
Computing as Interaction: Agent and Agreement
Technologies

Michael Luck
Department of Computer Science

King’s College London
London WC2R 2LS, UK

Email: michael.luck@kcl.ac.uk

Peter McBurney
Department of Computer Science

University of Liverpool
Liverpool L69 3BX, UK

Email: mcburney@liverpool.ac.uk

I. INTRODUCTION

With the emergence of new paradigms for computing,
such as peer-to-peer technologies, grid computing, autonomic
computing and other approaches, it is becoming increasingly
natural to view large systems in terms of the services they
offer, and consequently in terms of the entities or agents
providing or consuming services. For example, web services
technologies provide a standard means of interoperating be-
tween different software applications, running on a variety of
platforms. More generally, web services standards now serve
as potential convergence point for diverse technology efforts
in support of more general service-oriented architectures.

Here, distributed systems are increasingly viewed as collec-
tions of service provider and service consumer components
interlinked by dynamically defined workflows. Web services
must thus be realised by concrete entities or agents that send
and receive messages, while the services themselves are the
resources characterised by the functionality provided.

The important characteristics of these emerging domains
and environments are that they are open and dynamic so
that new agents may join and existing ones leave. In this
view, agents act on behalf of service owners, managing access
to services, and ensuring that contracts are fulfilled. They
also act on behalf of service consumers, locating services,
agreeing contracts, and receiving and presenting results. In
these domains, agents are required to engage in interactions,
negotiate with one another, make agreements, and make proac-
tive run-time decisions, individually and collectively, while
responding to changing circumstances. In particular, agents
need to collaborate and to form coalitions of agents with
different capabilities in support of new virtual organisations.

II. AGENT-BASED COMPUTING

Agents can be defined as autonomous, problem-solving
computational entities capable of effective operation in dy-
namic and open environments. Agents are often deployed in
environments in which they interact, and sometimes cooperate,
with other agents (both people and software) that have possibly
conflicting aims. Such environments are multi-agent systems.
Agents can be distinguished from objects in that they are
autonomous entities capable of exercising choice over their
actions and interactions, and may act to achieve individual

objectives. Agents cannot, therefore, be directly invoked but
can be assigned tasks by their owners. However, they may be
constructed using a wide range of technologies. These notions
find application in relation to three distinct views.

First, agents provide designers and developers with a way of
structuring an application around autonomous, communicative
components and lead to the construction of software tools and
infrastructure to support design. They provide a new and often
more appropriate method for the development of complex
systems, especially in open and dynamic environments. To
support this view of systems development, particular tools and
techniques need to be introduced. For example, agent-oriented
methodologies to guide analysis and design are required,
agent architectures are needed for the design of individual
components and tools and abstractions are required to enable
developers to deal with the complexity that is typical of
systems with such distribution of control.

Agent technologies are distinct and cover a range of specific
techniques for dealing with interactions in dynamic, open
environments. They address issues such as balancing reaction
and deliberation in individual agent architectures, learning
from and about other agents in the environment, eliciting and
acting upon user preferences, finding ways to negotiate, agree
and cooperate with other agents, and developing appropriate
means of forming and managing coalitions.

Finally, multi-agent systems offer strong models for repre-
senting real-world environments with an appropriate degree of
complexity and dynamism. Simulation of economies, societies
and biological environments are typical application areas. The
use of agent systems to simulate real-world domains may
provide answers to complex physical or social problems that
would be otherwise unobtainable, as in the modelling of
the impact of climate change on biological populations, or
modelling the impact of public policy options on social or
economic behaviour. Multi-agent systems have already pro-
vided faster and more effective methods of resource allocation
in complex environments, such as the management of utility
networks, than previous centralised approaches.

III. TRENDS AND DRIVERS

The development of agent technologies has taken place
within a context of wider visions for information technology.



In addition to the specific technologies mentioned above, there
are also several key trends and drivers that suggest that agents
and agent technologies will be vital. The three considered
below are examples; for a large list, see [10].

