrepancy in optic flow for a specific region of visual space (Zmarz and
Keller, 2016). These localised receptive fields were retinotopically organised such that the mismatch RFs were
aligned with the RFs of visually-driven neurons, suggesting that mismatch was calculated in a local circuit (Keller
and Mrsic-Flogel, 2018; Zmarz and Keller, 2016).

These experimental results have been interpreted as evidence for predictive coding (Attinger et al., 2017;
Busse, 2018; Fridman and Petreanu, 2017; Keller et al., 2012; Keller and Mrsic-Flogel, 2018; Khan and Hofer,
2018; Leinweber et al., 2017; Pakan et al., 2018; Zmarz and Keller, 2016), and particularly, as being consistent
with the predictive coding model proposed by Rao and Ballard (1999). Specifically, it is proposed that the mis-
match neurons are calculating the error between a prediction of optic flow based on the animal’s running speed
and the actual optic flow (see Figure 2a). The calculation of prediction-error is a key process in predictive coding,
and one which most clearly distinguishes it from other theories of cortical function. Hence, direct evidence for
neurons encoding such errors is a significant step in validating the theory of predictive coding.

This article evaluates the proposed interpretation of the experimental results in terms of predictive coding, and
identifies several shortcomings in this explanation (Section 2.1). In addition it describes how the predictive coding
model can be modified to overcome these issues and to provide a better fit between the neurophysiology and the
model (Section 2.2).
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Figure 1: Hierarchical predictive coding models. (a) The model proposed by Rao and Ballard (1999).
Each cortical region contains two distinct populations of neurons. To avoid over-crowding the figure
only two neurons are shown in each population. The activations of the prediction neurons represent
beliefs about the causes underlying the activity of prediction neurons in the preceding cortical region
(and hence, indirectly about the causes of the sensory-driven input to cortex). Via the inter-regional
feedback connections, the prediction neurons reconstruct the activity pattern of the preceding population
of prediction neurons that would be expected given the current estimate of the causes. The activations of
the error neurons represent discrepancies between the predicted and actual prediction neuron responses in
the earlier cortical region. These errors are sent, via the inter-regional feedforward connections, to update
the activations of the subsequent population of prediction neurons, so as to improve the estimate of the
causes, and hence, to reduce the errors at the next iteration. Connections from error to prediction neurons
within each cortical region allow the discrepancies in the higher cortical region’s predictions to influence
the predictions made by the lower cortical region. Mathematical equations defining the behaviour of this
model are given in Section 2.1.4 and the labels x, e, y, and W refer to variables in those equations.
(b) The same hierarchical predictive coding model, but with a shifted allocation of neural populations to
cortical regions (Spratling, 2008b).

2 Results

2.1 Evaluation of the fit between the neurophysiological data and the model
2.1.1 Non-negative firing rates

The behaviour of the V1 mismatch neurons appears to be the opposite of what would be expected for the error
neurons in the predictive coding model. Error neurons are portrayed as calculating the difference between the
sensory-driven, in this case visually-driven, signal (V) and the top-down prediction (P), i.e., as calculating V-
P. Whereas the response properties of the mismatch neurons are more consistent with the calculation of P-V.
However, prediction-error (when calculated using subtraction) is a signed quantity: it can take negative as well as
positive values (Keller and Mrsic-Flogel, 2018; Rao and Ballard, 1999). For this signed quantity to be encoded in
biological neurons it is proposed that there are two types of mismatch neuron: ones that signal positive prediction-
errors (also called type I), and those that encode negative prediction-errors (type II) (Attinger et al., 2017; Keller
and Mrsic-Flogel, 2018; Rao and Ballard, 1999). It is the latter type of error neuron that corresponds to the
mismatch neurons that have been characterised by the neurophysiological results. The proposal that there are
both positive and negative error neurons addresses an underlying biological-implausibility with the original model
implemented by Rao and Ballard (1999): that error neurons in the model be able to produce both positive and
negative firing ratesa.

