
Paradigma: Agent Implementation through Jini

Ronald Ashri and Michael Luck
Department of Computer Science

University of Warwick
Coventry, CV4 7AL, UK

Email: fR.Ashri,mikeluckg@dcs.warwick.ac.uk

Abstract

One of the key problems of recent years has been the di-
vide between theoretical work in agent-based systems and
its practical complement which have, to a large extent, de-
veloped along different paths. The Paradigma implementa-
tion framework has been designed with the aim of narrow-
ing this gap. It relies on an extensive formal agent frame-
work implemented using recent advances in Java technol-
ogy. Specifically, Paradigma uses Jini connectivity technol-
ogy to enable the creation of on-line communities in support
of the development of agent-based systems.

1 Introduction

In a networked environment that is highly intercon-
nected, interdependent and heterogeneous, we are faced
with an explosion of information and available services that
are increasingly hard to manage. Agent-based systems can
provide solutions to these problems as a consequence of
their dynamics of social interaction; communication and
cooperation can be used to effectively model problem do-
mains through the interaction of agents. Before the agent
paradigm experiences widespread use, however, there are
many issues that need to be resolved [5]. Perhaps most im-
portant, however, is the very urgent need for agent devel-
opment methodologies and agent frameworks to enable de-
velopers to implement agent-based systems effectively and
quickly. The development of such systems can also provide
much needed experience to aid in answering other ques-
tions.

In this paper we describe an effort to address this need
in providing an implementation framework for developing
agent-based systems using recent advances in Java technol-
ogy. Moreover, the work also addresses the theory-practice
divide in using Luck and d’Inverno’s [6] formal agent
framework as the base for the implementation. Specifically,
we describe the Paradigma implementation platform which,

using Jini connectivity technology, allows for the creation
of on-line communities. The aim of Paradigma is to let the
developer concentrate on the definition of agents and other
entities through standard techniques, and minimise the ef-
fort on their implementation, by taking care of issues of be-
haviour control as well as discovery, communication and
interaction with other entities.

The paper begins by briefly reviewing Luck and
d’Inverno’s formal agent framework as a base for under-
standing the aims of the implementation environment, the
design principles and underlying technologies which are
discussed in the subsequent section. Then the details of
how objects and agents are created, and how they can be in-
stantiated within Paradigma, are explained. Before present-
ing conclusions covering further work and other possibili-
ties opened up for agent-based systems by the technologies
used, some consideration is given to how communication
between autonomous agents is achieved.

2 A Formal Agent Framework

The notion of agents is to a large extent vague and uncer-
tain, and inherently allows for a variety of interpretations.
Many alternative definitions have been presented in the lit-
erature, usually excluding other approaches. In an attempt
to ground their own work in particular agent concepts and
to allow it to move forward and tackle other more impor-
tant issues, Luck and d’Inverno describe an inclusive formal
framework that precisely delineates the notions of agents
and autonomy, but without rejecting alternative forms. In
essence, their proposal is for a four-tiered hierarchy con-
taining entities, objects, agents and autonomous agents [6].

In this view, entities comprise a set of attributes, which
are simply describable features of the world. Objects are en-
tities with a set of capabilities, which are actions an object
can perform that cause an effect on the state of the environ-
ment. Agents are objects with a set of goals defined as sets
of desirable attributes and, finally, autonomous agents are
those agents able to generate their own goals through mo-



tivations that drive them. Motivations can be thought of as
preferences or desires of an autonomous agent that lead it
to produce goals to satisfy those desires.

Thus, a clear distinction is made between the notions of
agents and autonomous agents. Agenthood is ascribed to
any entity in the world that acts in order to satisfy some
goal, and when those goals are self-generated the agent is
autonomous. This simple framework has also been fur-
ther refined to accommodate more sophisticated analyses
of agent interaction, by introducing additional definitions
of neutral objects as those objects in the world that are
not agents and server agents as those agents in the world
that are not autonomous [3]. Neutral objects give rise to
server agents when they adopt goals. Once those goals are
achieved, or pursuing those goals is no longer feasible, the
server agent reverts back to a neutral object. This is a sig-
nificant characteristic of the framework on which we will
focus later in this paper when we explain how the frame-
work is implemented as a real set of APIs. In any case,
however, we will not discuss the agent framework here, but
leave the reader to explore previous work [3, 6].