A. Semantic Web

Since it was first developed in the early 1990s, the World
Wide Web has rapidly and dramatically become a critically
important and powerful medium for communication, research
and commerce. However, the Web was designed for use by
humans, and its power is limited by the ability of humans to
navigate the data of different information sources.

The Semantic Web is based on the idea that the data on
the Web can be defined and linked in such a way that it
can be used by machines for the automatic processing and
integration of data across different applications [1]. This is
motivated by the fundamental recognition that, in order for
web-based applications to scale, programs must be able to
share and process data, particularly when they have been
designed independently. The key to achieving this is by aug-
menting web pages with descriptions of their content in such
a way that it is possible for machines to reason automatically
about that content. Among the particular requirements for the
realisation of the Semantic Web vision are: rich descriptions
of media and content to improve search and management; rich
descriptions of web services to enable and improve discovery
and composition; common interfaces to simplify integration of
disparate systems; and a common language for the exchange
of semantically-rich information between software agents.

It should be clear from this that the Semantic Web demands
effort and involvement from the field of agent-based comput-
ing, and the two fields are intimately connected. Indeed, the
Semantic Web offers a rich breeding ground for both further
fundamental research and a whole range of agent applications
that can (and should) be built on top of it.

B. Web Services and Service Oriented Computing

Web services technologies provide a standard means of
interoperating between different software applications, running
on a variety of different platforms. Specifications cover a wide
range of interoperability issues, from basic messaging, security
and architecture, to service discovery and the composition of
individual services into structured workflows.

In a more general sense, web services standards serve as a
potential convergence point for diverse technology efforts such
as eBusiness frameworks (ebXML, RosettaNet, etc), Grid ar-
chitectures (which are now increasingly based on web services
infrastructures) and others, towards a more general notion of
service-oriented architectures (SOA). Here, distributed systems
are increasingly viewed as collections of service provider
and service consumer components, interlinked by dynamically
defined workflows. Web services can therefore be realised
by agents that send and receive messages, while the services
themselves are the resources characterised by the functionality
provided. In the same way as agents may perform tasks on

behalf of a user, a web service provides this functionality on
behalf of its owner, a person or organisation.

Web services thus provide a ready-made infrastructure that
is almost ideal for use in supporting agent interactions in
a multi-agent system. More importantly, perhaps, this in-
frastructure is widely accepted, standardised, and likely to
be the dominant base technology over the coming years.
Conversely, an agent-oriented view of web services is gaining
increased traction and exposure, since provider and consumer
web services environments are naturally seen as a form of
agent-based system [2].

C. Grid Computing

The Grid is the high-performance computing infrastructure
for supporting large-scale distributed scientific endeavour that
has recently gained heightened and sustained interest from
several communities [6]. The Grid provides a means of devel-
oping eScience applications such as those demanded by, for
example, the Large Hadron Collider facility at CERN, engi-
neering design optimisation, bioinformatics and combinatorial
chemistry. Yet it also provides a computing infrastructure for
supporting more general applications that involve large-scale
knowledge management and service provision.

The Grid thus refers to an infrastructure that enables the
integrated, collaborative use of high-end computers, networks,
databases, and scientific instruments owned and managed by
multiple organisations. Grid applications often involve large
amounts of data and computer processing, and often require
secure resource sharing across organisational boundaries; they
are thus not easily handled by todays infrastructures. The key
benefit of Grid computing more generally is flexibility — the
distributed system and network can be reconfigured on demand
in different ways as business needs change, in principle
enabling more flexible IT deployment and more efficient use
of computing resources. According to BAE Systems [7], while
the technology is already in a state in which it can realise these
benefits in a single organisational domain, the real value comes
from cross-organisation use, through virtual organisations,
which require ownership, management and accounting to be
handled within trusted partnerships. In economic terms, such
virtual organisations provide an appropriate way to develop
new products and services in high value markets; this facili-
tates the notion of service-centric software, which is only now
emerging because of the constraints imposed by traditional
organisations. The future of the Grid is not in the provision
of computing power, but in the provision of information and
knowledge in a service-oriented economy.