a An alternative solution to this problem would be to use a single population of error neurons to encode the exponential (i.e., the inverse log
transform) of the signed prediction errors, or similarly, to calculate the error using division rather than subtraction (Spratling, 2008a; Spratling
et al., 2009). When prediction errors are encoded as signed quantities, finding (via gradient descent) the prediction neuron activations that
minimise the (sum of squared) prediction errors requires the prediction neurons to be influenced in an additive way by prediction errors
(Achler, 2014; Harpur, 1997; Rao and Ballard, 1999). In contrast, when prediction error neurons encode the exponential of the subtractive
error, or encode the divisive error, then finding the prediction neuron activations that minimise the error requires the effect of prediction errors
be multiplicative (Achler, 2014; Spratling et al., 2009).
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Figure 2: Interpretations of the neurophysiological data in terms of predictive coding. Note that to avoid
overcrowding inhibitory inter-neurons have been left out of the figures. (a) The minimal neural circuitry
previously proposed to underlie the experimentally observed results (Zmarz and Keller, 2016). Motor
regions generate a prediction of the optic flow expected due to locomotion. This prediction is compared
to the actual optic flow to determine a prediction-error which is encoded by the mismatch neurons in V1.
(b) An extended model to improve the fit between the neurophysiological data and predictive coding, as
proposed by Keller and Mrsic-Flogel (2018). The proposed neural circuitry is expanded to include two
distinct sub-types of mismatch neurons (types I and II) and to include intra- and inter-regional connections
from the mismatch neurons to prediction neurons in both the local region and the motor region (see
Section 2.1.1). (c) The neural circuitry proposed in this article. Only one cortical region is shown, as this
is sufficient to account for the neurophysiological findings, however, this model could be extended into
a hierarchical one by adding connection to and from the prediction neurons to neurons in other regions.
The labels S and F indicate neurons tuned to slow and fast optic flow (see Section 2.2.1).

As well as addressing the issue of negative firing rates, Keller and Mrsic-Flogel (2018) also propose that there
should be inter-regional connections from the mismatch neurons in V1 to the prediction neurons in the motor
regions, and intra-regional connections from the mismatch neurons to prediction neurons in V1. These connections
should be excitatory for type I, and inhibitory for type II, mismatch neurons. Such connections are necessary as in
a predictive coding model errors are calculated in order to update the predictions, and hence, improve the match
between the predicted causes and the true causes of the sensory input. Consequently, the circuitry of the predictive
coding model proposed by Keller and Mrsic-Flogel (2018) to explain the neurophysiological data is as shown in
Figure 2b.

2.1.2 Fit to mismatch neuron data

Plotting the response (measured using the change in fluorescence, ∆F
F ) of the V1 mismatch neurons to different

combinations of running speed and visual flow produced the results shown in Figure 3a (Zmarz and Keller, 2016).
However, if the mismatch neurons are calculating the non-negative (i.e., half wave rectified) difference between
the prediction (P) and the visual signal (V), then the expected firing rate would look more like that shown in
Figure 3b (if cortex measures optic flow and running speed on a linear scale), or Figure 3c (if speed is measured
on a logarithmic scale). In either case, in order for these neurons to signal negative prediction-errors (calculated
using subtraction, see Section 2.1.1) the response should be zero when the visually-driven estimate of optic flow
equals or exceeds the prediction based on running speed. Clearly this is not the case for the V1 mismatch neurons,
which have a non-zero response when the two estimates of speed are similar.

Calcium-sensitive fluorescence signals provide only an indirect measure of neural spiking activity, and there
are thus many potential explanations for this discrepancy. For example, temporal smearing of the optical signal
caused, for instance by the timescale of calcium decay, could account for the non-zero values measured when the
visual optic flow matches the running speed (Georg Keller, personal communication, 2019). Zmarz and Keller
(2016) found that by applying a sigmoid function to the difference between running speed and visual flow speed
they could fit the firing rates expected by the predictive coding model to the change in fluorescence measured in
cortex. However, it remains possible that there is a more linear relationship between ∆F

