
Handling Mitigating Circumstances for Electronic
Contracts

Simon Miles1, Paul Groth2, Nir Oren1, Michael Luck1

1 Department of Computer Science, Kings College London, UK
2 Vrije Universiteit, Amsterdam, Netherlands

Abstract. Electronic contracts are a means of representing agreed responsibili-
ties and expected behaviour of autonomous agents acting on behalf of businesses.
They can be used to regulate behaviour by providing negative consequences,
penalties, where the responsibilities and expectations are not met, i.e. the contract
is violated. However, long-term business relationships require some flexibility in
the face of circumstances that do not conform to the assumptions of the con-
tract: mitigating circumstances. In this paper, we describe how contract parties
can represent and enact policies on mitigating circumstances. As part of this, we
require records of what has occurred within the system leading up to a violation:
the provenance of the violation. We therefore bring together contract-based and
provenance systems to address the issue of mitigating circumstances.

1 Introduction

Commitments between business parties are generally regulated through contracts. These
documents allocate responsibility for particular outcomes, allow parties to know what
to expect of each other and provide a basis for redress should those responsibilities and
expectations not be met. In many contexts, autonomous software agents can be used to
advantageously represent businesses’ interests in an automated way, including prepar-
ing, agreeing on, reasoning over, acting on and enforcing contracts in an electronic
form. Much research has been conducted on how best to instantiate contract-based sys-
tems [3, 16, 17].

For the purposes of this paper3, we consider a contract to be a set of clauses, each
of which specifies some responsibility of an agent. A clause may specify an obligation,
a prohibition or a permission, i.e. what should, should not or may be done respectively.
The set of agents to which clauses apply are called the contract parties. One crucial
aspect of an autonomous approach to electronic contracting is the handling of violations
of a contract clause, when the stated responsibilities have not been fulfilled. There are
different ways that a violation could be dealt with. For example, most contract-based
systems will include a notion of payments, and so violations may automatically incur
financial penalties.

However, relationships in business are important (as espoused by relational con-
tract theory, all transactions occur in the context of a relationship [9]) and a company

3 First presented at the Symposium on Behaviour Regulation in Multi-Agent Systems (BR-
MAS’08)



that handled all violations of a contract clause equally could damage its long-term re-
lationships with partners. In situations in which unexpected circumstances have led a
contract party to be unable to fulfil their responsibilities, other parties may act more
leniently than they are contractually allowed to do, in order to maintain the long-term
business relationship. Such circumstances are called mitigating circumstances.

In current electronic contracting approaches, mitigating circumstances are addressed
(if at all) by passing the decision on how to handle a violation up to a human. However,
organisations often have standard, if not publicised, policies for handling mitigating cir-
cumstances, and so automation is certainly possible. We would like to extend contract-
based systems to allow agents to autonomously consider, and react appropriately to,
mitigating circumstances. Note that a related factor influencing how forgiving a party
may be to violation, not considered in this paper but addressed elsewhere [13], is the
intention behind the actions leading to violation.

A pre-requisite to providing this extended functionality is the ability to determine
whether there were, or may have been, mitigating circumstances for a violation, which
requires reliable documentation of what has occurred and how that caused the violation.
It is only through such documentation that mitigating circumstances will be evident.
The problem of obtaining the relevant documentation of a violation’s causes is exacer-
bated by the fact that violations may only be dealt with some time after they occurred,
for instance where it is only through the accumulation of multiple failures over time
that a contract clause is violated.

In this paper, we describe how recording and reasoning over the causes of viola-
tions can help to better manage the behaviour of parties in the system. This allows con-
tracting parties to handle problems more flexibly, and encourage better coordination.
Specifically, the technical contributions of this paper are as follows.

– An algorithm for handling mitigating circumstances in contract violation based on
technologies for electronic contracting and for determining the provenance of vio-
lations, i.e. what caused them to occur.

– A re-usable model for expressing mitigating cirumstance policies.
– Application of this algorithm and model to an aerospace scenario.

The rest of the paper is structured as follows. Section 2 describes a motivating ex-
ample application in the aerospace domain. Section 3 introduces our electronic con-
tracting approach, and discusses the use of provenance to determine the cause of viola-
tions. Section 4 then details our algorithm, which is applied to the example application
in Section 5. We finish the paper with a discussion of related work in Section 6 and
conclusions in Section 7.