D. Ambient Intelligence

The notion of ambient intelligence has largely arisen
through the efforts of the European Commission in identifying
challenges for European research and development in Infor-
mation Society Technologies. Aimed at seamless delivery of
services and applications, it relies on the areas of ubiquitous
computing, ubiquitous communication and intelligent user
interfaces. The vision describes an environment of potentially



thousands of embedded and mobile devices (or software com-
ponents) interacting to support user-centred goals and activity,
and suggests a component-oriented view of the world in which
the components are independent and distributed. The consen-
sus is that autonomy, distribution, adaptation, responsiveness,
and so on, are key characteristics of these components, and in
this sense they share the same characteristics as agents.

Ambient intelligence requires these agents to be able to
interact with numerous other agents in the environment around
them in order to achieve their goals. Such interactions take
place between pairs of agents (in one-to-one collaboration or
competition), between groups (in reaching consensus decisions
or acting as a team), and between agents and the infrastructure
resources that comprise their environments (such as large-
scale information repositories). Interactions like these enable
the establishment of virtual organisations, in which groups of
agents come together to form coherent groups able to achieve
overarching objectives.

IV. AGENT TECHNOLOGIES

It should be clear that there are several distinct high-level
trends and drivers leading to interest in agent technologies,
and low-level computing infrastructures making them prac-
tically feasible. In this context, we can consider the key
technologies and techniques required to design and implement
agent systems that are the focus of current research and
development. Because agent technologies are mission-critical
for engineering and for managing certain types of information
systems, such as Grid systems and systems for ambient intel-
ligence, the technologies and techniques discussed below will
be important for many applications, even those not labelled as
agent systems. These technologies can be grouped into three
categories, according to the scale at which they apply:

• Organisation-level: At the top level are technologies and
techniques related to agent societies as a whole. Here,
issues of organisational structure, trust, norms and obli-
gations, and self-organisation in open agent societies are
paramount. Once again, many of these questions have
been studied in other disciplines — for example, in
sociology, anthropology and biology. Drawing on this re-
lated work, research and development is currently focused
on technologies for designing, evolving and managing
complex agent societies.

• Interaction-level: These are technologies and techniques
that concern the communications between agents —
for example, technologies related to communication lan-
guages, interaction protocols and resource allocation
mechanisms. Many of the problems solved by these tech-
nologies have been studied in other disciplines, including
economics, political science, philosophy and linguistics.
Accordingly, research and development is drawing on
this prior work to develop computational theories and
technologies for agent interaction, communication and
decision-making.

• Agent-level: These are technologies and techniques con-
cerned only with individual agents — for example, proce-

dures for agent reasoning and learning. Problems at this
level have been the primary focus of artificial intelligence
since its inception, aiming to build machines that can
reason and operate autonomously in the world. Agent
research and development has drawn extensively on this
prior work, and most attention in the field of agent-
based computing now focuses at the previous two higher
levels. In addition to technologies at these three levels,
we must also consider technologies providing infrastruc-
ture and supporting tools for agent systems, such as
agent programming languages and software engineering
methodologies. These supporting technologies provide
the basis for both the theoretical understanding and the
practical implementation of agent systems.

V. AGREEMENT TECHNOLOGIES

Cross-cutting with agent technologies are agreement tech-
nologies. In particular, while the trends and drivers above
motivate the need for agent solutions, there are several key
characteristics that complicate the picture.

• Typically, the applications in such domains span multiple
organisations, so that there is no single point of oversight
over all components.

• Agents in such applications need to operate in open,
public environments in which a variety of third party
operators must be able to connect to and use various
provided services, so that participants may range from
trusted through semi-trusted to untrusted.