In order to make these abstract notions clearer, however,
suppose that you want your personal agent (PA), with moti-
vations such as minimising on-line connection time, saving
money, and providing comfort, to find the best train ticket
to visit London for you. Given this task, it generates goals
according to its motivations, including that of getting a list
of all travel agents providing tickets to London, and tries
to achieve it by locating an object in the environment with
the capability of providing such lists. The PA engages the
object and thus instantiates a server agent from it with the
goal of providing the required information. Now, the ac-
tions of the object required to accomplish this may be noth-
ing more than a multicast announcement requesting active
travel agents to register. Having received the list, the PA at-
tempts to contact the travel agent using some form of com-
munication language. Having acquired the required infor-
mation (limiting the number of calls so as to satisfy the
motivation of minimising on-line time, and getting a cheap
ticket according to the other motivations), the PA reports the
results and waits for further instructions.

This example illustrates some key points. First, it is im-
portant to be able to define entities that do not necessarily
exhibit traditional standard agent qualities, but which can be
regarded as agents because it is useful for us to do so (for
example, when given tasks to accomplish, or goals to sat-
isfy). Second, interactions between entities can take differ-
ent forms. They could be direct engagements of an object
or a cooperation between two autonomous agents (as dis-
cussed in [7]). Finally, motivations are required to drive au-
tonomy. An agent needs to have some innate driving forces
that will define its behaviour and allow it to generate or
choose the next goal. In the example, the autonomous agent

has the motivation of minimising on-line time so it could
prefer the goal of downloading all the information locally
before processing it.

3 Paradigma Agent Implementation

Design Principles As stated earlier, the aim of
Paradigma is to provide an agent implementation environ-
ment based on the agent framework described above. In
a sense, Paradigma can be seen as implementing the agent
framework, and both the framework and the environment
serve as infrastructure in their respective domains in which
agent development (both theoretical and practical) can take
place. Based in this way on a principled theoretical model,
Paradigma was also guided by certain design principles that
structure its general development. Technologies such as Jini
and XML have been used, enabling the framework to gain
from their evolution as well as aiding in its understanding
by other developers. In addition, we opted for providing a
grounded model that can be easily changed and expanded,
thus allowing us to adapt the model as our understanding of
the agent paradigm evolves, as opposed to an all inclusive
solution. Finally, agent implementation has been separated
from agent description, through the use of XML, in order to
allow for the construction of different agent types.

Java for Agent Systems As argued by Kinny et al. [4],
while object oriented (OO) programming languages can-
not provide a direct solution to agent development, features
such as abstraction, inheritance and modularity make it eas-
ier to manage increasingly more complex systems. The in-
creased complexity of agents and their behaviour means that
despite the power of OO techniques, they cannot directly by
mapped to agent design. However, they accept that the path
to an agent modelling language is to be found through OO
techniques. In that respect, Java is a sensible choice be-
cause, in addition, it provides a range of extra qualities.

Jini While Java has a whole host of features that make
it suitable for the construction of agent-based systems, per-
haps the most important development, that makes Java an
almost ideal platform is the recent release of the Jini con-
nectivity technology [1]. Essentially, Jini is intended to re-
solve the problem of network administration by providing
an interface where different components of the network can
join or leave the network at any time.

