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Abstract. Many architectures of autonomous agent have been proposed throughout AI research.
The most common architectures, BDI, are procedural in that they do no planning, seriously curtailing
an agent’s ability to cope with unforeseen events. In this paper, we explore the relationship between
propositional planning systems and the process of means-ends reasoning used by BDI agents and
define a mapping from BDI mental states to propositional planning problems and from propositional
plans back to mental states. In order to test the viability of such a mapping, we have implemented
it in an extension of a BDI agent model through the use of Graphplan as the propositional planning
algorithm. The implemented prototype was applied to model a case study of an agent controlled
production cell.
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1. Introduction. Development of autonomous rational agents has been one of
the main drivers of artificial intelligence research for some time [37]. Initial efforts fo-
cused on disembodied means-ends reasoning with the development of problem-solving
systems and generic planning systems, such as STRIPS [15], later evolving into the
idea of embodied problem solving entities (i.e. agents) [37]. In this line of research,
one of the most widely studied models of autonomous agents has been that supported
by the mental states of beliefs, desires and intentions [7], or the BDI model. While
efforts towards defining BDI architectures have been sustained and significant, res-
ulting in both theoretical [34] and practical architectures [14], they have also led to a
disconnect between them.

In particular, theories of autonomous BDI agents often rely on logic models that
assume infinite computational power, while architectures defined for runtime efficiency
have curtailed an agent’s autonomy by forcing the agent to rely on a pre-compiled
plan library. Although simple selection of plans from a plan library is computationally
efficient, at compile time an agent is bound to the plans provided by the designer, lim-
iting an agent’s ability to cope with situations not foreseen at design time. Moreover,
even if a designer is able to define plans for every conceivable situation in which an
agent finds itself, such a description is likely to be very extensive, offsetting some of
the efficiency benefits from the plan library approach. The absence of planning cap-
abilities thus seriously curtails the abilities of autonomous agents. In consequence, we
argue that planning is an important capability of any autonomous agent architecture
in order to allow the agent to cope at runtime with unforeseen situations.

Though the efficiency of planning algorithms has been a major obstacle to their
deployment in time-critical applications, many advances have been achieved in plan-
ning [43], and developments are ongoing [2]. Considering that planning is an enabler of
agent flexibility, and that there have been significant advances in planning techniques,
it is valuable and important for autonomous agent architectures to employ planning
to allow an agent to cope with situations that the designer was not able to fore-
see. This article describes and demonstrates one such architecture, which integrates
propositional planning with BDI, allowing agents to take advantage of the practical
reasoning capabilities (i.e. selecting and prioritising goals) of the BDI model, and
replacing the BDI means-ends reasoning (i.e. selecting a course of action to achieve
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goals) with the flexibility of generic planning. Our approach is underpinned by a
mapping among BDI mental states and propositional planning formalisms, allowing
any algorithm based on a similar formalism to be used as a means-ends reasoning
process for a BDI agent. In order to demonstrate the viability of such an approach
we take a specific BDI agent model, namely the X-BDI model [27], and modify it to
use propositional planning algorithms to perform means-ends reasoning [30].

The paper is organised as follows: Section 2 contains an overview of the related
work and main concepts used throughout this paper; Section 3 describes X-BDI and
the extensions that allow it to use an external planning algorithm; Section 4 contains a
case study used to demonstrate the implemented prototype; finally, Section 5 contains
concluding remarks about the results obtained in this work.

2. Agents and Planners. In this section we review background work on agents
and planning systems, and conclude with a discussion of the integration of these
technologies in an agent architecture, laying the groundwork for the remainder of this
article. Section 2.1 provides an overview of computer agents and the BDI model,
used in the agent architecture described later in this article; Section 2.2 introduces
generic planning algorithms and problem representation; Section 2.3 describes the
particular planning algorithm used in the prototype described in Section 3; finally,
we discuss how these technologies can be pieced together in order to address some of
their individual limitations.