• Agents and services must often adhere to complex laws,
regulations, rules and agreements during their operation,
relating to quality of service, uptime, failure rates, etc,
raising the need to monitor not only security breaches
but also quality of performance, for example.

• Applications operate in environments in which compo-
nent subsystems are not all available to all developers, so
that many must be treated as black boxes during devel-
opment and cannot be directly inspected or controlled.

In such applications, two aspects are critical: autonomy and
interaction. At the agent-level, agents must establish com-
mitments to bringing about goals in the context of more
general autonomous behaviour, typically seeking to max-
imise their utility. To constrain the potential excesses of
autonomous behaviour, agreements are made between agents,
at the interaction-level, providing some kind of guarantee
supporting inter-agent relationships. Such agreements may be
informal commitments between individual agents or services,
or they may be stronger contractual commitments between
individuals or organisations, with enforcement and/or penalties
included as part. Specifically, these issues require techniques
that enable software components to reach agreements typically
on the performance of services. Negotiation, argumentation,
decision-making, virtual organisations, contracts, normative
reasoning, trust and others are the kinds of technologies that
are likely to figure strongly in the next generation of system
designed to address these concerns.



VI. ADOPTION OF AGENT AND AGREEMENT
TECHNOLOGIES

Despite the benefits, agent and agreement technologies
have not yet entered the mainstream in the way that object-
oriented technologies have. The majority of commercial or-
ganisations adopting agent technologies would be classified
as early adopters, so considerable potential exists for further
applications of the technology.

To date, the range of applications has included: automated
trading in online marketplaces; simulation and training appli-
cations in defence domains; network management in utilities
networks; user-interface and local interaction management in
telecommunication networks; schedule planning and optimisa-
tion in logistics and supply-chain management; control system
management in industrial plants, such as steel works; and
simulation modelling to guide decision-makers in public policy
domains, such as transport and medicine [11].

For example, Tankers International, which operates one
of the largest oil tanker pools in the world, has applied
agent technology to dynamically schedule the most profitable
deployment of ships-to-cargo for its Very Large Crude Carrier
fleet [8]. An agent-based optimiser was developed by Magenta
Technology for use in real-time planning of cargo assignment
to vessels in the fleet. The system can dynamically adapt plans
in response to unexpected changes, such as transportation
cost fluctuations or changes to vessels, ports or cargo. Agent-
based optimisation techniques not only provided improved
responsiveness, but also reduced the human effort necessary
to deal with the vast amounts of information required, thus
reducing costly mistakes, and preserving the knowledge de-
veloped in the process of scheduling. In similar vein, after
implementing recommendations derived from an agent-based
simulation model of a corrugated box plant developed by
Eurobios, SCA Packaging was able to make a 200% return-
on-investment in the first month [4].

Yet agent technologies are still only in the early-adopter
phase of diffusion. There are a number of reasons for this.
Firstly, research in the area of agents is also still only in
its infancy. Here, a reasonable comparison is with object-
oriented (OO) approaches, where the initial research com-
menced in 1962, some 32 years before the public release
of the first version of Java and the widespread commercial
adoption of OO technologies. So knowledge of agent tech-
nologies is still not widespread among commercial software
developers. Secondly, since it is still young, the field lacks
proven methodologies, tools, and complementary products and
services, the availability of which would act to reduce the
costs and risks associated with it. Thirdly, the applications for
which agent technologies are most suited are those involving
interactions between autonomous intelligent entities. While
some applications of this sort may be implemented as closed
systems inside an organisation, most potential applications
require the participation of entities from more than one organ-
isation. Automated purchase decisions along a supply-chain,
for example, require the participation of the companies active

along that chain.
The application domains for which agent technologies are

best suited typically require coordination and collaboration
between multiple organisations, a factor that complicates adop-
tion decisions by the companies or organisations involved.