Such a collection of entities is called a Jini federa-
tion, and entities within the federation represent service
providers or service consumers. The strength of the Jini
system lies in the fact that it abstracts above the level of net-
work protocols or device drivers by introducing this notion
of a service. A service can be anything: a storage device,
a printer, a camera or, more importantly in our case, a soft-
ware component. When a service joins a Jini federation it
brings along with it a set of attributes that describe its capa-



Figure 1. Paradigma Agent Hierarchy

bilities. These attributes can then be examined by a human
or software agent to determine the service’s suitability for
achieving the desired goals of a potential service user. If
the service is suitable then the agent of the potential user
can negotiate an agreement under which the service provi-
sion will take place.

Furthermore, the system provides features that make it
dynamic. Through the use of the notion of a lease, Jini ser-
vices can indicate the period for which they would like to
join a federation. At the end of the lease a service may
choose to renew the lease or abandon the federation. (Sce-
narios in which a charge in proportion to the lease period
is required to join are not difficult to envisage.) Another
appealing aspect of Jini technology that is relevant to agent-
based systems is that it is not necessary for a service that
wishes to join a federation to have direct access to a JVM.
Such a service can use a proxy, which mediates between
a JVM and the actual component being controlled. This
enables developers to easily implement Jini wrappers for
legacy software or for devices that cannot support a JVM.

It should be immediately obvious how these ideas are
connected to many of those arising from agent-based sys-
tems. In essence, Jini provides the plumbing. It relieves the
developer from having to re-invent the wheel every time. As
is identified by Bradshaw et al [2], such systems have been
badly needed to push agent development forward.

4 Object and Agent Creation in Paradigma

Having introduced the main design decisions in
Paradigma we now move on to show how the pieces fit to-
gether by illustrating the cycle of creation of a neutral object
and an autonomous agent and the subsequent manipulation
of the neutral object by an autonomous agent.

The most basic structure in Paradigma is the entity rela-
tionship that translates the four-tiered hierarchical frame-
work. It separates the permanent and temporary entities

Figure 2. Autonomous Agent Functioning

in the world, as shown in Figure 1. While AutoAgent ex-
tends AbstractObject, which defines the behaviour of Neu-
tralObject, ServerAgents have the functionality of Agents
but instead of extending AbstractObject they wrap around
it. Once the ServerAgent is no longer required the wrapped
NeutralObject is released.

Neutral objects are entities in the framework which are
described by their attributes and capabilities. In Paradigma,
attributes are defined through an XML file with a distinction
being made between static and dynamic attributes (which
may change over time). Capabilities are similarly described
in the XML file but are actually Java classes that are dynam-
ically loaded into the neutral object’s JVM at run-time. In
this way, agent designers can have access to libraries of ca-
pabilities that they can automatically attach to their agents
for particular agent functionality.

When a desirable neutral object is located by an agent it
can be engaged directly by that agent to instantiate a server
agent from it. Server agents are temporary agents that adopt
goals from (or have goals ascribed to them by) the engaging
agent, as illustrated in Figure 2. If a neutral object is already
engaged there are several courses of action that might be
followed. The requesting agent may simply transfer its own
goal to a queue of goals the neutral object must execute and
wait its turn. Alternatively, if it has a higher priority than the
agent currently engaging the object, it may demand imme-
diate attention. Finally, the requesting agent could negotiate
with the target for an alternative agreement that meets both
requirements, as described elsewhere [8].

We have discussed the nature of server agents, but have
not detailed the exact mechanism through which users can
interact with the neutral object, and we examine the three
principal ones below.

Execution in the engaging agent’s JVM In this case
the entire neutral object implementation is published to the
Jini community. Thus, when it is downloaded by the engag-
ing agent, all links with neutral object’s JVM are lost, and



Figure 3. Execution in engaging agent’s JVM

calls to the newly engaged server agent (the orginal neu-
tral object) are executed locally. This behaviour is useful if
the available service represents a required extension to the
agent engaging the neutral object, e.g. a network adminis-
tration agent that requires a new module to control a device.