2.1. Agents. The growing complexity of computer systems has led to the de-
velopment of increasingly more advanced abstractions for their representation. An
abstraction of growing popularity for representing parts of complex computer sys-
tems is the notion of computer agents [13], so far as to be proposed as an alternative
to the Turing Machine as an abstraction for the notion of computation [19, 42]. Al-
though there is a variety of definitions for computer agents, most researchers agree
with Jennings’ definition of an agent as encapsulated computer system, situated in
some environment, and capable of flexible, autonomous action in that environment in
order to meet its design objectives [19].

In the context of multi-agent systems research, one of the most widely known
and studied models of deliberative agents uses beliefs, desires and intentions (BDI) as
abstractions for the description of a system’s behaviour. The BDI model originated
from a philosophical model of human practical reasoning [6], later formalised [11]
and improved towards a more complete computational theory [34, 44]. Though other
approaches to the design of autonomous agents have been proposed [16], the BDI
model or variations of it are used in many new architectures of autonomous agents
[13, 31, 4, 40]. More specifically, the components that characterise the BDI model can
be briefly described as follows [28]:

• beliefs represent an agent’s expectation regarding the current world state or
the possibility that a given course of action will lead to a given world state;

• desires represent a set of possibly inconsistent preferences an agent has re-
garding a set of world states; and

• intentions represent an agent’s commitment regarding a given course of ac-
tion, constraining the consideration of new objectives.

The operation of a generic BDI interpreter can be seen as a process that starts
with an agent considering its sensor input and updating its belief base. With this
updated belief base, a set of goals from the agent’s desires is then selected, and the
agent commits itself to achieving these goals. In turn, plans are selected as the means
to achieve the goals through intentions which represent the commitment. Finally,
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these intentions are carried out through concrete actions contained in the instantiated
plans (or intentions). This process is illustrated in the activity diagram of Figure 2.1,
which shows the components of an agent that are used in each of the main processes of
BDI reasoning, namely: obtaining sensor input and updating beliefs; selecting a goal
from among the desires; and adopting intentions to carry out the actions required to
achieve the selected goal.

BeliefsBeliefs

ActionsActions

Sensor Update

Goal Selection

DesiresDesires

IntentionsIntentions

Intention Selection

Action

Fig. 2.1. Activities of a generic BDI interpreter.

This last process of selecting and adopting intentions to achieve a goal is one of
the most important processes of the BDI model, since it affects not only the actions
an agent chooses, but also the selection of goals, as an agent must drop goals deemed
impossible. This problem of determining whether an agent is capable of satisfying
its objectives through some sequence of actions given an environment and a set of
objectives is sometimes characterised as the agent design problem [45]. The most
widely known BDI agent implementations [18, 33, 14] bypass this problem through the
use of plan libraries in which the courses of action for every possible objective an agent
might have are stored as encapsulated procedures. Agents using these approaches are
said to pursue procedural goals. However, the theories commonly used to underpin the
creation of new plans of action at runtime assume an agent with unlimited resources,
thus making their actual implementation impossible [37, 34]. When an agent selects
target world-states and then uses some process at runtime to determine its course
of action, it is said to pursue declarative goals. Recent efforts seek to deal with this
problem in various ways, for instance by defining alternate proof systems [27, 31] or
using model checking in order to validate the agent’s plan library [5]. An alternative
approach to solving the problem is the use of planning algorithms to perform means-
ends reasoning at runtime [37, 26, 47].

2.2. Planning Algorithms. Means-ends reasoning is a fundamental compon-
ent of any rational agent [6] and is useful in the resolution of problems in a number
of different areas, such as scheduling [38], military strategy [39], and multi-agent co-
ordination [12]. Indeed, the development of planning algorithms has been one of the
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main goals of AI research [35]. In more detail, a planning problem is generically
defined by three components [43]:

• a formal description of the start state;
• a formal description of the intended goals; and
• a formal description of the actions that may be performed.