F and neural firing rate.
If that were the case, then the equations of the predictive coding model would need to be altered to cope with
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Figure 3: Neurophysiological and simulation results. (a) Population average of mismatch neuron re-
sponses recorded from mouse V1 (adapted from Zmarz and Keller, 2016, Fig. 4c). (b & c) The response
expected if the mismatch neurons calculate (b) the difference between the prediction (P) and the visual
signal (V), or (c) the difference between the logarithms of these values. (d) The difference between
the response of the prediction neuron representing the cause of the input to a predictive coding network
and the maximum response of all other prediction neurons that represent alternative causes. Results are
shown for the Rao and Ballard (1999) implementation of predictive coding (Equation 1) with different
values of the parameter, ζ, and for the PC/BC-DIM implementation of predictive coding as described in
Section 2.2. In both cases, results are shown for different scales, s, of a synthetic task. White crosses
mark conditions which caused the network to be unstable. (e & f) The responses of error neurons in
the model proposed in this article (see Figure 2c) to different combinations of running speed and visual
flow when the model is implemented using the equations proposed by (e) Rao and Ballard (1999), (f) the
PC/BC-DIM algorithm.

mismatch neurons not signalling negative (and positive) prediction-errors but a function of these errors.

2.1.3 Fit to multisensory-integration data

Using a very similar experimental set-up, Saleem et al. (2013) measured the firing-rates of single cells in mouse
V1 using multisite electrodes. These experiments found a sub-population of neurons (primarily located in the
deep layers of V1) that were driven by both a prediction of optic flow based on the animal’s running speed
and the visually observed optic flow. The majority of these cells seemed to be integrating locomotor and visual
information, to produce a multi-modal estimate of the animal’s running speed (Saleem et al., 2013). While the
model proposed to account for mismatch neurons (Keller and Mrsic-Flogel, 2018, Figure 2b) does not exclude the
possibility of there being another population of neurons that integrate proprioceptive and visual information into
a joint estimate of speed, it also does not explain the existence of such neurons.
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2.1.4 Lateral inhibition within regions

The original Rao and Ballard (1999) model (see Figure 1a) suggests that the inter-regional connections are many-
to-many while the intra-regional connections are one-to-one (or one-to-two if there are separate error neuron
populations encoding positive and negative prediction-errors). As a consequence, this model propose that there
are many more connections between cortical regions than within cortical regions. However, inter-regional con-
nections have a high cost in terms of physical space (which is limited in the skull) and energy consumption (due
to the metabolic cost of sending signals along long-range connections). Much evidence points to evolution having
optimised the connectome to minimize these costs by minimising the overall axon wiring length (Bullmore and
Sporns, 2012; Cherniak et al., 2004; Ercsey-Ravasz et al., 2013). If the cortex does perform predictive coding,
then it is a challenge to explain why it would have been implemented (as envisaged by the Rao and Ballard (1999)
model) in such a way as to be maximally inefficient in terms wiring length.

A potential solution is to shift the proposed assignment of neural populations to cortical regions (see Figure 1b),
so that the bottom-up input to each cortical region arrives at the error neurons (rather than the prediction neurons)
and these neurons connect in a many-to-many pattern to a subsequent population of prediction neurons in the same
cortical region (Spratling, 2008b). Such a change in the allocation of neural populations to cortical regions has no
effect on the functioning of the model, just its neuro-anatomical interpretation.

This shift in the assignment of neural populations to cortical regions also makes more sense in terms of the
functionality of the dense connections between error neurons and the subsequent population of prediction neurons.
If the activity of a population of prediction neurons is represented by a vector, y, the feedforward weights to these
neurons are represented by a matrix, W, and the output of the prediction neurons in the preceding cortical region is
represented by a vector, x (see Figure 1a), the change in activity of the higher-level prediction neurons is described
as follows (see equation 8 of Rao and Ballard, 1999):

δy

δt
= −ϑg′(y) + η

(
ytd − y

)
+ ζWx− ζ

(
WWT

)
y (1)

Where ϑ, η, and ζ are scalar parameters. The four terms on the right-hand side of this equation are: (1) an
activation decay term (where g′(y) = y for a Gaussian prior distribution on the responses); (2) a term describing
the effect of top-down predictions (ytd) from a subsequent cortical regionb; (3) the feedforward drive; and (4) a
term that describes lateral inhibition between the prediction neurons within this population. This lateral inhibition
is mediated by the preceding population of error neurons, as is made explicit by rearranging the equation:

δy

δt
= −ϑg′(y) + η

(
ytd − y

)
+ ζW

(
x−WTy

)
(2)

Where the term in the last set of brackets is the activation, e, of the preceding population of error neurons, i.e.,
e = x−WTy. Lateral inhibition is a process that is typically considered to occur within cortical regions, and not
to rely on interactions with populations of neurons in different regions.