2 Example Scenario

Our example scenario is based on the aftercare market for aircraft engines. It is an
extended version of that considered by Lost Wax’s Aerogility application [10].

2.1 Contract
In this scenario, aircraft operators (e.g. airlines) establish contracts with engine manu-
facturers whereby the manufactures are obliged to ensure the aircraft have engines in



working order. To achieve this, an engine manufacturer regularly removes an engine
from an aicraft for which it is responsible and replaces it with an already serviced en-
gine to allow the aircraft to continue flying. This replacement must be performed in a
timely fashion, so that the aircraft remains usable. As well as regular servicing, the en-
gine manufacturer must respond to possible faults in an engine by similarly replacing it.
Once removed, an engine is serviced and then returned to the pool of engines available
for swapping into other aircraft.

The core contract between aircraft operator and engine manufacturer specifies the
following:

– An engine requires servicing after every X flights, as well as when its health data
indicates a possible fault.

– When an aircraft’s engine requires servicing, the engine manufacturer must remove
the engine and replace it with a serviced one.

– The aircraft operator is permitted to penalise the engine manufacturer if an aircraft
is left on the ground for more than Y hours due to an engine not being available.

The core contract may be extended by extra constraints on the engine manufacturer
in particular cases.

– Engines are ultimately composed of parts supplied by part suppliers. An aircraft
operator may constrain an engine manufacturer only to use parts from given named
suppliers in engines used in their aircraft.

– For best use of resources in fulfilling multiple contracts, an engine manufacturer
will often take and service an engine from one operator’s aircraft and put it into the
aircraft of another operator. In some cases, one operator may not trust another. An
operator may therefore constrain an engine manufacturer never to put engines into
their aircraft that have previously been used by a particular other operator’s aircraft.

2.2 Mitigating Circumstances

Where an aircraft has been grounded due to lack of a working engine, an aircraft oper-
ator will want to recoup their costs by penalising the manufacturer. However, the two
companies wish to retain a good working relationship, and particular mitigating cir-
cumstances may be considered. Whether the operator makes these circumstances clear
to the manufacturer in advance is a choice of the individual business.

In this scenario, we consider two mitigating circumstances.

Late Health Data A manufacturer is aware of a potential fault in an engine through
analysing the engine’s health data. This is recorded in the aircraft, and so the health
data must be supplied by the operator. If supplied late, the manufacturer is delayed
in servicing the engine.

Part Supplier Late If an operator restricts the manufacturer as to where it can source
engine parts, and the required part supplier was late in supplying parts, then this
can affect the manufacturer’s ability to provide a working engine on time.



2.3 Managing Violations

The way that violations of the contract are handled should depend on circumstances.
In the scenario, one or more of the following broad actions can be performed by the
aircraft operator given a violation (e.g. aircraft remaining on the ground too long).

Full Penalty Operator deducts 30% from the monthly payment to the engine manufac-
turer.

Reduced Penalty Operator sends a formal notice reprimanding the manufacturer but
acknowledging mitigating circumstances.

Reconsider Policy Operator starts reconsideration of its constraining policies in the
contract.

The choice of a specific action is entirely based on the goals of the business, and is
out of scope of this paper. For convenience, we assume that a reduced penalty will be the
action taken in all subsequent examples. We now discuss the two primary technologies
that our algorithm for handling mitigating circumstances depends upon.

3 Contracts and Provenance

Our approach brings together two technologies, described in detail below. The appli-
cation is based on contract-based systems to support regulation of agents’ behaviour
through explicit contracts agreed between agents. The policies for mitigating circum-
stances use provenance systems to record documentation on what occurs within a sys-
tem and use this to determine why a particular violation occurred.

3.1 Contract-Based Systems

A contract-based system is one in which agents agree to documents that specify re-
quirements (obligations and prohibitions) or permissions on their behaviour. For our
purposes, we define a contract to be an assignment of clauses to agents that have agreed
to fulfil them.

For agents, acting on behalf of multiple organisations to be able to set up and rely
on contracts for mutual benefit, we require a supporting infrastructure. This can be
expressed in terms of agents playing administrative roles, such as storing contracts to
ensure access to them and preserving their integrity over their lifetime. It may also
include monitor roles, which require the agents playing them to check that clauses are
being fulfilled and, where they are not, to notify the enforcer of that contract clause, i.e.
the agent responsible for handling that clause’s violation.