A planning system takes these components and generates a set of actions ordered
by some relation which, when applied to the world in which the initial state description
is true, makes the goals’ description true. Despite the high complexity proven for the
general case of planning problems1, recent advances in planning research have led to
the creation of planning algorithms that perform significantly better than previous
approaches to solving various problem classes [43, 2]. These new algorithms make use
of two main techniques, either combined or separately:

• expansion and search in a planning graph [3]; and
• compilation of the planning problem into a logical formula to be tested for

satisfiability (SAT) [20].
One such planning algorithm is Graphplan, which we consider in more detail

below.

2.3. Graphplan. Graphplan [3] is a planning algorithm based on the first of
these techniques, expansion and search in a graph. It is considered to be one of
the most efficient planning algorithms created recently [43, 38, 17], having been re-
fined into a series of other algorithms, such as IPP (Interference Progression Planner)
[22] and STAN (STate ANalysis) [24]. The efficiency of Graphplan was empirically
demonstrated through the very significant results obtained by instances of Graphplan
in the planning competitions of the AIPS (International Conference on AI Planning
and Scheduling) [21, 25].

Planning in Graphplan is based on the concept of a graph data structure called
the planning graph, in which information regarding the planning problem is stored
in such a way that the search for a solution can be accelerated. Planning graph
construction is efficient, having polynomial complexity in graph size and construction
time with regard to problem size [3]. A plan in the planning graph is essentially a
flow, in the sense of a network flow, and the search for a solution to the planning
problem is performed by the planner using data stored in the graph to speed up the
process. The basic Graphplan algorithm (i.e. without the optimisations proposed
by other researchers [21, 25]) is divided into graph expansion and solution extraction,
which take place alternately until either a solution is found or the algorithm can prove
that no solution exists. The way these two parts of Graphplan are used throughout
planning is summarised in the activity diagram of Figure 2.2, and explained below.

Since a plan is composed of temporally ordered actions and, in between these
actions there are world states, graph levels are divided into alternating proposition
and action levels, making it a directed and levelled graph, as shown in Figure 2.3.
Proposition levels are composed of proposition nodes labelled with propositions, and
connected to the actions in the subsequent action level through pre-condition arcs.
Here, action nodes are labelled with operators and are connected to the nodes in the
subsequent proposition nodes by effect arcs.

Every proposition level denotes literals that are possibly true at a given moment,
so that the first proposition level represents the literals that are possibly true at time

1Planning is known to be undecidable [10] and planning problems, in the general case, have
PSPACE complexity [9].
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Graph Expansion Solution Extraction
Consistent Goals? Yes

No Solution

No Plan FoundSolution Impossible

Fig. 2.2. Graphplan algorithm overview.

1, the next proposition level represents the literals that are possibly true at time 2
and so forth. Similarly, action levels denote operators that can be executed at a given
moment in time in such a way that the first action level represents the operators
that may be executed at time 1, the second action level represents the operators that
may be executed at time 2 and so forth. The graph also contains mutual exclusion
relations (mutex) between nodes (at the same graph level) so that they cannot be
simultaneously present at the same graph level for the same solution. This gives them
a fundamental role in algorithm efficiency, as they allow the search for a solution to
completely ignore a large number of possible flows in the graph.

Level 0

Mutex

Action

Proposition

Level 4Level 3Level 2Level 1

Fig. 2.3. A planning graph example.

After graph expansion, the graph is analysed by the solution extraction part of
the algorithm, which uses a backward chaining strategy to traverse the graph, level by
level, trying to find a flow starting from the goals and leading to the initial conditions.
An important optimising factor in this phase is never to search for a solution unless
all the goal propositions are present and consistent, since they cannot be mutually
exclusive at the last graph level. Fundamental to Graphplan is its assurance that,
whenever a plan for the proposed problem exists, the algorithm will find it, otherwise
the algorithm will determine that the proposed problem is unsolvable [3].
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2.4. Discussion. When one considers how BDI reasoning operates, it is straight-
forward to perceive that propositional planning can be used as a means-ends reasoning
component. From a representational point of view, BDI mental states can be conver-
ted to planning problems without complication: beliefs translate into an initial state
specification, actions and capabilities translate into operator specifications and selec-
ted goals translate into a goal state specification. At this simple level, the delegation
of means-ends reasoning to an external planning process can improve the runtime
efficiency of existing BDI interpreters by leveraging advances in planning algorithms
research.