VII. CHALLENGES

The rise to prominence of the Internet has led to a new
understanding of the nature of computation, an understanding
which puts interaction at its centre. In this context, the agent-
oriented paradigm has sought to maximise adaptability and
robustness of systems in open environments. It is here that
we can see how agent technologies may be a disruptive force.
By tackling a different set of objectives, agent technologies
address different problems and different applications than do,
for example, object technologies. It is not simply that the rules
of the game have changed, but rather that a different game is
being played. In a world of millions of independent processors
interconnected via the Internet and, through it, engaged in
distributed cognition, a software design team can no longer
assume that software components will share the same goals
or motivations, or that the system objectives will remain static
over time. Systems therefore need to be able to adapt to
dynamic environments, to be able to configure, manage and
maintain themselves, and to cope with malicious, whimsical
or just plain buggy components. The power of the agent
paradigm is that it provides the means, at the appropriate level
of abstraction, to conceive, design and manage such systems.

A. Broad Challenges

Each of the compelling visions discussed in the context
of trends and drivers above — the Semantic Web, ambient
intelligence, the Grid, autonomic systems — will require
agent technologies, or something very like them, before being
realised: agent technologies are upstream of these visions and
mission-critical to them. For agent-based computing to support
these visions, considerable challenges remain, both broad,
overarching challenges across the entire domain of agent
technologies, and challenges specific to particular aspects. The
broad challenges are as follows.

• Creating tools, techniques and methodologies to support
agent systems developers. Compared to more mature
technologies such as object-oriented programming, agent
developers lack sophisticated software tools, techniques
and methodologies to support the specification, develop-
ment and management of agent systems.

• Automating the specification, development and manage-
ment of agent systems. Agent systems and many of
their features are still mostly hand-crafted. For example,
the design of auction mechanisms awaits automation, as
does the creation and management of agent coalitions
and virtual organisations. These challenges are probably
several decades from achievement, and will draw on
domain-specific expertise (for example, economics, social
psychology and artificial intelligence).



• Integrating components and features. Many different the-
ories, technologies and infrastructures are required to
specify, design, implement and manage agent systems.
Integrating these pieces coherently and cost-effectively is
usually a major undertaking in any system development
activity, a task made more challenging by the absence of
mature integration tools and methodologies.

• Establishing appropriate trade-offs between adaptabil-
ity and predictability. Creating systems able to adapt
themselves to changing environments, and to cope with
autonomous components, may well lead to systems ex-
hibiting properties that were not predicted or desired.
Striking a balance, appropriate to the specific application
do- main, between adaptability and predictability is a
major challenge, as yet unresolved either theoretically or
practically. Associated with predictability is the require-
ment for practical methods and tools for verification of
system properties, particularly in multi- agent systems
that are likely to exhibit emergent behaviour.

• Establishing appropriate linkage with other branches of
computer science and with other disciplines, such as
economics, sociology and biology. One task here is to
draw appropriately on prior research from these other
areas and disciplines. Another task is to avoid reinvention
of existing techniques and methods, whether by agent
researchers or by others. Awareness-building between
areas and disciplines, and coordination of research and
development activities, are essential if the appropriate
linkages are to be established and maintained.

B. Specific Challenges

Specific technical challenges continue to change as the
field of agent-based computing advances and matures, and as
related areas (like those discussed above) emerge and galvanise
efforts that contribute to the general area. Inevitably, standards
will continue to be critical, but it is not clear whether these
should come from within the agent community or should
emerge from more general computing infrastructure progress.
Nevertheless, in addition to the broad challenges, there are
challenges specific to different aspects and features of agent
systems [3], [5].

1) Trust and reputation: Sophisticated distributed systems
are likely to involve action in the absence of strong existing
trust relationships. While middleware addresses secure au-
thentication, and there exist techniques for verification and
validation, these do not consider the harder problems of
establishing, monitoring, and managing trust in a dynamic,
open system. As discussed earlier, we need new techniques
for expressing and reasoning about trust and reputation, on
both an individual and a social level to enable interaction in
dynamic and open environments.

