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Abstract. We take a broad view that ultimately Grid- or Web-services
must be located via personalised, semantic-rich discovery processes. We
argue that such processes must rely on the storage of arbitrary metadata
about services that originates from both service providers and service
users. Examples of such metadata are reliability metrics, quality of ser-
vice data, or semantic service description markup. This paper presents
uddi-mT , an extension to the standard uddi service directory approach
that supports the storage of such metadata via a tunnelling technique
that ties the metadata store to the original uddi directory. We also dis-
cuss the use of a rich, graph-based rdf query language for syntactic
queries on this data. Finally, we analyse the performance of each of these
contributions in our implementation.

1 Introduction

Service discovery is a critical element in large scale, open distributed systems
such as the Grid infrastructure, as it facilitates the dynamic identification of re-
sources (abstracted as services). Providers may adopt various ways of describing
their services, access polices, contract negotiation details etc. However, many
resource consumers also impose their own selection policies on the services they
prefer to utilise, such as provenance, derived quality of service, reputation met-
rics etc, and consequently they need to locally manage and augment service
descriptions with additional information, i.e. metadata. To create dynamic or-
ganisations [6] that achieve specific goals, there is a need for discovery services
and associated mechanisms that support the annotation of service descriptions.

The problem of service discovery is compounded by the plethora of different
types of service directories that exist. Such services may include: public directo-
ries such as uddi servers hosted by IBM or Microsoft; specialised directories such
as the I3C bioinformatics service directory; provider-specific directories such as
a directory of all the services hosted by a research institute; or even local direc-
tories such as the catalog of all the services that a laboratory is hosting for its
own users. For convenience, access to different service directories (including the
enforcement of selection policies), and homogenisation across different represen-
tations, etc. should be transparent to the user requesting a desired service.



Against this background, we have identified some key requirements within
the myGrid project [9] that can enhance the process of service discovery by
making the discovery process personalised to the user.
1. Users (not just service providers) need to be able to attach metadata to

service instances registered in service directories.
2. Users cannot be expected to systematically query all service directories in

a discovery process. Instead, federating a selected set of service directories
should provide a single point of contact for the discovery process.

3. Users should be able to provide a semantic description of the task they want
to achieve and the discovery should match these user requirements against
semantic descriptions of the published services.

We will refer to the first two techniques as syntactic, whereas the third is
semantic. In this paper, we focus only on the first technique—allowing users to
attach metadata to published service instances. We will consider the other two
techniques in future publications.

Since the types of personalised metadata that are required will naturally
vary greatly between individuals, organisations, and scientific user communities,
an abstract and highly flexible representation is required. By regarding and
implementing metadata items as triples that specify a relation between a subject
and an object, arbitrary metadata can be described and queried via graph-based
search criteria. This can be achieved through the use of rdf (the W3C Resource
Description Framework) [11], which underpins the Semantic Web effort [3].

Thus we have developed uddi-mT which augments the functionality of ex-
isting uddi servers by: (i) locally storing arbitrary metadata as triples; (ii)
supporting an rdf-based query language rdql[8] that in turn can offload more
query processing to the discovery service; (iii) abstracting the interface of dif-
ferent discovery services into a single unified view; and (iv) supporting local
annotation and selection policy management. As uddi offers an already com-
plex interface (e.g. allowing searches on business categories and service names),
uddi-mT uses a “tunnelling technique”, dispatching regular uddi requests to a
uddi service, and intercepting uddi-mT metadata specific requests.

In summary, the contributions of this paper are the following.
1. First, we provide additional motivation for metadata-based service discovery;
2. Second, we describe the architecture of uddi-mT ;
3. Third, we evaluate the performance of the tunnelling technique and we con-

trast a simple key-value metadata search with the graph-based rdql queries.

The paper is organised as follows. In Section 2, we motivate the need for
recording personalised metadata for service directories, discuss alternatives and
justify the motivations for moving to rdql queries. We describe our architecture
in Section 3, and its implementation in Section 4, and conclude in Section 5.

2 Background and Motivation

Service discovery has played a crucial role in the evolution and deployment of dis-
tributed systems. Early distributed systems comprised collections of components



(e.g. client/server or object-oriented) that were implicitly linked through func-
tion names, or linked through tcp/ip-based host and port addresses. Federated
domain name servers (dns) simplified and abstracted the use of these numeric
addresses by providing a registry-based mechanism for locating the hosts. Jini
[1] used a similar approach as part of its Java-based distributed infrastructure.
Classes exposed and published their interfaces as proxy objects with a Jini dis-
covery service. By searching for a given class-name, matching proxy objects could
then be retrieved and invoked, which would in turn invoke the remote service.
Whilst providing a mechanism whereby services could easily be added, removed
or replaced within a system, this approach was based on an assumption that
there was a shared agreement about what a given service type was called (i.e.
its class name) and that there was an agreed and well defined interface. Other
distributed technologies support similar principles, including dcom, Corba, xp-
com, etc.