3. Introducing procedural planning into X-BDI.

3.1. Introduction. Given the shortcomings of traditional BDI architectures in
terms of runtime flexibility, and the performance problems of alternative architectures,
we define an extended version of the X-BDI agent model [27], modified to accommod-
ate the use of an external planning component. Here, we focus on STRIPS-like (STan-
ford Research Institute Problem Solver) formalisms [15]. Our formalism is based on
the one introduced by Nebel [30], and, according to the author, is a SIL formalism,
i.e. the basic STRIPS plus the possibility to use incomplete specifications and literals
in the description of world states. It is important to point out that the formalism
defined by Nebel [30] is more general, but since we do not aim to provide a detailed
study of planning formalisms, we use a simpler version. In particular, we use a propos-
itional logical language with variables only in the specification of operators, and with
operators not being allowed to have conditional effects. In Nebel’s description of the
the STRIPS formalism, one can notice that it deals only with atoms. Nevertheless,
within this paper more expressivity is desirable, in particular, the possibility to use
first order ground literals. It is possible to avoid these limitations through the use of
syntactic transformations so that planners can operate over first order ground literals.
The main contribution of our work lies in the efficiency improvement of a declarative
agent architecture. The fact that this type of agent architecture has traditionally
been notoriously inefficient highlights the relevance of this efficiency gain.

3.2. X-BDI. An X-BDI agent has the traditional components of a BDI agent,
i.e. a set of beliefs, desires and intentions. The agent model was originally defined
in terms of the Extended Logic Programming with explicit negation (ELP) formalism
created by Alferes and Pereira [1], which includes a revision procedure responsible
for maintaining logic consistency. We do not provide a description of the formalism
here, though we assume the presence of its revision procedure in our description of X-
BDI. Given its extended logic definition, X-BDI also has a set of time axioms defined
through a variation of the Event Calculus [27, 23].

The set of beliefs is simply a formalisation of facts in ELP, individualised for a
specific agent. From the agent’s point of view, it is assumed that its beliefs are not
always consistent, and whenever an event makes the beliefs inconsistent, they must
be revised. The details of this process are unimportant in the understanding of the
overall agent architecture, but can be found in [1]. The belief revision process in
X-BDI is the result of the program revision process performed in ELP.

Every desire in an X-BDI agent is conditioned to the body of a logic rule, which
is a conjunction of literals called Body. Thus, Body specifies the pre-conditions that
must be satisfied in order for an agent to desire a property. When Body is an empty
conjunction, some property P is unconditionally desired. Desires may be temporally
situated, i.e. can be desired at a specific moment, or whenever their pre-conditions are
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valid. Moreover, a desire specification contains a priority value used in the formation
of an order relation among desire sets.

There are two possible types of intentions: primary intentions, which refer to the
intended properties, and relative intentions, which refer to actions able to bring about
these properties. An agent may not intend something in the past or that is already
true, and intentions must in principle be possible, i.e. there must be at least one plan
available whose result is a world state where the intended property is true.

Now, we diverge from the original X-BDI architecture in several respects. First,
the original reasoning process verified the possibility of a property through the abduc-
tion of an event calculus theory to validate the property. In brief, the logic representa-
tion of desires in the original X-BDI included clauses specifically marked for revision in
such a way that sequences of actions (whose preconditions and effects were described
in event calculus) could be found true in the process of revising these clauses. This
abduction process was necessary for the implementation of X-BDI planning frame-
work in extended logic, but the implementation of the logic interpreter was notably
inefficient for abductive reasoning. In this work, the planning process is abstracted
out from the operational definition of X-BDI, allowing any planning component that
satisfies the conditions of Section 2.2 to be invoked by the agent. Thus, the notion of
possibility of a desire is associated with the existence of a plan to satisfy it.