The model proposed by Keller and Mrsic-Flogel (2018, Figure 2b) to account for mismatch neurons differs
from the model proposed by Rao and Ballard (1999, Figure 1a) in suggesting that the bottom-up, visually-driven,
information is not transmitted to the error (or mismatch) neurons in V1 via the preceding population of V1 pre-
diction neurons. Instead, this model proposes that the visual inputs are sent directly to the mismatch neurons
and the V1 predictions neurons are reciprocally connected, with dense connections, to the mismatch neurons. As
a result, the Keller and Mrsic-Flogel (2018) model proposes a similar number of connections within a cortical
region as between two cortical regions. The reciprocal connections between the V1 prediction neurons and the
mismatch neurons perform lateral inhibition using connections intrinsic to V1. However, the reciprocal connec-
tions between the prediction neurons in the motor area and the mismatch neurons perform lateral inhibition using
long-range, inter-regional, connections. Hence, this model inherits from the Rao and Ballard (1999) model the un-
likely requirement that lateral inhibitory interactions between neurons in one cortical region are generated through
reciprocal connections with a neural population in a separate cortical area.

2.1.5 Ability to scale to complex tasks

One criteria that can be used to evaluate a model of brain function is its ability to scale-up to deal with real-world
tasks. The brain is capable of performing complex tasks within rich sensory environments. A model that can only

bOther, related, theories of inference in cortical circuits (Adams et al., 2013; Friston, 2009; Friston et al., 2011; Friston, 2005; Shipp, 2016)
propose that top-down inputs can selectively modify the gain of error neurons (such that prediction-errors are weighted by their reliability
or precision). This would correspond to changing the value of ζ in Equations 1 and 2. In such a model, the information conveyed by the
motor regions to V1 might be interpreted as an estimate of the precision of the visual signals under different levels of locomotion, rather
than a prediction of optic flow speed. In such models, precision-weighting of the prediction errors is important for allowing fast updating
of the predictions while maintaining stability. As will be discussed in Section 2.1.5, the Rao and Ballard (1999) model, which does not use
precision-weighting, has issues with stability.
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Configuration Figure 2b Figure 2c Figure 2c
Properties Equations Rao and Ballard (1999) Rao and Ballard (1999) PC/BC-DIM
Non-negative firing rates (Section 2.1.1) 3 7 3
Fits mismatch neuron data (Section 2.1.2) 3 7 3
Fits multisensory-integration data (Section 2.1.3) 7 3 3
Lateral inhibition within regions (Section 2.1.4) 7 3 3
Scales to complex tasks (Section 2.1.5) 7 7 3

Table 1: A summary of the desirable properties of a model, and an evaluation of the three models
discussed in the main text (in Sections 2.1, 2.2.1, and 2.2.2 respectively) in terms of which properties it
does (3) of does not (7) possess.

simulate simple tasks with impoverished inputs is therefore unlikely to be a good candidate for a model of cortical
function. For the predictive coding model, scaling up requires increasing the dimensionality of the input (i.e., the
complexity of the sensory environment) and the number of prediction neurons (to represent the larger number of
causes that may underlie the sensory input in this richer environment). However, for the predictive coding model
proposed by Rao and Ballard (1999) as the network increases in size it is necessary to reduce the rate at which
the prediction neuron responses are updated by decreasing the value of ζ in Equation 1 (Harpur, 1997). If ζ is not
decreased the network becomes unstable (all the neural responses oscillate between high and low values and these
values become infinitely large over time). However, if ζ is decreased then the activations of the prediction neurons
change very slowly and the algorithm becomes impracticably slow.