Current work, such as that conducted in the CONTRACT project [14, 15, 17], has
begun to bring together: existing technologies to specify contract languages; frame-
works for defining contract-based applications; administrative architectures containing
those infrastructural roles needed to manage the contracts; and model checking tech-
niques for verifying that agents in an application are able to fulfil their contractual
responsibilities. In this paper, we assume the presence of a contract language and ad-
ministrative infrastructure. In general, we will not refer to these further, as they are out



of scope of the work. However, the monitoring of the fulfilment of contract clauses is
a vital part of understanding the context in which a violation occurs. For explanatory
purposes, we will assume single agents playing monitor and enforcer roles for check-
ing and ensuring the fulfilment of all contract clauses. In reality, it is often the case
that many such agents need to exist for an application, as monitoring may use and/or
produce information private to individual contract parties.

3.2 Provenance and Causation

As previously stated, reliable documentation is necessary in order to determine whether
the causes of a violation are sufficient to mitigate it. Thus, we need to be able to deter-
mine the provenance of a particular event (e.g. violation), that is what caused it to occur
as it did. In the study of art, the provenance of an artwork can include the artist, the ma-
terials used in creating it, the restoration done over time, the different locations where
it has been stored or exhibited, and so on. All of these ultimately caused the artwork to
be as it is now.

In prior research, we studied provenance in the context of a wide range of sci-
ences [11], where it was clear that knowing the provenance of results is important in
science experiments for many purposes, e.g. peer reviewers determining if an exper-
iment was rigorous and sound, understanding where an error may have occurred that
affected results, re-use of configuration of successful experiments, etc. Many of these
same requirements are present in business situations, in particular the ability to verify
the correct performance of business workflows. Thus, we can apply many of the same
techniques that we used for the scientific domain to our business use case.

With regard to the violation of a contract clause, causes can include the actions (or
absence of actions) of the responsible party, but may also include actions of other agents
and occurrences more widely within the application environment.

Determining the provenance of an occurrence therefore requires data on its causes.
As we often do not know in advance that something particular will occur, agents must
record both what occurs and causal connections between occurrences around the time
that they happen. The documentation forms a causal graph, depicting where A was
caused by B, which was caused by C, etc. Below, we denote that A was caused by B

(A is effect, B is cause) as A → B

In order to ensure the availability of such a causal graph for our algorithm, we
only consider applications that have been made provenance-aware, which entails that
most, if not all, software agents are designed or adapted to record what they do and
what caused them to do it (messages received, their goals etc.) [13]. In a contract-
based environment, this includes both the contract parties and the infrastructure agents,
such as the monitor. When it is not possible to record the causal connections between
occurrences, it is often possible to infer that they exist from what has been recorded.
The engineering exercise of making an application provenance-aware is out of scope
here, but explained elsewhere [12].

To illustrate how provenance provides better understanding of an occurrence, we
describe the provenance of an engine being made available after servicing in Figure 1.
We begin at the top of the figure. Originally, it is determined that an engine, E, requires



engineRequireService(E)

engineMakerNotification

swappedEngine(E, E2)

engineAvailable(E2)

engineAvailable(E)

partRequested(P)

partReceived(P)

replacedPart(E,P)

Fig. 1. Provenance of an engine as a causal graph

servicing. This occurrence causes the engine manufacturer to be notified. The engine
manufacturer then requests and receives a part, P . In parallel to the engine manufac-
turer being notified, another engine becomes available (the relative times of the events
occurring are omitted for brevity but each event could potentially occur long before the
other or near simulataneously). Together, the occurrences of a engine becoming avail-
able and the engine manufacturer being notified, cause the engine, E, to be swapped out
for engine E2. Once engine E is taken out of the airplane, its defective part is replaced
with the part ordered by the engine manufacturer. This replacement of parts causes E
to be made available once again for use in other aircraft.

4 Handling Mitigating Circumstances

In this section, we bring together the contract-based and provenance technologies de-
scribed above to give an algorithm for handling mitigating circumstances when a vio-
lation is detected. We summarise the algorithm below, and then describe each step in
more detail.