The reasoning process performed by X-BDI begins with the selection of eligible
desires, which represent unsatisfied desires whose pre-conditions are valid, though the
elements of this set of desires are not necessarily consistent among themselves. A set
of eligible desires that are both consistent and possible is then selected as candidate
desires, to which the agent commits itself to achieving by adopting them as primary
intentions. In order to achieve the primary intentions, the planning process generates
a sequence of temporally ordered actions that constitute the relative intentions. This
process is summarised in Figure 3.1.

Eligible desires have rationality constraints that are similar to those imposed by
Bratman [6] over intentions in the sense that an agent will not desire something in
the past or something the agent believes will happen without its interference. Agent
beliefs must also support the pre-conditions defined in the desire Body. Within the
agent’s reasoning process these desires give rise to a set of mutually consistent subsets
ordered by a partial order relation.

The process of selecting candidate desires seeks to choose from the eligible desires
one subset that contains only desires that are internally consistent and possible. A
possible desire in this sense is one that has a property P that can be satisfied through
a sequence of actions. In order to choose among multiple sets of candidate desires, the
original X-BDI uses ELP constructs that allow desires to be prioritised in the revision
process. Although we depart from the original abduction theory, we still use these
priority values to define a desire preference relation. Through this preference relation,
a desire preference graph that relates all subsets of eligible desires is generated.

Candidate desires represent the most significant modification made in this paper
regarding the original X-BDI [27]. Originally, X-BDI verified the possibility of a desire
through the abduction of an event calculus theory in which the belief in the validity
of a desired property P could be true. Such an abduction process is, actually, a form
of planning. Since our main objective in this paper is to distinguish the planning
process previously hard-coded within X-BDI, the notion of desire possibility must
be re-defined. Therefore, we define the set of candidate desires to be the subset of
eligible desires with the greater preference value, and whose properties can be satisfied.
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Fig. 3.1. X-BDI operation overview.

Satisfiability is verified through the execution of a propositional planner that processes
a planning problem in which the initial state contains the properties that the agent
believes at the time of planning. The P properties present in the candidate desires
are used to generate the set of primary intentions. The modified reasoning process
for X-BDI is illustrated in Figure 3.2.

Primary intentions can be seen as high-level plans, similar to the intentions in
IRMA [7], and representing the agent’s commitment to a course of action. These
primary intentions are systematically refined up to the point where an agent has a
temporally ordered set of actions representing a concrete plan towards the satisfaction
of its goals. Relative intentions then correspond to the temporally ordered steps of the
concrete plans generated to satisfy the agent’s primary intentions. Thus the notion of
agent commitment results from the fact that relative intentions must not contradict
or annul primary intentions.

3.3. Intention Revision. The computational effort and the time required to
reconsider the whole set of intentions of a resource-bounded agent is generally sig-
nificant regarding the environment change ratio. Intention reconsideration should
therefore not occur constantly, but only when the world changes in such a way as
to threaten the plans an agent is executing or when an opportunity to satisfy more
important goals is detected. As a consequence, X-BDI uses a set of reconsideration
triggers generated when intentions are selected, and causes the agent to reconsider its
course of action when activated.

These trigger conditions are defined to enforce Bratman’s [6] rationality conditions
for BDI components, as follows. If all of the agent’s primary intentions are satisfied
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Fig. 3.2. Modified X-BDI overview.

before the time planned for them to be satisfied, the agent restarts the deliberative
process, since it has achieved its goals. On the other hand, if one of the primary
intentions is not achieved at the time planned for it, the agent must reconsider its
intentions because its plans have failed. Moreover, if a desire with a higher priority
than the currently selected desires becomes possible, the agent reconsiders its desires in
order to take advantage of the new opportunity. Reconsideration is completely based
on integrity constraints over beliefs, and since beliefs are revised at every sensoring
cycle, it is possible that reconsideration occurs due the triggering of a reconsideration
restriction.

