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Abstract. In order to facilitate the development of agent-based software, sev-
eral agent programming languages and architectures, have been created. Plans in
these architectures are often self-contained procedures with an associated trigger-
ing event and a context condition, while any further information about the con-
sequences of executing a plan is absent. However, agents designed using such an
approach have limited flexibility at runtime, and rely on the designer’s ability to
foresee all relevant situations an agent might have to handle. In order to overcome
this limitation, we have created AgentSpeak(PL), an interpreter capable of per-
forming state-space planning to generate new high-level plans. As the planning
module creates new plans, the plan library is expanded, improving performance
over time. However, for new plans to be useful in the long run, it is critical that
the context condition associated with new plans is carefully generated. In this pa-
per we describe a plan reuse technique aimed at improving an agent’s runtime
performance by deriving optimal context conditions for new plans, allowing an
agent to reuse generated plans as much as possible.

1 Introduction

Software based on autonomous agents is often advocated as a solution to addressing
highly dynamic environments in which human intervention is impractical or impossi-
ble. In order to facilitate the development of such agent-based software, several agent
programming languages, as well as associated agent architectures, have been created.
So far, however, for reasons of efficiency, the set of practical agent architectures devel-
oped has mainly focused on providing a plan execution framework for a plan library
defined at design time [1, 2]. Plans in these architectures are often self-contained pro-
cedures with an associated triggering event, while any additional information about the
consequences of executing a plan is absent. For example, PRS [3] and its successors [4,
5] provide concrete agents which, while efficient, are noticeably inflexible in handling
anything not foreseen at design-time.

Traditional BDI agents [2] are designed using a procedural approach, which requires
a designer to create detailed procedural plans for every relevant situation in which an
agent may find itself prior to deployment. Situations in which plans must be executed
are encoded in a plan header in two parts: a triggering event, identifying the moment
when a plan may be necessary; and a context condition describing the pre-requisites
for the plan to be applicable, as shown in Figure 1. Both the triggering event and the
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Fig. 1: AgentSpeak(L) plan and dynamics.

context condition are defined statically at design time, and ensure that a plan can execute
successfully when it is required. However, agents designed using such an approach have
limited flexibility at runtime, and rely on the designer’s ability to foresee all relevant
situations an agent might have to handle.

In order to overcome this limitation, we have created AgentSpeak(PL) [6], an in-
terpreter capable of generating new high-level plans when no suitable plans exist in the
plan library. These high-level plans are created by sequencing existing lower-level plans
from the plan library, from which key information about their declarative preconditions
and consequences is extracted. AgentSpeak(PL) uses state-space planning to create new
plans, and since state-space planners are inherently declarative, AgentSpeak(PL) is able
to reason about declarative goals and create plans which, when executed, ensure that a
certain world-state is true. The approach taken in AgentSpeak(PL) consists of evaluat-
ing the consequences of procedural plans in terms of belief additions and deletions and
converting these plans into a STRIPS-like representation, which can then be supplied
to a classical planner [7] along with the current belief base and the desired goal state.
In this setting, STRIPS operators are essentially an analogue for lower-level Agent-
Speak(L) plans and, therefore, plans generated by the planning module represent high-
level AgentSpeak(L) plans, which consist entirely of lower-level plan invocations. As
the planning module creates new plans, the plan library is expanded, improving perfor-
mance over time.

However, for new plans to be useful for an agent in the long run, it is critical that
the context condition associated with new plans is simple enough so that plans can be
executed whenever they accomplish their goals, and restrictive enough, so that plans
do not execute in situations in which they would fail. As an example, suppose that a
certain agent has a car and a motorcycle available to move it from home to work, and
an action to drive each one of these vehicles having a precondition that the vehicle
being used must have enough fuel for the journey. Furthermore, suppose that at one
point in time this agent generated a plan to drive its car to work, while believing that
both the motorcycle and the car had enough fuel. The precondition of the high-level
plan involving the car surely must contain the belief regarding the car’s fuel level, but
not the motorcycle’s, as it is irrelevant to that plan.