2) Virtual organisation formation and management: Virtual
organisations (VOs) have been identified as one of the key con-
tributions of Grid computing, but principled and well-defined
procedures for determining when to form new VOs, how to
manage VOs and portfolios of VOs, how to manage competing

and complementary VOs, and ultimately how and when to
disband them, are still missing. Moreover, the development of
procedures and methods for the automation of VO creation,
management and dissolution also provide major research and
development challenges. In addition, once such procedures
have been defined, creating formal representations of them to
support their automated deployment by agents themselves at
runtime will be a major research challenge.

3) Resource allocation and coordination: The coordinated,
autonomic management of distributed resources requires new
abstractions, mechanisms and standards in the face of multiple,
perhaps competing, objectives from different stakeholders, and
different definitions of individual and social welfare. Most
R&D effort to date has focused on allocation and coordina-
tion mechanisms drawn from human societies (for example,
common auction protocols), but the processing power and
memory advantages of computational devices mean that com-
pletely new mechanisms and protocols may be appropriate
for automated interactions, in particular for multi-objective
coordination and negotiation. In addition, as with VOs, the
automation of the design, implementation and management of
mechanisms is a major challenge.

4) Negotiation: To date, work on negotiation has provided
point solutions. There is a need for a solid theoretical foun-
dation for negotiation that covers algorithms and negotiation
protocols, while determining which bidding or negotiation
algorithms are most effective under what circumstances. From
the system perspective, behaviour arising through the interplay
of different negotiation algorithms must be analysed, and
determining what kind of negotiation to consider, and when,
must be established. Finally, effective negotiation strategies
and protocols that establish the rules of negotiation, as well as
languages for expressing service agreements, and mechanisms
for negotiating, enforcing, and reasoning about agreements are
also needed. Incorporating capabilities for disagreement and
justifications (i.e. arguments) in negotiations is also a major
research challenge.

5) Contracting and Verification: While impressive progress
is being made in new generations of network application
technologies such as Web Services and Grid Computing,
fundamental questions remain about how such systems can
be effectively deployed in a safe, dependable, and secure
manner. Current point solutions address particular aspects of
the problem, but do not address what is arguably the central
issue behind how such large-scale applications are designed,
deployed and managed: how to reliably model, track and
manage dependencies between the components of networked
applications to ensure secure, dependable operation at runtime.
To address this, we must draw on a range of techniques
developed in the fields of social science, agent technology,
protocol engineering and software engineering to make it
possible to model, build, verify and monitor systems on the
basis of dynamically generated, cross-organisational contracts.

In addition to verification of individual system components
(which are often not available or may be extremely complex)
we can also use formal specifications of publicly declared



commitments between systems. This separates the responsi-
bilities in distributed application design (between component
service providers and the overall designer of the system) and
allows verification procedures to operate only over higher level
public specifications which are potentially less detailed that
specifications of internal functioning of components. We need:

• theoretical frameworks for contract-based computing:
providing standard models with formal semantics for
large-scale open distributed application environments and
dependencies between components in such environments;

• contract-based Web Services application frameworks,
providing a suite of practical tools combining standard
Web Service based application design capabilities with
additional contracting features to constrain and formalise
component interactions, and providing entry points for
higher level verification and monitoring tools; and

• verification, monitoring and analysis tools for dependable
systems — implemented tools that apply model checking
techniques over distributed applications in order to verify
and monitor their behaviour, working towards better
specified and understood networked applications.

6) Methodologies: Many of todays challenges in software
design stem from the distributed, multi-actor nature of new
software systems and the resulting change in objectives im-
plied for software engineering. The development of method-
ologies for the design and management of multi-agent systems
seeks to address these problems by extending current software
engineering techniques to explicitly address the autonomous
nature of their components and the need for system adapt-
ability and robustness. A wide range of methodologies have
so far been developed, often addressing different elements of
the modelling problem or taking different inspirations as their
basis, yet there is no clear means of combining them to reap
the benefits of different approaches. Similarly, agent-oriented
methodologies still need to be successfully integrated with pre-
vailing methodologies from mainstream software engineering,
while at the same time taking on board new developments in
other challenge areas.