3.4. Implementation. The prototype implemented for this work is composed of
three parts: the X-BDI kernel, implemented in Prolog; a planning system containing
a C++ implementation of Graphplan; and a Java graphical interface used to ease
the operation of X-BDI and to visualise its interaction with the environment. The
architecture is outlined in Figure 3.3.

Socket 2BDI GraphplanAgent Viewer

Java Prolog C++

Plan

Beliefs
Desires

X
Intentions

Fig. 3.3. Solution Architecture
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Here, the Agent Viewer interface communicates with X-BDI through sockets by
sending the input from the environment in which the agent is embedded and receiving
the result of the agent’s deliberation. Through the Agent Viewer the user can also
specify the agent in terms of its desires, actions and initial beliefs. Once X-BDI
receives the agent specification, it communicates with the planning module through
operating system files and the Prolog/C++ interface. The planner is responsible for
generating a set of intentions for the agent. When the agent deliberates, it converts
subsets of the agent’s desired properties into propositional planning problems and
invokes the planning algorithm to solve these problems until either a plan that solves
the highest priority desires is found, or the algorithm determines that it is not possible
to solve any one of these problems.

4. A BDI Production Cell. In this work we use a BDI agent in order to
model a production cell as a case study, and as a means to verify the validity of the
architecture described in Section 3. In particular, the rational utilisation of equipment
in industrial facilities is a complex problem, especially scheduling its use. This problem
is complicated when the facility produces multiple component types, where each type
requires a subset of the equipment available. In our test scenario, the proposed
production cell [46], illustrated in Figure 4.1, is composed of seven devices: a feed
belt, a deposit belt and four processing units upon which components are moved to be
processed.

Processing
Unit 3

BeltDepositFeedBelt

Processing
Unit 2

Processing
Unit 4

Processing

L1

Unit 1

Fig. 4.1. A BDI Production Cell.

Components enter the production cell for processing through the feed belt and,
once processed by all the appropriate processing units, they are removed from the
cell through the deposit belt. Every processing unit is responsible for performing
a different kind of operation on the component being processed, and can hold only
one component at a given moment. Each component introduced into the cell can
be processed by one or more processing units, determined by the type of component
being processed, and different component types have different processing priorities.
The control of the production cell is entrusted to a BDI agent implemented using X-
BDI, which should schedule the work of the production cell in relation to its beliefs,
desires and intentions, re-scheduling whenever some change in the system occurs.

The first step in modelling any problem using a STRIPS-like formalism is the
choice of the predicates used to represent the problem’s object-types and its states.
We define the following predicates representing objects in the cell:

• component(C) denotes that C is a component to be processed;
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• procUnit(P) denotes that P is a processing unit, which is also a device;
• device(D) denotes that D is a device;
• feedBelt represents the feed belt;
• depositBelt represents the deposit belt.

Similarly, we have the following predicates representing system states:
• over(C,D) denotes that component C is over device D;
• empty(P) denotes that processing unit P is empty, i.e. has no component over

it;
• processed(C,P) denotes that component C has already been processed by

processing unit P;
• finished(C) denotes that component C has already been processed by all

appropriate processing units and has been removed from the production cell;
Next, we define the actions the agent is capable of performing in the context

of the proposed problem, these are summarised in Table 4.1. Informally, action
process(C,P) represents the processing that a processing unit P performs on a com-
ponent C over it; consume(C) represents the removal of component C from the pro-
duction cell through the deposit belt; and move(C,D1,D2) represents the motion of
component C from device D1 to device D2.

Action Preconditions Effects
process(C,P) procUnit(P) processed(C,P)

component(C)
over(C,P)

consume(C) component(C) ¬over(C,depositBelt)
over(C,depositBelt) empty(depositBelt)

finished(C)
move(C,D1,D2) over(C,D1) over(C, D2)

empty(D2) ¬over(C,D1)
component(C) ¬empty(D2)
device(D1) empty(D1)
device(D2)

Table 4.1
Action specification for the production cell agent.