A simple, synthetic, task can be used to illustrate this issue with scaling in the Rao and Ballard (1999) model.
Consider a small patch of image in which the pixels take binary valuesc. Every image within this patch consists
of s pixels with a value of 1 (ON) and s pixels with a value of 0 (OFF). Each possible combination of s ON
and s OFF pixels has a different underlying cause. As s increases both the size of the image patch increases
and the number of possible underlying causes increases. Hence, it is possible to use this task, with increasing
values of s, to assess the ability of a predictive coding algorithm to scale. To do so, the images are used as input
(via the preceding population of error neurons) to a population of prediction neurons. Every underlying cause is
represented by a distinct prediction neuron which has weights that are optimal for representing that cause. When
an image is presented to the network, one prediction neuron (the one that represents the cause of the current
image) should be strongly active, and all other prediction neurons (which represent other possible causes) should
be inactive. Figure 3d shows the difference between the activation of the prediction neuron that represents the
cause of the input image and the activation of the next most strongly activated prediction neuron for different
values of parameter ζ and for different values of s, or scales of task. It can be seen that as s increase no value of ζ
enables the network to correctly identify the underlying cause, and large values of ζ result in network instability
(results marked with white crosses). These results were produced using 50 iterations to find the prediction neuron
responses. Increasing the number of iterations to 250 did not significantly change the resultsd. Note that the results
labelled “DIM” are for a different method of implementing predictive coding that will be described in Section 2.2.

2.2 Improving the fit between the neurophysiological data and the predictive coding
model

The effects of locomotion on neural activity in mouse primary visual cortex (Keller et al., 2012; Leinweber et al.,
2017; Saleem et al., 2013; Zmarz and Keller, 2016) can be partially explained by the predictive coding model
proposed by Keller and Mrsic-Flogel (2018, Figure 2b). However, this model is inconsistent with some aspects of
the neuro-biology, as summarised in the second column of Table 1. This section will consider how the outstanding
issues can be addressed, and hence, how the fit of the predictive coding model with the empirical data can be
improved.

The preceding section has referred to two facets of a prediction coding model: (1) the configuration of the
error and prediction neurons and how this is interpreted in terms of cortical circuity; and (2) the mathematical
equations that are used to simulate the behaviour of the error and prediction neurons. The model advanced by

cBinary inputs are used in order to easily define an unambiguous task, not because predictive coding models are restricted to making
predictions about simple ON and OFF states. Indeed, the generative model used in predictive coding is capable of reconstructing continuous
valued states (like luminance values) and more specialised algorithms (like Boolean factor analysis and belief propagation) might perform
better than predictive coding on binary-valued problems (Friston et al., 2017; Snášel et al., 2008).

dUsing the non-linear model that is also described in Rao and Ballard (1999), avoids the instability, but still results in the prediction neuron
that represents the cause of the input having a response that is not distinctively different from the responses of other prediction neurons. This
issue remains if a sparse kurtotic prior (Rao and Ballard, 1999) is imposed on the prediction neuron responses.
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Keller and Mrsic-Flogel (2018) uses the configuration shown in Figure 2b and also proposes that prediction-errors
are calculated using subtraction, which is consistent with the equations used by Rao and Ballard (1999).

The two properties of a model, configuration and equations, can be varied independently. Section 2.2.1 will
consider changing the configuration of the model, while keeping the equations defined by Rao and Ballard (1999).
This change solves some of the issues of the Keller and Mrsic-Flogel (2018) model, but it does not solve them all.
Section 2.2.2 will consider changing the equations of the model, as well as its configuration. The equations used
in Section 2.2.2 are those of the PC/BC-DIM model, which is a version of Predictive Coding (PC) reformulated to
make it compatible with Biased Competition (BC) theories of cortical function (Spratling, 2008b) and which uses
Divisive Input Modulation (DIM; Spratling et al., 2009) as the method for updating error and prediction neuron
activations. DIM calculates prediction-error using division rather than subtraction. It is shown that this change
produces a predictive coding model that can more successfully account for the neurophysiological data.