Web Services extend the idea of Jini services by relaxing several assumptions.
Built upon Web technologies, Web Services are declared in xml and utilised
Web-based protocols (such as http) to publish and retrieve xml documents.
The Simple Object Access Protocol (soap)[17] provides a transport mechanism
to shuttle xml content between services or applications. The Web Services De-
scription Language (wsdl)[16] explicitly defines the interface of a service. By ad-
hering to these definitions, services can be produced that automatically publish
wsdl descriptions that in turn are used to define the content of soap messages,
and thus simplifying the development of interoperable components.

However, in order to utilise these published services, developers must first
locate them. Unlike Jini, Web Services do not belong within well defined class
hierarchies, and thus it is not feasible to locate services through class labels.
Instead, the uddi service directory [14] provides a mechanism whereby service
providers can register information about themselves, such as physical address,
contact phone number, etc; the types of business they are involved in; and ref-
erences to the service descriptions. uddi registries provide this information in
response to white-pages queries (i.e. given the name of a service provider, what
are its details) and yellow-pages queries (i.e. what service providers provide ser-
vices that belong to a given pre-defined service type). Based on a set of queries,
developers are able to browse through a list of service descriptions to locate a
desired service. However, little support is provided for searching for a service
based on a capability (i.e. signature) or user defined data.

Technical Models (tModels) support the specification of additional attributes
that can be associated with objects stored in the uddi repository. In their most
common mode of use, tModels provide a fingerprint that are defined globally
across a uddi registry and refer to a technical specification adhered to by a par-
ticular service binding template. The other use for tModels is as expressions of
particular identifier or classification namespaces (e.g. US Tax Code ID or the
NAICS taxonomy) that can be attached to business entities, services, or bind-
ing templates. Additional information (i.e. values) can be associated with such



tModel references within a uddi entry, thus allowing metadata to be associated
with these entries. Consequently, tModels may be used as follows:

1. Concept reference to a technical specification. For example, several businesses
may adhere to a specific RosettaNet Partner Interface Processes specification
[12]. Once a tModel is defined for this specification, all future uddi business
entries can indicate whether or not their associated service also adheres to
this specification by including this tModel.

2. Sets of metadata keys. uddi entries can be extended globally by defining
tModels that correspond to new properties. Thus, a uddi business entry can
include a reference to this tModel, and associate some value to it.

This latter ability provides a powerful, but limited mechanism for augmenting
service registrations with metadata, and was utilised to encode properties from
the daml-Services (daml-s) ontology [4] within uddi records [10].

However, before tModels may be used, they need to be registered with a
uddi server and hence be unique. Whilst this can be used to map well defined
specifications to tModels, it is inappropriate for specifying large numbers of
locally used metadata attributes (such as a set of attributes that may be shared
by a single organisation or domain). The uddi V3 specification attempts to
patch this oversight by defining a specific tModel, general keywords , to allow
simple unregistered key/value pairs to be attached to a uddi entity. Ignoring
the fact that there are no V3 implementations yet, this patch still is oriented
towards metadata supplied by the service providers, not users, and allows only
simple textual metadata as opposed to more complex structures. An alternative
approach to storing explicit, personalised, and possibly dynamic metadata that is
associated with a service description is required that addresses these deficiencies.

Many Grid projects require large numbers of service-based and domain-based
attributes, some of them complex, to describe additional properties about engi-
neering and scientific metadata. Examples include:

– Perceived reputation of a service: such information is critical to build webs
of trusted services in an open environment;

– Perceived reliability of a service: such information will have more value if it
is provided by a third party, and not by the service provider itself;

– Perceived quality of service of a given instance (e.g. poor network connec-
tivity for a user may imply that external services appear to be slow);

– Price for accessing a service (the user’s institution may have negotiated a
local price to access a resource, e.g. ACM or IEEE digital libraries);

– Ontological descriptions of a service, which may differ if multiple ontologies
or multiple interpretations of a service exist. While we may imagine that
a whole scientific community shares a common ontology, the very nature
of undertaking research necessarily entails that ontology revisions will be
created by those who undertake this research, and who will therefore want
to use them in order to characterise services within their refined ontologies.



2.1 RDF and RDQL

rdf, the W3C Resource Description Framework [11] was originally developed
as a framework for describing and interchanging metadata for published data
on the Web. Although built using xml, it overcomes many of the limitations
of simply using xml for metadata by removing order dependency and the con-
struction of nested tree-like data-structures. Instead, rdf represents metadata
as triples, which can be used to construct graph-based data-structures (Figure
1(a)). The triples represent two resources (the subject and object) and a prop-
erty that relates these resources (known as the predicate). For example, the
triple “(results, encryptionType, high)” would contain the subject results, pred-
icate encryptionType, and the object high. Both subject and object can, in turn,
be related to other concepts using additional properties (or predicates), forming
a directed graph. rdf extends this natural structure by allowing resources and
properties to be represented by uris, which refer to elements within rdf schema
vocabularies, or ontologies.