7) Service architecture and composition: There is a need
for integrated service architectures providing robust founda-
tions for autonomous behaviour, in order to support dynamic
services, and important negotiation, monitoring, and manage-
ment patterns. This will aid application and deployment of
agent technologies to the Grid and other domains. While web
service technologies define conventions for describing service
interfaces and workflows, we need more powerful techniques
for dynamically describing, discovering, composing, monitor-
ing, managing, and adapting multiple services in support of
virtual organisations, for example. This is likely to take the
form of agent-oriented architectures based on peer-to-peer or
other novel structures.

VIII. FUTURE PROSPECTS

The vision of agent-based computing itself is enough to
constitute a grand challenge because of the need to bring
together multiple technical and scientific disciplines as well

as stakeholders across different sectors. The specific technical
challenges continue to change as the field of agent-based
computing advances and matures and as related areas emerge
and galvanise efforts that contribute to the general area.

Inevitably, standards will continue to be critical, but it is
not clear whether these should come from within the agent
community or should emerge from more general computing
infrastructure progress. Nevertheless, some key challenges
have already been articulated in relevant areas.

In seeking to identify these challenges and to identify
the emerging opportunities, AgentLink (a European project
aimed at promoting industrial and commercial deployment
of agent technologies) has developed a roadmap for agent-
based computing. The roadmap provides a more complete
assessment of the current state of the art, considers the research
issues, reviews existing deployments for business benefit and
outlines the likely future development of both the research
field and the commercial environment.

Acknowledgements

This paper draws on the AgentLink Roadmaps [9], [10]
and the CONTRACT project. The CONTRACT project is co-
funded by the European Commission under the 6th Frame-
work Programme for RTD with project number FP6-034418.
Notwithstanding this fact, this paper and its content reflects
only the authors’ views. The European Commission is not
responsible for its contents, nor liable for the possible effects
of any use of the information contained therein.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, pages 35–43, May 2001.

[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
and D. Orchard. Web services architecture. Note 11, W3C Working
Group, 2004.

[3] S. Bullock and D. Cliff. Complexity and emergent behaviour in ict
systems. Technical report, Foresight Report, DTI, UK, 2004.

[4] V. Darley and D. Sanders. An agent-based model of a corrugated-box
factory: the trade-off between finished goods stock and on-time-in-full
delivery. In H. Coelho and B. Espinasse, editors, Proceedings of the
Fifth Workshop on Agent-Based Simulation, 2004.

[5] I. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn: Why
grid and agents need each other. In Proceedings of the Third Inter-
national Conference on Autonomous Agents and Multi-Agent Systems,
pages 8–15. ACM Press, 2004.

[6] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2004.

[7] A. Gould, S. Barker, E. Carver, D. Golby, and M. Turner. Baegrid:
From e-science to e-engineering. In Proceedings of the UK e-Science
All Hands Meeting, 2003.

[8] J. Himoff, P. Skobelev, and M. Wooldridge. Magenta technology: Multi-
agent systems for industrial logistics. In Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2005.

[9] M. Luck, P. McBurney, and C. Preist. A manifesto for agent technology:
Towards next generation computing. Autonomous Agents and Multi-
Agent Systems, 9(3), 2004.

[10] M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology:
Computing as Interaction (A Roadmap for Agent-Based Computing).
AgentLink, 2005. http://www.agentlink.org/roadmap.

[11] S. Munroe, T. Miller, R. A. Belecheanu, M. Pechoucek, P. McBurney,
and M. Luck. Crossing the agent technology chasm: Experiences
and challenges in commercial applications of agents. Knowledge
Engineering Review, 21(4):345–392, 2006.