2.2.1 Changing configuration

The results of Saleem et al. (2013, see Section 2.1.3) suggest that V1 is performing multisensory integration in
order to produce a combined estimate of the animal’s running speed. Multisensory integration can be simulated
using a predictive coding model configured as shown in Figure 2c. In this model sensory input from the two differ-
ent sensory modalities (in this case vision and locomotion) both arrive as inputs to a population of error neurons.
Both these sets of inputs are represented using a population code (Deneve et al., 2001; Georgopoulos et al., 1986;
Pouget et al., 2003, 2000). In each population each neuron is tuned to a preferred value of speed, such that its
response is highest when the measured speed matches its preferred speed, and the neuron’s response decreases
as the difference between the measured speed and the preferred speed increases. Across the population different
neurons have different speed preferences, such that the whole range of possible speeds is represented by the popu-
lation as a whole. In the model that has been implemented neurons were given Gaussian RFs equally spaced along
a logarithmic scale representing speed. 18 neurons were used to provide a population code representing speed
based on the optic flow, and another 18 neurons were used to provide a population code representing speed based
on locomotion. The prediction neurons also formed a population code. Each prediction neuron had weights that
allowed it to receive input (via the error neurons) from neurons representing similar values of speed in the two
input population codes. Nine prediction neurons were used in the model. To avoid overcrowding Figure 2c shows
only pairs of neurons in each population labelled S and F to indicate tuning to slow and fast speeds, respectively.
Note that the error neurons and the subsequent population of prediction neurons are proposed to be located in
the same cortical region (V1), this represents a shift in the assignment of neural populations to cortical regions
compared to the Rao and Ballard (1999) model, which solves the issue of lateral inhibition relying on long-range,
inter-regional, connections (as described in Section 2.1.4).

In the proposed model the response of a particular prediction neuron can be driven by visual or locomotion
based input of the appropriate speed. This is consistent with neurophysiological evidence that mouse V1 neurons
respond to visual input in the absence of locomotion and to evidence that mouse V1 neurons respond to running
in the dark (Keller et al., 2012; Saleem et al., 2013). A prediction neuron will respond most strongly when both
inputs are active simultaneously, which is consistent with the neurophysiological data of Saleem et al. (2013, see
Section 2.1.3).

The proposed model was simulated using the formula (see Equation 2) proposed by Rao and Ballard (1999),
and the responses of all 36 error neurons were recorded for different combinations of running speed and visual
flow. These error neuron responses are shown in Figure 3e. It can be seen that none of these model neurons
have response properties that are consistent with the mismatch neurons reported by Zmarz and Keller (2016, see
Section 2.1.2 and Figure 3a). Furthermore, the equations proposed by Rao and Ballard (1999) require neurons
to be able to produce negative firing rates (see Sections 2.1.1) and does not scale to more realistic tasks (see
Section 2.1.5). Hence, while this version of the predictive coding model does overcome some short-comings
of the model proposed by Keller and Mrsic-Flogel (2018), it has its own limitations as summarised in the third
column of Table 1.

2.2.2 Changing configuration and equations

The configuration of the model shown in Figure 2c was simulated for a second time using the equations that define
the PC/BC-DIM variation of predictive coding (Spratling, 2008a, 2017b). The responses of the 36 error neurons
are shown in Figure 3f. It can be seen that a sub-population of the model error neurons have response properties
that are consistent with the mismatch neurons reported by Zmarz and Keller (2016, see Figure 3a). Because the
PC/BC-DIM model calculates the errors using a divisive (rather than a subtractive) comparison between the actual
and predicted inputs, the sub-population of error neurons that have a large response when running speed exceeds
visual flow speed (like the V1 mismatch neurons) have a non-zero response when the two estimates of speed are
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similar. This is more consistent with the neurophysiological data than the results produced when calculating the
error using subtraction (Figure 3c), and avoids the need for a post-hoc transformation of the output of the model in
order to fit the neurophysiological data (Section 2.1.2). As discussed in the preceding section, this configuration
of the model also successfully accounts for the neurophysiological data of Saleem et al. (2013, see Section 2.1.3)
and proposes that lateral inhibition results from interactions between neurons in local circuits rather than relying
on interactions with neurons in distinct cortical regions (Section 2.1.4). Furthermore, the PC/BC-DIM equations
allow the model to scale: results of the experiment described in Section 2.1.5 are shown on the row labelled “DIM”
in Figure 3d; and models containing 10s of thousands to 10s of millions of prediction neurons have been applied to
practical problems in computer vision (Spratling, 2013, 2017a). In addition, the PC/BC-DIM algorithm uses only
non-negative firing-rates. Hence, by changing the equations that implement predictive coding the configuration
shown in Figure 2c can provide a more comprehensive and successful account of the neuro-biology (see the last
column of Table 1).