1. Violation Detection From checking the environment, the monitor determines that a
clause was violated, and informs the relevant enforcer.

2. Cause Determination The enforcer uses heuristics to infer possible undocumented
causes of the violation.

3. Mitigating Circumstances The enforcer uses policies to determine, from the recorded
and inferred causes of the violation, whether there were mitigating circumstances.

4. Remedy If mitigating circumstances were found, then the enforcer acts to remedy
the situation and ensure that violations are less likely to occur in future. The action
is again determined by its policy.



Remember that enforcer is a role, so may be performed by one of the contract parties
(e.g. the aircraft operator) or an appropriate third party.

4.1 Violation Detection

In order to detect the violation, the monitor must observe its environment on the basis
of what is expected from fulfilling the contract clause. When the violation occurs, it
notifies the enforcer of that clause (the enforcer is often a party to the contract, i.e. the
agent that gains from the clause’s fulfilment).

Being provenance-aware, the monitor records several pieces of documentation about
what it does: the clause-related observation of the environment, the signalling of a vio-
lation, and the causal connection between the two (the former causes the latter).

4.2 Cause Determination

When a violation has occurred, the enforcer first checks whether there are undocu-
mented causes it can infer from the available documentation. This provides a more
complete picture from which it can then determine whether there were mitigating cir-
cumstances. In particular, many violations of contractual clauses occur because some-
thing did not happen (e.g. a supply contract is violated when goods are not delivered).
In these casess, there will be no documentation because there was no occurrence to
document. However, that absence of occurrence is directly related to the violation and
so needs to be made explicit. Inference is achieved by applying inference rules.

An inference rule expresses a heuristic by which the enforcer determines new causal
connections from existing facts. Its antecedent is an expression composed of parametrised
predicates, and its consequent takes the form of causal graph edges between occur-
rences. The antecedent’s predicates are facts from one of four sources:

Domain Knowledge Timeless knowledge about the domain available to the enforcer.
Contract Clauses Clauses of the contract that has been violated.
Contract Party Documentation Documentation recorded by the contract parties of

what they know to have occurred.
Monitor Documentation Documentation recorded by the monitor of what it knows to

have occurred.

The antecedent may also contain mathematical expressions resolving to true or false
based on the predicate variables, e.g. A > B. The consequent of an inference rule
contains a set of causal connections between predicates from the antecedent (i.e. known
occurrences).

An example of a whole rule is given below. In this rule, the antecedent is a con-
junction of two facts documented by agents in the system and a relationship between
them. The facts are that an engine’s health data was received at time T1 and that the
aircraft with that engine was unserviced at time T2 (determined by the monitor because
the contract states it should have been serviced by this time). The relationship expresses
that T2 was less than 10 hours after T1. The consequent of the rule, i.e. that implied by
any pattern of occurrences matching the former facts, is that the fact that the engine was



not serviced at T2 was caused by the health data being received at T1. This rule derives
from a heuristic that waiting beyond 10 hours for the health data can be expected to
affect the ability to service the aircraft on time. Whenever the documented facts of a
violation match the antecedent, the consequential causal connection will be added to
the facts from which mitigating circumstances will be assessed.

Antecedent
receivedHealthData(E, T1) ∧
unserviced(A, E, T2) ∧
T2 < T1 + 10
Consequent
unserviced(A, E, T2) → receivedHealthData(E, T1)

Of course, we cannot know from the rule above that the lack of health data was the
only or ‘primary’ cause of violation. Instead, the rule should be read as a heuristic for
determining likely mitigating circumstances.

4.3 Mitigating Circumstances

Determination of mitigating circumstances is achieved by a policy setting out where
the causes of a violation suggest mitigating circumstances, and what action to take
in each such case. Such a policy could be included as part of a contract document,
in which case other parties may use it to reason about what they can get away with,
or may be private to the owning contract party, if they prefer to keep the mitigating
circumstances considerations secret. There are likely to be several different kinds of
mitigating circumstance, such as the two given for the example in Section 2.2. For each
kind, there is a pre-condition and a remedy.