While previous work [6] focused on the integration of the interpreter with the plan-
ner through a translation process, in this paper we focus on specific aspects of adding
new plans to the plan library. The key contribution is an improvement in an agent’s
runtime performance by deriving optimal context conditions for new plans, allowing
an agent to reuse generated plans as much as possible. We evaluate the resulting sys-



tem against a naive strategy of plan reuse, as well as a similar agent designed using
AgentSpeak(L), in order to demonstrate the efficiency of our approach. Although we
use AgentSpeak(L) as a demonstration platform, our approach can also be applied to
other planning-capable agent architectures.

This paper is organised as follows: Section 2 reviews previous work on Agent-
Speak(PL), providing the necessary background for this paper; Section 3 describes our
plan reuse strategy, including an algorithm for context generation; Section 4 reports on
the experiments performed using an implementation of our strategy and its results for a
production cell scenario; Section 5 provides a brief overview of recent related work in
comparison to ours; finally, Section 6 draws conclusions from our results and proposes
future research based on them.

2 AgentSpeak(PL)

AgentSpeak(PL) [6] is an extended AgentSpeak(L) interpreter that uses a planning
component to reason about declarative goals. In this section we briefly describe both
the original AgentSpeak(L) interpreter and language, and the extensions provided in
AgentSpeak(PL).

2.1 AgentSpeak(L)

AgentSpeak(L) [2] is an agent language, as well as an abstract interpreter for the lan-
guage, that follows the beliefs, desires and intentions (BDI) model of practical reason-
ing [8]. In simple terms, a BDI agent tries to realise the desires it believes are possible by
committing to carrying out certain courses of action through intentions. The language
of AgentSpeak(L) allows the definition of reactive procedural plans, so that plans are
defined in terms of an event to which an agent should react to by executing a sequence
of steps (i.e. a procedure). Plan execution is further constrained by the context in which
these plans are relevant. Here, a plan is executed under the assumption that some im-
plicit goal is being accomplished by that plan at that particular moment.

The control cycle of an AgentSpeak(L) interpreter is driven by events relating to
either new beliefs (including perceptions) and new goals. These events are used as trig-
gering conditions for the adoption of plans, so that adding an achievement goal means
that an agent desires to fulfil the goal, and plans whose triggering condition includes that
goal (i.e. are relevant to the goal) should lead to that goal being achieved. Moreover, a
plan includes a logical context condition that specifies when the plan is applicable (i.e.
possible to be executed) in any given situation. Whenever a goal addition event is gener-
ated (as a result of the currently selected plan having subgoals), the interpreter searches
the set of relevant plans for applicable plans; if one (or more) such plan is found, it is
pushed onto an intention structure for execution. Elements in the intention structure are
popped and handled by the interpreter. If the element is an action it is executed, while
if the element is a goal, a new plan for that goal is added into the intention structure
and processed. During this process, failures may take place either in the execution of
actions, or during the processing of subplans. When such a failure takes place, the plan
that is currently being processed also fails. Thus, if a plan selected for the achievement



Fig. 2: AgentSpeak(L) reasoning cycle.

of a given goal fails, the default behaviour of an AgentSpeak(L) agent is to conclude
that the goal that caused the plan to be adopted is not achievable. This control cycle
is illustrated in the diagram of Figure 2,1 and strongly couples plan execution to goal
achievement.

In order to better understand the relationship between the control cycle and the plan
library, it is necessary to introduce the notation of AgentSpeak(L) plans. The events on
an agent’s data structures that can trigger the adoption of plans consist of additions and
deletions of goals and beliefs, and are represented by the plus (+) and minus (−) sign
respectively. Goals are distinguished into test goals and achievement goals, denoted by
a preceding question mark (?), or an exclamation mark (!), respectively. For example,
the addition of a goal to achieve g is represented by +!g, whereas the addition of a goal
to test the truth value of a belief b is represented by +?b. Belief additions and deletions
arising as the agent perceives the environment are outside its control, while goal ad-
ditions and deletions and some belief modifications only arise as part of the execution
of an agent’s plans. Plans in AgentSpeak(L) are represented by a header comprising
a triggering condition and a context, as well as a body describing the steps the agent
takes when a plan is selected for execution, as illustrated in Figure 1. Thus, if e is a
triggering event, b1, . . . , bm are belief literals, and h1, . . . , hn are goals or actions, then
e : b1& . . . &bm ← h1; . . . ;hn. is a plan. As an example, consider a plan associated
with the triggering event !move(O,A,B) corresponding to an achievement goal to move
an object O from A to B, where:

– e is !move(O,A,B);
– at(O,A) and not at(O,B) are belief literals; and
– -at(O,A) and +at(O,B) are two steps in the plan body, consisting of information

about belief additions and deletions.
The plan is then as follows:

1 For a full description of AgentSpeak(L), refer to d’Inverno et al.[9]



Fig. 3: AgentSpeak(PL) reasoning cycle.