SELECT ?x

WHERE (?x,<mt:hasOutputs>,?y),
      (?y,<mt:encryptionType>,<encript:high>),

USING grid FOR <http://www.grid.org/service#>,
      mt FOR <http://www.uddimt.org/metadata#>,
      encript FOR <http://www.mygrid.org/crypt#>

<mt:hasInputs>

<mt:encryptionType>

<encript:high>

<grid:Results>

<grid:service>

<grid:InputAttrs>

<mt:hasOutputs>

Fig. 1. (a) RDF Graph (b) RDQL Query

rdql is a graph-based query language [8], that exploits the graph structure
of rdf. It is an implementation of SquishQL for the Jena rdf toolkit [7]. Based
on sql, it supports queries that themselves are graphs constructed as sets of
triples. Uninstantiated variables are preceded with the syntax “?”. The SELECT
clause identifies the variables to be returned, and the WHERE clause specifies a
conjunction of triples that represent the graph. USING provides an abbreviation
for uris by defining a prefix. Figure 1(b) displays a graph query, which looks for
all services “?x” with encrypted outputs.

2.2 Summary

While uddi is the acknowledged standard directory service mechanism for Web
Services, it is limited in the kind of metadata that can be stored about services,
the ways in which it can be queried, and who can annotate service descriptions
with metadata. Our previous work, uddi-m, was an early attempt to associate
metadata with services and maintain soft state information [5], based on leases
à la Jini. Both ideas were reused by the Cardiff team in their service directory
with QoS information [13]. With uddi-mT , we take a further step by regarding
and implementing metadata as triples, which gives us access to Semantic Web
technologies such as rdf, and powerful query languages such as rdql over a
uniform representation of information. uddi-mT works in conjunction with a



uddi service to provide precisely these extra capabilities, and eventually support
for personalised directory service federation and semantic service discovery.

3 Architecture

In this section, we describe the principles underlying the architecture of uddi-mT .
Details can found at http://www.mygrid.ecs.soton.ac.uk/software/service-di

rectory/. We considered the following requirements during the design:

1. uddi-mT should be compliant with the original uddi [14] specification and
support future development in this direction.

2. Existing client and service provider applications should be ported easily to
uddi-mT .

The key components of the architecture are depicted in Figure 2, where we see
that uddi-mT is the point of contact for clients, either dispatching requests to
uddi or processing them locally.

As far as the implementation is concerned, uddi-mT was designed to be as
generic as possible. First, all incoming requests are dispatched to the appropri-
ate handler according to their type. Second, the uddi-mT backend is specified
by an interface, which can be implemented in different ways: currently, we are
supporting a relational database and the Jena triple store [7].

UDDI!M UDDI

publish publish

publish

UDDIM4J 

Proxy

Client

configuration file
handler

backend interface

Metadata

Lease

Method

Method Parameters

Services

Relational Database Backend Triple Store Backend

Fig. 2. Architecture of uddi-mT

This design assumes that all soap messages for the service directory issued
by the client are routed to uddi-mT , which selectively filters incoming soap
messages. It relies on the combination of the soap envelope and namespace



contained in the message to dispatch the message to the appropriate handler,
as specified by a configuration file loaded at initialisation time. Messages with
the namespaces of uddi versions 1 and 2 are directly tunnelled to uddi, whereas
messages with a uddi-mT namespace are handled locally.

All metadata-related information is stored in the uddi-mT backend. Its in-
terface is implemented in two different ways. First, we use a relational database
with five tables for metadata, leases, methods, their parameters and services.
Second, the same information is implemented in a Jena [7], for which two imple-
mentations are possible, a relational database or the Berkeley Triple stores [2].

uddi-mT offers several extensions to uddi. First, uddi-mT is able to associate
metadata with services. Second, it supports a lease mechanism that requires ser-
vices to renew their lease in order to maintain their registration in uddi-mT ;
such functionality is present in Jini [1] and is also ubiquitous in the Open Grid
Services Architecture [5]. Third, uddi-mT is able to extract the information con-
tained in wsdl files describing the interface. Fourth, uddi-mT extends the query
mechanism of uddi to allow searches of all the extra information it accumulates
about services. Fifth, in the specific case of the Jena backend, uddi-mT allows
users to express queries in the rdql-query language [7], offering homogeneous
ways of traversing the metadata graph associated with services.