The pre-condition is a causal graph between occurrences, in the form of a tree with
a violation occurrence as its root. All occurrences in the tree can be parametrised with
variables. As a whole, the pre-condition graph acts as a template for chains of causes
of a particular form leading to a violation. The template graph is then matched against
the documentation recorded and inferred. If they match, mitigating circumstances have
been found, and the remedy enacted.

An example of a mitigating circumstances policy statement is given below. The
precondition is a tree of causal connections from the violation of a clause concern-
ing a particular aircraft. The precondition is a template which can be matched against
documented, or inferred, facts. In this case, the violation must have been caused by
the aircraft’s engine not being serviced at a given time, which in turn must have been
caused by the engine health data being received at a given time. If this pattern is found
within the documentation, then the pre-condition is matched, the policy applies, and the
appropriate action is taken: reduced penalty, in this case.

Precondition Remedy
violation(A) →
unserviced(A, E, T2) → Reduced Penalty

receivedHealthData(E, T1)



4.4 Remedy

For the purposes of this paper, we consider the remedy to be a simple action by the
enforcer, such as reducing the penalty that would otherwise be placed on the violat-
ing agent. In future work, we will consider more sophisticated mechanisms, such as
negotiating to adjust the contract to more realistically suit the working environment.

4.5 Algorithm for Handling Mitigating Circumstances

The algorithm can be expressed in pseudo-code as follows. First, we define the variables
referred to in the algorithm.

– C: the set of contract clauses of which to detect violations
– R: the set of inference rules
– G: a graph (V,E) where vertexes represent occurrences and edges causal relation-

ships between them
– GKB : the union of the knowledge sources (domain, contract, contract party, moni-

tor)
– P : a mapping from violation types to sets of policies concerning those types
– A: an array of actions to be taken indexed by a policy

Next, we describe the functions used as part of the algorithm.

– RETRIEVEVIOLATION() - retrieves a violation from the monitior
– RETRIEVEOBSERVATION(v) - retrieves the observation that caused a violation
– CONSEQUENTOF(r) - retrieves the edge representing the consequent of a rule
– APPLYRULE(r, G) - apply an inference rule, r to the graph G

– UNION(G1, G2) - perform a union between the two graphs (i.e. combine their
edges and vertexes)

– EXTRACTSUBGRAPH(v, G) - given a vertex extract the subgraph beginning at that
vertex

– TEMPLATEISOMORPHISM(G1, G2) - determine whether the two graphs are iso-
morphic, implementations may define isomorphism in terms of attributes associ-
ated with vertexes and edges

– EXECUTE(a) - execute a given action, a

The algorithm itself is then shown below, as a sequence of four steps corresponding
to those outlined above.

VIOLATIONDETECTION(C)
1 if the monitor detects a violation of clause, cl ∈ C
2 then v ← RETRIEVEVIOLATION()
3 cv ← RETRIEVEOBSERVATION(v)
4 return new graph edge (v, cv)



CAUSEDETERMINATION(cv, R, GKB)
1 Gnew

KB = ∅
2 for each inference rule r ∈ R
3 do (e, c)← CONSEQUENTOF(r)
4 if e = cv

5 then G← APPLYRULE(r, GKB)
6 Gnew

KB ← UNION(Gnew
KB , G)

7 return Gnew
KB

MITIGATINGCIRCUMSTANCES(v, P, GKB)
1 for each policy p ∈ P [v]
2 Gcv ← EXTRACTSUBGRAPH(v, GKB)
3 if TEMPLATEISOMORPHISM(Gv, p)
4 then return p

REMEDY(p, A)
1 a← A[p]
2 EXECUTE(a)

5 Applying to the Case Study

In this section, we apply our algorithm to the scenario presented in Section 2. We start
by defining the facts that may be documented or inferred by an aircraft operator agent
in the scenario. These are expressed using predicate logic and described in Table 1.
Using statements of this form, we can construct propositions about what is documented
or believed at any one time. In this and subsequent schemas, we use the convention of
lower case letters (a) for constants and upper case letters (A) for variables.

We now describe two use cases in which there are mitigating circumstances that
the aircraft operator, acting in the role of enforcer, takes into account, matching those
described in Section 2.2. In both use cases below, the monitoring mechanism discovers
that an engine has not been serviced at a given time, even though it contractually should
have been. In each case, a different mitigating circumstance has occurred, and so a re-
duced penalty is applied. For each use case, we show how the algorithm in the previous
section is applied.