+!move(O,A,B) : at(O,A) & not at(O,B)
<- -at(O,A);

+at(O,B).

When this plan is executed, it should result in the agent believing O is no longer
in position A, and then believing it is in position B. For an agent to rationally want to
move O from A to B, it must believe O is at position A and not already at position B.

2.2 Planning in AgentSpeak(PL)

In order to overcome the limitations of traditional AgentSpeak(L) programming in
terms of dynamic plan generation and declarative goal representation, previous work
has introduced AgentSpeak(PL) [6], which is an extended AgentSpeak(L) interpreter
coupled with a planning module able to perform STRIPS-like planning. The agent in-
terpreter communicates with the planning module through a translation process that
relies on the similarities between AgentSpeak(L) plans and STRIPS operators. This is
possible because both formalisms describe world modification functions that can be
applied if certain preconditions hold, resulting in changes to the world-state.

The planning action In addition to the traditional way of encoding goals for an Agent-
Speak(L) agent implicitly as triggering events consisting of achievement goals (!goal),
AgentSpeak(PL) allows desires including multiple beliefs (b1, . . . , bn) describing a de-
sired world-state in the form goal conj([b1, . . . , bn]). An agent desire description thus
consists of a conjunction of beliefs the agent wishes to be true simultaneously at a
given point in time. The execution of the planning component is triggered by an event
+goal conj([b1, . . . , bn]) as shown in Table 1.

In this approach, planning in AgentSpeak is introduced through a special planning
action, denoted plan(G), where G is a conjunction of desired goals. This action is
bound to an implementation of a planning module, and allows all of the process regard-
ing the conversion between formalisms to be encapsulated in the action implementation,
making it completely transparent to the remainder of the interpreter. Note that there are



+goal conj(Goals) : true ← plan(Goals).

Listing 1: Planner invocation plan.

two different steps in invoking the planning action: the declarative goal, represented
by the +goal conj(Goals) event; and the planner invocation action plan, which may
occur as a consequence of adopting a declarative goal.

Whenever an agent needs to achieve a goal that involves planning, it uses a spe-
cial planning action that converts the low-level procedural plans of AgentSpeak(L) into
STRIPS operators and invokes the planning module. If the planner succeeds in finding
a plan, it is converted back into a high-level AgentSpeak(L) plan and is added to the
intention structure for execution, as illustrated in Figure 3. This conversion process is
detailed in Section 2.2. If the newly created plan fails, the planner may again be invoked
to try to find another plan to achieve the desired state of affairs, taking into consideration
any changes in the beliefs.

Note that the planning action is included in a standard AgentSpeak plan with the
same triggering condition as the plans generated by it. Moreover, new plans are always
added to the plan library before the plan that executes the planning action. With this
arrangement, previously-created plans are consulted first when the interpreter searches
for relevant plans, hence having higher priority for execution. If no such plan is found
to be applicable, the plan containing the special planning action is invoked as the last
remaining option. An important limitation imposed by our current implementation is
that, since goal conjunctions are represented as lists, different goal orderings correspond
to different declarative goals and, therefore, a goal to achieve [a, b] is not seen as the
same goal to achieve [b, a].

Translating AgentSpeak into STRIPS Once the need for planning is detected, the
plan in Table 1 is invoked so that the agent can tap into a planning component. The pro-
cess of linking an agent to a propositional planning algorithm includes converting an
AgentSpeak plan library into propositional planning operators, declarative goals into
goal-state specifications, and the agent beliefs into the initial-state specification for
a planning problem. After the planner yields a solution, the ensuing STRIPS plan is
translated into an AgentSpeak plan in which the operators resulting from the planning
become subgoals. That is, the execution of each operator listed in the STRIPS plan is
analogous to the insertion of the AgentSpeak plan that corresponded to that operator
when the STRIPS problem was created.