The processing requirements of components and their priorities are modelled
through desires. Thus, we can model an agent, pCell, which needs to process com-
ponent comp1 by processing units procUnit1, procUnit2 and procUnit3 as soon as
this component is inserted into the production cell using the specification of Listing 12.

Similarly, we can model the agent’s need to process component bloc2 by pro-
cessing unit procUnit3 and procUnit4 by adding to the agent specification the desires
of Listing 2.

Finally, we model the agent’s static knowledge regarding the problem domain, in
particular the object’s classes and the initial world-state with the beliefs specified in
Listing 3.

The arrival of a new component in the production cell is signalled by the sensors
through the inclusion of component(comp1) and over(comp1,feedBelt) in the agent’s
belief database, activating the agent’s reconsideration process. Given the desire’s

2Tf is the time at which the desire is valid, and the values 0.7 and 0.6 are the desires priorities.
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Listing 1
Specification of desires related to processing comp1.

des(pCell,finished(comp1),Tf,[0.7])
if bel(pCell, component(comp1)),

bel(pCell, processed(comp1,procUnit1)),
bel(pCell, processed(comp1,procUnit2)),
bel(pCell, processed(comp1,procUnit3)),
bel(pCell, -finished(comp1)).

des(pCell,processed(comp1,procUnit1),Tf,[0.6])
if bel(pCell, component(comp1)),

bel(pCell, -processed(comp1,procUnit1)).

des(pCell,processed(comp1,procUnit2),Tf,[0.6])
if bel(pCell, component(comp1)),

bel(pCell, -processed(comp1,procUnit2)).

des(pCell,processed(comp1,procUnit3),Tf,[0.6])
if bel(pCell, component(comp1)),

bel(pCell, -processed(comp1,procUnit3)).

Listing 2
Specification of desires related to processing comp2.

des(pCell,finished(comp2),Tf,[0.6])
if bel(pCell, component(comp2)),

bel(pCell, processed(comp2,procUnit3)),
bel(pCell, processed(comp2,procUnit4)),
bel(pCell, -finished(comp2)).

des(pCell,processed(comp2,procUnit3),Tf,[0.5])
if bel(pCell, component(comp2)),

bel(pCell, -processed(comp2,procUnit3)).

des(pCell,processed(comp2,procUnit4),Tf,[0.5])
if bel(pCell, component(comp2)),

bel(pCell, -processed(comp2,procUnit4)).

pre-conditions previously defined, only the desires related to the following properties
become eligible:

• processed(comp1,procUnit1);
• processed(comp1,procUnit2);
• processed(comp1,procUnit3);

These desires are then analysed by the process of selecting candidate desires. In
this process, the agent’s eligible desires and beliefs are used in the creation of planning
problems that are sent to Graphplan for resolution. The result of this processing is a
plan that satisfies all the eligible desires, with the following steps:
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Listing 3
Domain knowledge for the production cell.

bel(pCell, procUnit(procUnit1)).
bel(pCell, procUnit(procUnit2)).
bel(pCell, procUnit(procUnit3)).
bel(pCell, procUnit(procUnit4)).
bel(pCell, device(procUnit1)).
bel(pCell, device(procUnit2)).
bel(pCell, device(procUnit3)).
bel(pCell, device(procUnit4)).
bel(pCell, device(depositBelt)).
bel(pCell, device(feedBelt)).
bel(pCell, empty(procUnit1)).
bel(pCell, empty(procUnit2)).
bel(pCell, empty(procUnit3)).
bel(pCell, empty(procUnit4)).
bel(pCell, empty(depositBelt)).