Execution takes place on the server’s JVM As shown
by Figure 3, a more sophisticated approach is for the neu-
tral object to publish a proxy (an RMI stub1) to its imple-
mentation, which remains in the neutral object’s JVM. As
far as the engaging agent is concerned, the behaviour is the
same as the previous case in that it also instantiates a server
agent to wrap the neutral object (stub). All calls are, how-
ever, communicated to the original engaged neutral object’s
remote JVM. This is useful in instances where the neutral
object serves as a channel to information on a database or
as an interface for a remote sensor, or for the purposes of
distributing computing power.

Execution takes place on both client and server Here
we have what is often called asmart proxy. The neutral
object publishes an implementation of its interface where
some of the processing is done in the engaging agent’s JVM
and some on the engaged agent’s (the oiginal neutral ob-
ject’s) remote JVM. Such an implementation is useful in
instances where it is more profitable to distribute the pro-
cessing over both machines, e.g. in the case where the en-
gaging agent can better perform local processing (due to a
more powerful processor) of the information obtained by a
remote call to the neutral object.

In the current implementation of Paradigma, execution
takes places remotely as described in the second case above,
simply because we aim to focus on the distribution of com-

1An RMI stub takes care ofmarshalling the parameters that are passed
to the neutral object and sends them across the network. At the other end,
an RMI skeleton willunmarshall the parameters and make the call locally.
The results are then marshalled, again through the skeleton, and passed
to the stub that will unmarshall them and return the results to the client
that made the call. The most important implication is that all information
should be serializable so that it can be transferred over the network.

puting and control of remote devices.
Now, agents act according to their goals, and au-

tonomous agents can generate goals internally or they can
adopt goals from others. In contrast, neutral objects have
goals ascribed to them and become server agents. In any
case, agents attempt to form plans to satisfy currently active
goals. At present, planning is not very flexible as plans are
not generated on-line but taken from a repository of plans
to get the most suitable plan for achieving the current goal,
as in many BDI architectures (eg. [9]).

Autonomous agents give meaning to agent-based sys-
tems through their ability to generate their own goals, driven
by their motivations. Motivations along with an agents
goals and plans thus completely define the agent’s be-
haviour. On instantiation of an autonomous agent, XML
files are required for attributes, capabilities, motivations,
goals and plans. The sets of goals and plans form, respec-
tively, thegoal base andplan base of the agent. Based on
motivations, an autonomous agent chooses the goal that of-
fers the greatest motivational utility, leading to an attempt to
select and execute a plan that involves certain agents capa-
bilities or the engagement of other agents. Once a goal has
been achieved, or if attempting to achieve it any longer is
futile, autonomous agents modify their motivations accord-
ingly and choose another goal from the goal base.

5 Agent Interaction

Until now, we have discussed the creation and instantia-
tion of the various components of the agent framework, but
have not considered how autonomous agents can interact
with each other. In Paradigma, an autonomous agent that
chooses to make itself available for cooperation with other
autonomous agents needs to join a Jini community so that
it can bediscovered. Once it discovers another, they enter
into negotiation to agree on some sort of service provision,
and this negotiation requires a base communication infras-
tructure. There are several possibities for enabling the com-
munication required for interaction between agents, rang-
ing from object-based communication with RMI, to socket-
based XML messages. For more robust behaviour a third-
party message router could be used. It is important, how-
ever, that the framework provides a layer of abstraction
above the underlying communication method so as not to
tie the framework to any particular way of communication.

Figure 4 illustrates the issues discussed in this section as
well as showing how they come together with the overall
functionality of Paradigma. An autonomous agent, Jamal,
wishes to access a database in order to gain some informa-
tion. Jamal engages a neutral object that acts as an interface
to the database, and transfers its goals to it, thus instanti-
ating a server agent. In the meantime, Jamal makes itself
available for contact by other agents through the publication



Figure 4. Agent system snapshot

of a communication interface implementation. Another au-
tonomous agent, Bob, wishes to communicate with Jamal,
and does so by downloading the implementation of the com-
munications interface.