In classical STRIPS notation, operators have four components: an identifier, a set
of preconditions, a set of predicates to be added (add), and a set of predicates to be
deleted (del). For example, the same move operator can be represented in STRIPS fol-
lowing the correspondence illustrated in Figure 4, in which AgentSpeak(PL) converts
the invocation condition into a STRIPS operator header, a context condition into an
operator precondition, and the plan body is used to derive add and delete lists.

A relationship between these two definitions is not hard to establish, and Agent-
Speak(PL) defines the following algorithm for converting AgentSpeak (low-level) plans
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Fig. 4: AgentSpeak plan versus STRIPS operator.

+goal conj(Goals) : true

←!op1; . . . ; !opn.

Listing 2: AgentSpeak plan generated from a STRIPS plan.

into STRIPS operators. Let e be a triggering event, b1& . . . &bm a conjunction of be-
lief literals representing a plan’s context, a1, . . . , an be belief addition actions, and
d1, . . . , do be belief deletion actions within a plan’s body. All of these elements can be
represented in a single AgentSpeak plan. Moreover let opname be the operator name
and parameters, pre be the preconditions of the operator, add the predicate addition list,
and del the predicate deletion list. Mapping an AgentSpeak plan into STRIPS operators
is then accomplished as follows:

1. opname = e
2. pre = b1& . . . &bm

3. add = a1, . . . , an

4. del = d1, . . . , do

Above, we have introduced the representation of a conjunction of desired goals as
the predicate goal conj([b1, . . . , bn]). The list [b1, . . . , bn] of desires is directly trans-
lated into the goal state of a STRIPS problem. Moreover, the initial state specification
for a STRIPS problem is generated directly from the agent’s belief database.

Executing generated plans The STRIPS problem generated from the set of operators,
initial state and goal state is then processed by a propositional planner. If the planner
fails to generate a propositional plan for that conjunction of literals, the plan in Table 1
fails immediately and the goal is deemed unachievable, otherwise the resulting propo-
sitional plan is converted into an AgentSpeak plan and added to the intention structure.
A propositional plan from a STRIPS planner is in the form of a sequence op1, . . . , opn

of operator names and instantiated parameters. AgentSpeak(PL) creates a new plan as
in Table 2, where goal conj(Goals) is the event that caused the planner to be invoked.

Immediately after adding the new plan to the plan library, the event
goal conj(Goals) is reposted to the agent’s intention structure, causing the gener-
ated plan to be executed. The abstract language of AgentSpeak(L) does not include
constructs for plan library modification, but this type of functionality is generally ac-
complished through internal actions by many interpreters, including Jason [10]. As a
consequence, there is no commonly agreed semantics for the addition of new plans into



an agent’s plan library. The method we use is that of the Jason interpreter, which con-
sists of inserting the new plan either at the beginning of the plan library or at its end.
Plans generated in this fashion are admittedly simple, and in order for an agent to take
full advantage of the planning module, we need to consider how plans should be added
to the plan library for future reference.

2.3 Limited plan reusability

However, the addition of the new plan to the intention structure raises the problem
of how newly formed plans can be integrated into the agent’s existing plan library, or
indeed if they should be integrated into the plan library at all. Modifying the plan library
at runtime through the addition of new plans effectively changes agent behaviour in at
least two ways: first, new plans may cause undesired interactions with the plans that are
already part of the plan library, possibly jeopardising the agent’s viability in the long
term; and second, adding a large number of plans with the same invocation condition
may impair the agent’s ability to respond in adequate time.

In order for a plan to be usefully added to the plan library, therefore, the context in
which this plan is relevant must be carefully described. If the context is too restrictive,
for example by using the entire belief base at the time of planning, the inclusion of a
number of irrelevant beliefs will severely limit the future applicability of the new plan.
On the other hand if the context is minimised to only the preconditions of the first
operator, the plan may fail later on due to the requirements of subsequent operators. In
consequence, an algorithm that generates the minimum context condition necessary for
a newly generated plan to be reused usefully is required.

3 Leveraging new plans

In order to address the need for a minimum context condition for newly created plans,
we have developed an algorithm to extract the minimum necessary context condition
from a planner-generated plan that ensures that if the context is true when the plan is
adopted, it will succeed if no external interference takes place.