1. move(comp1,feedBelt,procUnit2)
2. process(comp1,procUnit2)
3. move(comp1,procUnit2,procUnit1)
4. process(comp1,procUnit1)
5. move(comp1,procUnit1,procUnit3)
6. process(comp1,procUnit3)

The existence of this plan indicates to X-BDI that the specified set of eligible de-
sires is possible, thus turning the previous set of desires into candidate desires, which
generate primary intentions representing the agent’s commitment. Next, relative in-
tentions are generated using the steps in the recently created plan, with one intention
for each step of the plan. These lead the agent to perform the appropriate actions.
Once the actions are executed, the candidate desires from the previous deliberation are
satisfied. Moreover, the pre-condition of the desire to accomplish finished(comp1)
becomes true, reactivating the agent’s deliberative process and generating the follow-
ing plan:

1. move(comp1,procUnit3,depositBelt)
2. consume(comp1)

Once more, this plan brings about some intentions and, eventually, leads the
agent to act. Now, suppose that during the agent’s operation, a new component
in the production cell arrives. If this occurred immediately after the deliberation
that created the first plan, it would be signaled by the agent’s sensors through the
inclusion of component(comp2) and over(comp2,feedBelt) in the beliefs database,
which would modify the eligible desires chosen in the second deliberation cycle to:

• finished(comp1);
• processed(comp2,procUnit3);
• processed(comp2,procUnit4);

These desires become candidate desires because Graphplan is capable of generat-
ing a plan that satisfies all the desires. The new plan is:

1. move(comp1,procUnit3,depositBelt)
2. move(comp2,feedBelt,procUnit4)
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3. consume(comp1)
4. process(comp2,procUnit4)
5. move(comp2,procUnit4,procUnit3)
6. process(comp2,procUnit3)
7. move(comp2,procUnit3,depositBelt)
8. consume(comp2)

The steps of this plan thus generate relative intentions, eventually leading the
agent to the execution of its actions.

5. Conclusions. In this paper, we have discussed the relationship between pro-
positional planning algorithms and means-end reasoning in BDI agents. To test the
viability of using propositional planners to perform means-ends reasoning in a BDI ar-
chitecture, we have described a modification to the X-BDI agent model. Throughout
this modification, new definitions of desires and intentions were created in order for
the agent model to maintain the theoretical properties present in its original version,
especially regarding the definition of desires and intentions impossibility. Moreover, it
was necessary to define a mapping between the structural components of a BDI agent
and propositional planning problems. The result of implementing these definitions in
a prototype can be seen in the case study of Section 4, which represents a problem
that the means-end reasoning process of the original X-BDI could not solve.

Considering that most implementations of BDI agents use a plan library for
means-end reasoning in order to bypass the inherent complexity of performing plan-
ning at runtime, X-BDI offers an innovative way of implementing more flexible agents
through its fully declarative specification. However, its planning mechanism is not-
ably inefficient. For example, the case study described in Section 4 was not tractable
in the original X-BDI planning process. Thus, the main contribution of our work
consists in addressing this limitation through the definition of a mapping from BDI
means-end reasoning to fast planning algorithms. Moreover, such an approach enables
the agent architecture to be extended with any propositional planning algorithm that
uses a formalism compatible with the proposed mapping, thus allowing an agent to
use more powerful planners as they become available, or to use more suitable planning
strategies for different problem classes.

Other approaches to performing runtime planning have also been proposed, the
most notable recent ones by Sardina et al. [36] and Walczak et al. [41]. Sardina
proposes the tight integration of the JACK agent framework [8] with the SHOP hier-
archical planner [29]. This approach relies on new constructs added to an otherwise
procedural agent representation and takes advantage of the similarity of hierarchical
task network (HTN) planning to BDI reasoning. The work of Walczak proposes the
integration of JADEX [32] to a customised knowledge-based planner operating in par-
allel to agent execution, using a similar process of agent-state conversion to work of
Meneguzzi et al. [26, 47], as well as the one presented in this paper.

Some ramifications of this work are foreseen as future work, in particular, the
incorporation of the various Graphplan improvements, as well as the conduction of
tests using other propositional planning algorithms, SAT being an example. It is clear
that other agent architectures can benefit from the usage of planning components to
allow agents to cope with unforeseen events at runtime, as demonstrated by recent
efforts in planning agents [36, 41]. Therefore, investigating how to integrate planning
capabilities to AgentSpeak-based agents could create agents that can take advantage
of both the fast response of pre-compiled plans and the flexibility of being able to
plan at runtime to cope with unforeseen situations.
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