While uddi is defined as a Web Service, a programmatic interface, uddi4j [15],
is also available for Java: it provides a client-side proxy with an API implement-
ing the uddi functionality, which allows programmers to abstract away from the
messaging layer. We have extended this proxy, by subclassing it, with additional
uddi-mT functions for managing leases and metadata. Thus, we are preserv-
ing clients’ binary compatibility. Indeed, a uddi proxy can be substituted for a
uddi-mT proxy, transparently to existing clients, since the latter is a subclass of
the former. Clients do not have to use the functionality provided by uddi-mT ,
they can use the existing namespace specification and the calls will be directly
tunnelled to the underlying uddi service.

4 Performance Analysis

The purpose of this section is to evaluate the performance of our design deci-
sions. We will focus our attention on two specific aspects. First, adopting the
tunnelling technique reduces the implementation effort and allows us to maintain
compatibility with evolving standards, but it comes at the price of soap-message
forwarding. In the first part of this section, we analyse the cost of tunnelling.
Second, the use of metadata in a service directory allows us to reduce the com-
putational load on clients, while performing more selective and computationally
intensive queries at the server side. In the second part of this section, we anal-
yse the cost of metadata querying, and see how the use of the rdql language,
offering extended expressiveness to the user impacts on the querying cost.

Tunnelling Cost Our hypothesis is that the overhead introduced by the tun-
nelling technique is acceptable. In order to evaluate such a hypothesis, we have
set up the following experimental framework.



A uddi-mT service and its associated uddi service are hosted in a Tomcat
server. A client uses a uddi4j proxy successively configured to use uddi and
uddi-mT . In order to avoid the cost of networking, both the client and services
are run on a same machine, and communications take place through the “local-
host” network device. We issue a uddi-query that searches for a service with a
specific name, for which a single instance has been registered. Figure 3 shows
the overhead introduced by uddi-mT , which tunnels the request to uddi. The
tests were run on a Pentium 4, 1.5GHz, with 512Mb, using Tomcat 4.0 and the
Registry Server 1.0 02, in the Java Web Services Developer Pack (1.0 01). The
data plotted were averaged over 10 runs. The tunnelling overhead is 7.2%.
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Fig. 3. Overhead of Tunnelling

We also evaluated the cost of tunnelling as the size of query results increases,
but did not obtain any significant result, as the marginal tunnelling cost was
noise compared to the querying cost.

Metadata Querying Cost Our second hypothesis is that using a triple store
as an internal representation mechanism for uddi-mT is practical, and the use
of the RDQL-query language can reduce communication costs, and offload the
client, by performing some server-side computation. For these experiments the
associated uddi is not involved, resulting in a commensurate reduction in query
times from the previous experiments.

In Figure 4, we measured the costs of attaching a property value pair to
a service already registered, which we called a property write operation, and of
finding a service with a given property value pair, which we called a property read
operation. We used the two different backends, a mySQL relational database and
Jena with the Berkeley triple store for these experiments. For the Jena, backend
we use the API to find the service with a given metadata, and we did not
rely on the rdql-query language. We plotted the results in Figure 4(a) using a
logarithmic scale to differentiate the curves better. Our purpose here is is not to
compare persistent storage technologies, but to understand the cost of metadata
management. We can see that read operations for both backends and the write
operation in the Jena store are very similar. We explain the higher cost for the



write operation with the sql database by the cost of storing information on disk,
which is probably not measured with the triple store.

In Figure 4(b), we used the rdql-query language to search for a service satis-
fying 100 properties; 20 such services were found in the system. For convenience,
we again plotted the Jena read line from Figure 4(a). We can see that the rdql-
query engine processing a complex query that checks 100 properties marginally
outperforms our direct use of the triple store API, which itself behaved well
compared to a relational backend.
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5 Conclusion and Future Work

In this paper, we have discussed the necessity of attaching metadata to services
registered in service directories. Such metadata, describing functional and non-
functional characteristics of services, can be provided by both publishers and
consumers of a service. We have presented the architecture and the implementa-
tion of uddi-mT , an extension of uddi, supporting such a facility. In addition, in
order to provide a more uniform view of the metadata attached to services, we
have introduced in the service directory the idea of a triple store and an associ-
ated rdf-based query language. They give opportunities to clients to offload the
service searching process to the service directory servers, also reducing the com-
munication costs. Our experimental evaluation has shown that our architectural
design is practical.

Our future work will cover several further aspects so as to provide powerful,
personalised service discovery. First, the information model associated with uddi
could completely be encoded in a triple store, hence providing a uniform way
of querying over all information related to service descriptions. Second, multiple
uddi service directories will co-exist, and we need to be able to federate their
content into a personally curated service discovery view, acting as the users’ sin-
gle point of contact for their service discovery. Finally, curating such a federation
of service directories has to be semi-automatic in order to remain tractable: to
this end, we need such federation to be defined by a policy that specifies how
information should be managed.
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