3 Discussion
This article has shown that a range of neurophysiological data describing the effects of locomotion on neural
responses in mouse primary visual cortex (Keller et al., 2012; Leinweber et al., 2017; Saleem et al., 2013; Zmarz
and Keller, 2016) can be explained using predictive coding. This was achieved by rejecting the Rao and Ballard
(1999) implementation of predictive coding which has many biologically-implausible features (such as needing
neurons to be able to produce negative firing rates, predicting that cortical inter-regional connections are more
abundant than intra-regional connections, proposing that lateral inhibitory interactions between neurons rely on
long-range, inter-regional, connections, and an inability to scale to non-trivial tasks). It was also necessary to
reject the neural circuitry proposed by Keller and Mrsic-Flogel (2018): this model, being based on the Rao and
Ballard (1999) model, inherits some of the issues of that model as well as failing to fit some of the experimental
data. By using a different implementation of predictive coding, PC/BC-DIM, and by configuring the circuity of
this model to perform multisensory integration, it was possible to successfully simulate the neurophysiological
data while avoiding the issues of the previously proposed model.

Previous work has shown that the same configuration of the PC/BC-DIM model as was used here can per-
form near optimal (i.e., Bayesian) multisensory integration (Spratling, 2016), consistent with psychophysiological
experiments showing that human performance in sensory cue integration tasks is near optimal (Ernst and Jäkel,
2003; Ma and Pouget, 2008; Pouget et al., 2013; Seilheimer et al., 2014). The same model could potentially also
explain additional neurophysiological findings. For example, recent experiments have shown that the response to a
visual landmark in mouse V1 is modulated by an estimate of the animal’s location (Fiser et al., 2016; Saleem et al.,
2018). These results could also be simulated using the predictive coding circuity shown in Figure 2c by simply
replacing the two sensory inputs with one input encoding visual features (rather than visual optic flow) and one
encoding estimated location (rather than the speed of locomotion). In such a model the prediction neurons would
respond to specific visual features, but this response would be enhanced when the location estimate matched the
expected location for those features. Furthermore, the prediction neurons would respond to location information
in the absence of the corresponding visual stimulus, consistent with experimental results interpreted as showing
that V1 neurons become predictive of upcoming visual stimuli (Fiser et al., 2016). In addition, in such a model
location information in the absence of the corresponding visual stimulus would result in large responses from the
error neurons receiving the (unexpected) visual input. This is consistent with experimental results that show that
the omission of a predicted visual landmark results in a strong response in V1 (Fiser et al., 2016).

Predictive coding models come in several different forms (Spratling, 2017b). At the computational-level of
analysis all these models make the same claim: that the brain is attempting to fit an internal model of the world
to the sensory data by minimising the discrepancy between the predictions of the model and the sensory evi-
dence. However, at a more mechanistic-level, different models make different claims and predictions. This has
implications for hypothesis-driven empirical research evaluating predictive coding in the brain. In turn such neu-
rophysiological data should play a role in refining and improving models of predictive processing.

4 Experimental procedure
Open-source software, written in MATLAB, which performs the simulations described in this article is available
for download from: http://nms.kcl.ac.uk/michael.spratling/Code/pc_biological_fit.
zip.

The predictive coding networks were simulated using a vector of input values, x, that provided input to a
population of error neurons (with activations represented by a vector, e). The error neurons provided input to (and
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received connections from) a population of prediction neurons (with activations represented by a vector, y). The
connections from the error neurons to the prediction neurons had synaptic weight values represented by a matrix,
W.

4.1 Implementation of the Rao and Ballard (1999) algorithm
The prediction neuron activations were updated as described in Equation 2 and the error neuron activations were
calculated as e = x−WTy. As only one pair of error and prediction neurons were simulated, the effects of top-
down predictions, ytd, (that would arrive from a subsequent population of error neurons in a hierarchical model)
were ignored by setting ytd equal to y, so that the second term on the right-hand side of Equation 2 disappeared.

Hence, at each iteration, the prediction neuron responses were updated, such that:

y← y − ϑg′(y) + ζW
(
x−WTy

)
(3)

where g′(y) = y for the version of the model with a Gaussian prior distribution on the responses, and g′(y) =
y

1+y2 for the version of the model with a kurtotic prior. For the non-linear version of the model the following
update was used:

y← y − ϑg′(y) + ζW
(
1− tanh(x− tanh(WTy)

)2
(4)

All elements of y were initialised to zero prior to the first iteration. Varying the value of parameter ϑ was not
found to improve the results, and the results shown in this article have been produced with a value of ϑ = 0. A
value of ζ = 0.1 was used unless stated otherwise.