6 Conclusions

Several issues have not been addressed in this paper,
partly due to space constraints, partly due to focus, and
partly because they have not yet been tackled in the con-
text of Paradigma. We should note, however, that the scope
for extending this work to address many other such issues
is considerable. For example, the issue of payment for ser-
vices rendered by agents, whatever the form of the engage-
ment, is likely to be a key concern for the broader accep-
tance of systems developed in this way. Jini provides for
such cases via its leasing mechanisms, which we have only
briefly touched upon in discussing the use of leasing for
joining a Jini community, and its role in making a system
more dynamic by automatically cleaning up services not
renewing their leases. However, services themselves can
grant leases through the same mechanisms to consumers of
their resources including, for example, the payment of some
amount towards the use of the service.

As discussed elsewhere [5], we are entering a new phase
of agent research and development in which the focus must
be less on the exciting and inspirational issues, and more on
the mundane but fundamental issues of consolidation that
underlie any serious technological effort. These include the
integration with, and use of, existing technology that is tried
and tested, the application of agent solutions to pre-existent
problems, the linkage of agent theory and practice, and the
augmentation of the technology with facilities for develop-
ment. These are exactly the issues that we are beginning
to address through the Paradigma implementation environ-

ment described in this paper.
Paradigma has been developed as a result of very practi-

cal concerns — supporting the development of agent-based
systems. It has been constructed using appropriate underly-
ing technologies that are becoming increasingly widespread
and largely standardised. In this sense, the applicability
and accessibility of the work is unquestionable, since it en-
gages directly with the broader development community.
Yet, at the same time, the work is underpinned by a concern
for principled development, and Paradigma in fact imple-
ments a sophisticated and well-developed foundational for-
mal agent framework within which strong theoretical anal-
yses are facilitated. Paradigma thus satisfies the needs of
several different audiences and, though still early in its de-
velopment, suggests a likely avenue to explore for effective
and valuable progress.

References

[1] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and
A. Wollrath. The Jini Specification. Addison-Wesley, 1999.

[2] J. Bradshaw. Agents for the masses.IEEE Intelligent Systems,
14(2):53–63, 1999.

[3] M. d’Inverno and M. Luck. Development and application of a
formal agent framework. In M. G. Hinchey and L. Shaoying,
editors,ICFEM’97: First IEEE International Conference on
Formal Engineering Methods, pages 222–231. IEEE Press,
1997.

[4] D. Kinny, M. Georgeff, and A. Rao. A methodology and mod-
elling technique for systems of BDI agents. In W. Van de
Velde and J. W. Perram, editors,Agents Breaking Away: Pro-
ceedings of the Seventh European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, LNAI 1038,
pages 56–71. Springer-Verlag, 1996.

[5] M. Luck. From definition to development: What next
for agent-based systems.Knowledge Engineering Review,
14(2):119–124, 1999.

[6] M. Luck and M. d’Inverno. A formal framework for agency
and autonomy. InProceedings of the First International Con-
ference on Multi-Agent Systems, pages 254–260. AAAI Press
/ MIT Press, 1995.

[7] M. Luck and M. d’Inverno. Engagement and cooperation in
motivated agent modelling. InProceedings of the First Aus-
tralian DAI Workshop, Lecture Notes in Artificial Intelligence,
1087, pages 70–84. Springer Verlag, 1996.

[8] M. Luck and M. d’Inverno. Motivated behaviour for goal
adoption. InMulti-Agent Systems: Theories, Languages
and Applications — Proceedings of the Fourth Australian
DAI Workshop, Lecture Notes in Artificial Intelligence, 1544,
pages 58–73. Springer Verlag, 1998.

[9] A. S. Rao. Agentspeak(l): BDI agents speak out in a logical
computable language. In W. Van de Velde and J. W. Per-
ram, editors,Agents Breaking Away: Proceedings of the Sev-
enth European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, LNAI 1038, pages 42–55. Springer-
Verlag, 1996.