5.1 Late Health Data

The following operation of the contract parties is documented.

– The engine manufacturer, as part of its operation, receives the health data for an en-
gine at a given time: receivedHealthData(e, t1). This is the engine of an aircraft,
a, which has earlier been recorded as requiring servicing.

Violation Detection The monitor determines that an aircraft requires servicing but has
not been serviced at this moment: unserviced(a, e, t2). It further determines that, con-
tractually, it should have been serviced before now. It therefore reports a violation:



Predicate Description
Domain Knowledge

owns(A, O) Operator O owns aircraft A

Contract Clauses
constrainedPartSupplier(S, P ) Contractual obligation to use supplier S for part P
disallowedPriorUse(O) Contractual prohibition from using engines previously used

by operator O

Contract Party Documentation
engineAvailable(E) Engine E is serviced and available for use
partReceived(S, P, T ) Manufacturer received part P from supplier S at time T
partRequested(S, P, T ) Manufacturer requested part P from supplier S at time T
receivedHealthData(E, T ) Manufacturer received health data about engine E at time

T
replacedPart(E, P, T ) Part P was replaced in engine E at time T
swappedEngine(A, E1, E2, T ) Engine E1 was removed, engine E2 inserted into aircraft A

at time T

Monitor Documentation
unserviced(A, E, T ) Engine E of aircraft A requires but has not received servic-

ing at time T
violation(A) Violation of the contractual obligation regarding servicing

aircraft A
Table 1. Example knowledge predicates

violation(a). The causal connection between these two occurrences is documented:
violation(a) → unserviced(a, e, t2) .

Cause Determination The operator believes that the health data should have been
received at least 10 hours in advance for the manufacturer to be able to complete the job
in time. This belief implies a causal connection between an engine not being serviced
and that engine’s health data being received late (the former was due to the latter). The
operator first infers the causal connection from the available data using the following
inference rule.

Antecedent
receivedHealthData(E, T1)∧
unserviced(A, E, T2)∧
T2 < T1 + 10
Consequent
unserviced(A, E, T2) → receivedHealthData(E, T1)

Mitigating Circumstances From this, we then have a sequence leading to a viola-
tion matching the pre-condition of the following rule: receiving engine health data at a
given time (later than expected) caused the engine not to be serviced, which caused a
violation.



Precondition Remedy
violation(A) →
unserviced(A, E, T2) → Reduced Penalty

receivedHealthData(E, T1)

5.2 Part Supplier Late

The following operation of the contract parties is documented.

– The contract constrains the manufacturer to use a given part supplier for parts of a
particular type: constrainedPartSupplier(s, p).

– At some point, the manufacturer requires a part of this type and orders it from the
supplier: partRequested(s, p, t1).

– The supplier eventually provides the part: partReceived(s, p, t2).
– The engine manufacturer is required to service an engine that requires a part of the

above type. When the part is available, the manufacturer puts the new part into the
engine: replacedPart(e2, p, t3).

– This repaired engine is later used to swap into an aircraft requiring a service:
swappedEngine(a, e1, e2, t4).

– A causal chain is recorded: the engine swap required the replacement of the part,
which required the part to be received, which required the part to be requested from
the supplier, which was made to that supplier because of the contract clause:

swappedEngine(a, e1, e2, t4) → replacedPart(e2, p, t3) → partReceived(s, p, t2) →

partRequested(s, p, t1) → constrainedPartSupplier(s, p)
Violation Detection The monitor determines that an aircraft requires servicing but has
not been serviced at this moment: unserviced(a, e2, t5). It further determines that, con-
tractually, it should have been determined before now. It therefore reports a violation:
violation(a). The causal connection between these two occurrences is documented:
violation(a) → unserviced(a, e2, t5) .

Cause Determination The operator believes that if the part supplier supplied a
part late, this can lead to problems servicing aircraft (specifically, the part is supplied
less than 48 hours before servicing is due). This belief expresses a causal connection
between the engine not being serviced and the part being received late. It first infers the
causal connection from available data using the following rule.