4.2 Implementation of the PC/BC-DIM algorithm
The activation of the error and prediction neurons were determined using the following equations:

e = x�
(
ε2 + ŴTy

)
(5)

y← (ε1 + y)⊗We (6)

Where Ŵ is a matrix representing the same synaptic weight values as W but such that the rows of Ŵ are nor-
malised to have a maximum value of one,� and⊗ indicate element-wise division and multiplication respectively,
and ε1 and ε2 are non-negative parameters that, respectively, prevent prediction neurons becoming permanently
non-responsive and prevent division-by-zero errors. Values of ε1 = 1 × 10−6 and ε2 = 1 × 10−4 were used in
all experiments, but the results were not found to be sensitive to these parameter values. All elements of y were
initialised to zero. The values of e and y were then iteratively updated with the new values of y calculated by
eq. 6 substituted into eqs. 5 and 6 at the next iteration.

4.3 Synthetic task to test ability to scale
For this task x was a binary-valued vector with 2s elements. s elements in x had a value of 1 and s elements had
a value of 0. Each prediction neuron had weights representing the input generated by one possible cause. Hence,
each row of W was set equal to one possible x, normalised so that the weights summed to one. The number of
prediction neurons required to represent all possible causes increases exponentially with s. Specifically, for s equal
to integer values from 1 to 8, the corresponding number of causes are: 2, 6, 20, 70, 252, 924, 3432, and 12870.
For example, when s = 2, the possible input patterns are: x = (1, 1, 0, 0)T , x = (1, 0, 1, 0)T , x = (1, 0, 0, 1)T ,
x = (0, 1, 1, 0)T , x = (0, 1, 0, 1)T , and x = (0, 0, 1, 1)T and the weights are:

W =


0.5 0.5 0 0
0.5 0 0.5 0
0.5 0 0 0.5
0 0.5 0.5 0
0 0.5 0 0.5
0 0 0.5 0.5

 .

The network was tested by setting x equal to one of the possible input patterns, and recording the responses of
the prediction neurons after 50 iterations. The response of the prediction neuron with weights corresponding to the
presented pattern was then compared to the response of the prediction neuron with the next highest response. The
difference between these two prediction neuron responses should be large if the network has correctly represented
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the stimulus, i.e., if it can accurately distinguish one cause from another. These results are shown for both pre-
dictive coding algorithms in Figure 3d. The results show that when the sensory environment contains distinct, but
highly overlapping, stimuli then the Rao and Ballard (1999) algorithm, with the correct choice of parameters, can
distinguish one stimulus from another when there are up to around 20 stimuli, while the PC/BC-DIM algorithm
can successfully distinguish at least 12870 stimuli.

4.4 Model of multi-sensory integration
For this task x was a 36 element vector, the first 18 elements represented the outputs of a population of neurons
encoding the visual optic flow speed, and the second 18 elements represented the outputs of a population of
neurons encoding the predicted optic flow based on running speed. Both these input populations encoded speed
using a population code defined on a logarithmic scale. Specifically, the input neurons had Gaussian RFs centred
at speed values from 0.0156 to 211.6 cm/s and were equally spaced apart on a logarithmic scale. Each element of
x represented the response of the corresponding neuron in the population code to the sensed speed value.

Each row of W, i.e., each prediction neuron’s weights, consisted of two Gaussian RFs. One RF connecting the
prediction neuron to the first 18 error neurons, and hence, to the inputs representing visual optic flow speed. The
second RF connecting the prediction neuron to the second 18 error neurons, and hence, to the inputs representing
running speed. Both RFs were centred at the same speed value in each of these two input spaces. The population
of nine prediction neurons had preferences for (i.e., RFs centred at) speed values from 0.0156 to 102.5 cm/s and
were equally spaced apart in logarithmic space.

The network was tested by presenting different combinations of speed value to each of the two input popula-
tions. These input speed values ranged from 0.0625 to 64 cm/s equally spaced apart on a logarithmic scale. For
all combinations of optic flow and running speed, the responses for all 36 error neurons were recorded after 25
iterations. These results are shown in Figure 3e when the network was simulated using the Rao and Ballard (1999)
algorithm and Figure 3f when using PC/BC-DIM.
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