Antecedent
partReceived(S, P, T2)∧
swappedEngine(A, E1, E2, T4)∧
replacedPart(E2, P, T3)∧
unserviced(A, E2, T5)∧
T5 < T2 + 48
Consequent
unserviced(A, E2, T5) → partReceived(S, P, T2)



Mitigating Circumstances From this, we have a sequence leading to a violation
matching the pre-condition of the rule below: a constraint on the part supplier caused a
supplier to be used in requesting a part which caused the part to be delivered at a partic-
ular time (late) which caused the engine not to be serviced, which caused a violation.

Precondition Remedy
violation(A) →
unserviced(A, E2, T5) →
partReceived(S, P, T2) → Reduced Penalty

partRequested(S, P, T1 →
constrainedPartSupplier(S, P )

6 Related Work

In recent work on normative systems and agreement in service-oriented architectures,
norms specifying patterns of behaviour for agents, contract clauses as concrete rep-
resentations of dynamic norms, management or enforcement of norms itself being a
norm, are all already established in the literature [1, 3, 8, 16]. Such work has focused
on the infrastructure needed to support such systems and handling of violations is of-
ten through the mechanism of immediately issuing contractually fixed penalties. There
are notable exceptions, however. For example, Xu et al. [18] use commitment graphs
to determine which of multiple contract parties are responsible for a violating effect
(action or absence of action), when one party’s actions are a pre-requisite for those of
other parties. Cardoso and Oliveira [2] model obligations with fixed deadlines in such
a way that other parties are merely able to take penalties following the deadline, it is
not an automatic or immediate act, therefore also allowing some flexibility for preserv-
ing business relationships. Also, longer-term issues are considered by Duran et al. [4],
who examine how observation of fulfilment and violation of obligations can feed into a
longer-term assessment of agents through testimonials.

There have been many recent approaches to the recording causal documentation so
that the provenance of occurrences can be determined. It is applicable to a wide range
of applications [11], and has particularly been considered in the context of workflow
enactment, i.e. automatically recording documentation as each step of a workflow is
executed [5, 19]. In our own work we have examined how provenance can be used to
interpret and ask questions about the validity of experimental results [7]. Also, we have
applied integrated provenance and electronic contract research in an alternative way in
other work [6], in which we judge the likely trustworthiness of new contract proposals
on the basis of past experience of similar contracts (as documented in provenance).

7 Conclusions

When a contract clause between parties is violated, a single fixed penalty is an inflexible
way to manage the situation. In many real world cases, the party permitted to enact the



penalty may wish to take into account mitigating circumstances, for the sake of the long-
term business relationship. Mitigating circumstances, and how to act when they occur,
can be expressed in a policy document, but in order to judge circumstances against the
policy we need a reliable record of what led to the violation occurring.

In this paper, we have provided an algorithm, and accompanying data structures,
for evaluating whether violations were caused by mitigating circumstances, and acting
accordingly. This makes use of a contract-based framework, by which we can define
the contract clauses, and provenance technology, by which agents can document the
causes of what occurs. In combination, this allows us to express and enact mitigating
circumstances policies. We have shown how this applies in a concrete example in the
aerospace domain.

This is preliminary work, which needs to be tested in practical applications. Future
work will concern the re-usability of (parts of) mitigating cirumstances policies, and
methodological guidelines for constructing them, both aimed at easing the process of
implementing such policies in diverse applications.

Acknowledgements The research described in this paper is partly supported by the Eu-
ropean Commission Framework 6 funded project CONTRACT (INFSO-IST-034418).
The opinions expressed herein are those of the named authors only and should not be
taken as necessarily representative of the opinion of the European Commission or CON-
TRACT project partners. We would also like to thank Lost Wax, and Camden Holt in
particular, for discussions on the aerospace use case.

References

1. IST CONTRACT project. http://www.ist-contract.org, 2007.
2. H.L. Cardoso and E. Oliveira. Directed Deadline Obligations in Agent-based Business

Contracts. In Coordination, Organization, Institutions and Norms workshop at AAMAS
(COIN@AAMAS) 2009.

3. Chrysanthos Dellarocas. Contractual agent societies: Negotiated shared context and social
control in open multi-agent systems. In Workshop on Norms and Institutions in Multi-Agent
Systems, 4th International Conference on Multi-Agent Systems (Agents-2000), Barcelona,
Spain, June 2000.

4. Fernanda Duran, Viviane Torres da Silva, and Carlos J. P. de Lucena. Using testimonies to
enforce the behaviour of agents. In Jaime Sichman and Sascha Ossowski, editors, AAMAS’07
Workshop on Coordination, Organization, Institutions and Norms in agent systems (COIN),
pages 25–36, Honolulu, Hawai’i, May 2007.

5. Juliana Freire, Claudio T. Silva, Steven P. Callahan, Emanuele Santos, Carlos E. Scheidegger,
and Huy T. Vo. Managing rapidly-evolving scientific workflows. In Proceedings of the
International Provenance and Annotation Workshop 2006 (IPAW 2006), Lecture Notes in
Computer Science. Springer, 2006. To appear.

6. Paul Groth, Simon Miles, Sanjay Modgil, Nir Oren, Michael Luck, and Yolanda Gil. Deter-
mining the trustworthiness of new electronic contracts. In Proceedings of the 10th Interna-
tional Workshop on Engineering Societies in the Agents’ World (ESAW 2009), 2009.

7. Paul T. Groth. The Origin of Data: Enabling the Determination of Provenance in Multi-
institutional Scientific Systems through the Documentation of Processes. PhD thesis, Uni-
versity of Southampton, September 2007.



8. Fabiola Lopez y Lopez, Michael Luck, and Mark d’Inverno. A normative framework for
agent-based systems. Computational and Mathematical Organization Theory, 12(2–3):227–
250, 2005.

9. I.R. Macneil. Relational contract theory: challenges and queries. Northwestern University
Law Review, 94:877–907, 1999.

10. Felipe Meneguzzi, Simon Miles, Camden Holt, Michael Luck, Nir Oren, Nora Faci, and Mar-
tin Kollingbaum. Electronic contracting in aircraft aftercare: A case study. In Proceedings
of the 7th International Conference on Autonomous Agents and Multiagent Systems, 2008.

11. Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The requirements of using
provenance in e-science experiments. Journal of Grid Computing, 5:1–25, 2007.

12. Simon Miles, Paul Groth, Steve Munroe, and Luc Moreau. Prime: A methodology for de-
veloping provenance-aware applications. ACM Transactions on Software Engineering and
Methodology, June 2009.

13. Simon Miles, Steve Munroe, Michael Luck, and Luc Moreau. Modelling the provenance of
data in autonomous systems. In Proceedings of Autonomous Agents and Multi-Agent Systems
2007, pages 243–250, Honolulu, Hawai’i, May 2007.

14. Simon Miles, Nir Oren, Michael Luck, Sanjay Modgil, Felipe Meneguzzi, Nora Faci, Cam-
den Holt, and Gary Vickers. Handbook of Research on P2P and Grid Systems for Service-
Oriented Computing: Models, Methodologies and Applications, chapter Electronic Business
Contracts between Services. IGI Global, 2009.

15. Sanjay Modgil, Nora Faci, Felipe Meneguzzi, Nir Oren, Simon Miles, and Michael Luck.
A framework for monitoring agent-based normative systems. In Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009),
pages 153–160, Budapest, Hungary, May 2009. IFAAMAS.

16. Edward Muntaner-Perich, Josep Lluis de la Rosa, and Rosa Esteva. Towards a formalisation
of dynamic electronic institutions. In Jaime Sichman and Sascha Ossowski, editors, AA-
MAS’07 Workshop on Coordination, Organization, Institutions and Norms in agent systems
(COIN), pages 61–72, Honolulu, Hawai’i, May 2007.

17. Nir Oren, Sofia Panagiotidi, Javier Vazquez-Salceda, Sanjay Modgil, Michael Luck, and Si-
mon Miles. Towards a formalisation of electronic contracting environments. In Proceedings
of the Workshop on Coordination, Organization, Institutions and Norms in Agent Systems at
AAAI 2008 (COIN 2008), 2008.

18. Lai Xu, Manfred A. Jeusfeld, and Paul W. P. J. Grefen. Detection tests for identifying viola-
tors of multi-party contracts. ACM SIGecom Exchanges, 5:19–28, April 2005.

19. Jun Zhao, Carole Goble, Robert Stevens, and Daniele Turi. Mining taverna’s semantic web
of provenance. Concurrency and Computation: Practice and Experience, 2007.