3.1 Data structure

We base our context-generation algorithm on a modified version of the planning graph
data structure from Graphplan [11], which is a graph-based planning algorithm. The
properties of this method of plan representation are key to our algorithm and, therefore,
before describing the algorithm, we introduce the planning graph. Since a plan is com-
posed of temporally ordered actions, and these actions alter propositions in the interme-
diate world states, graph levels are divided into alternating proposition and action levels,
making it a directed and levelled graph. A graphical representation of one such graph is
shown in Figure 5, in which oval shapes denote propositions and boxes denote actions.
Proposition levels are composed of proposition nodes labelled with propositions, and
are connected to the actions in the subsequent action level through precondition arcs.
Here, action nodes are labelled with operators and are connected to the nodes in the



Fig. 5: A planning graph example.

subsequent proposition nodes by effect arcs, and both added and deleted propositions
are possible effects of an operator.

Every proposition level denotes literals that are possibly true at a given moment,
so that the first proposition level represents the literals that are possibly true at time t1
(the initial time), the next proposition level represents the literals that are possibly true
at time t2 and so on. Similarly, action levels denote operators that can be executed at a
given moment in time in such a way that the first action level represents the operators
that may be executed at time t1, the second action level represents the operators that
may be executed at time t2 and so on.

The process of building a graph in Graphplan consists of initialising it with a propo-
sition level containing the initial state of the planning problem, and adding all actions
that have their entire set of preconditions present in that proposition level. New propo-
sition levels are then created, including all the effects of the preceding action level. In
order to guarantee a static frame for all actions in the graph (that is, to ensure propo-
sitions not affected by plan operators remain unchanged between points in time), no
operation (or noop) edges are inserted between propositions to represent the possibility
that these propositions are not changed between two proposition levels (i.e. points in
time). The planning graph used in Graphplan has a number of other characteristics that
we do not explain in this paper because they are not relevant to our algorithm, but are
discussed in [11].

3.2 Generating context information

Intuitively, the preconditions of any given plan step must have either been made true
during the execution of previous plan steps or must have been true from the start of the
plan. Therefore, the minimum context condition for any generated plan must specify the
preconditions of the first operator, plus the preconditions of any subsequent operators
that are not included in the effects of previous operators. We consider this process in
more detail in Algorithm 1, which describes the generation of such a context condition.

The algorithm initially builds a planning graph populated with the actions of the
plan we wish to create a context for, as well as the preconditions and effects of these
actions, with edges connecting actions to their preconditions in the previous level, and
their effects in the subsequent level. Once the initial graph is generated, proposition
levels are iterated backwards and, for each proposition that is connected with a precon-



Algorithm 1 Propagation of preconditions.
Require: Plan ∆ = {a1, . . . , an}, with n steps
Require: Action descriptions O = {〈a1, P re1, Post1〉, 〈an, P ren, Postn〉}
1: create a proposition level P0 with no propositions;
2: for all ai ∈ ∆ do
3: create an action level Ai containing a node ai;
4: add the preconditions of ai to proposition level Pi−1;
5: connect all p ∈ Pi to ai−1 with precondition edges;
6: create a proposition level Pi containing the effects of ai;
7: connect all p ∈ Pi to ai with effect edges;
8: end for
9: for i = n to 1 do

10: for all p ∈ Pi−1 do
11: if p is not connected to any node in level Ai then
12: create an action noop(p) in level Ai;
13: connect noop(p) to p through an effect edge;
14: if p 6∈ Pi then
15: create a node p in Pi;
16: end if
17: connect p to noop(p) with a precondition edge;
18: end if
19: end for
20: end for
21: return P0

dition edge to a subsequent action level and not connected with an effect edge to the
previous action level, a new noop action is created, allowing a proposition to be propa-
gated to the previous proposition level. As the graph is traversed, propositions that are
required at one action level are created at the preceding proposition levels until they are
either connected to an original action of the plan, or they are propagated through noop
actions, ensuring that the first proposition level contains all of the preconditions that did
not result from the actions in the plan.

In terms of computational effort, this algorithm has similar complexity to the graph
expansion phase of Graphplan, which has polynomial complexity [7] in the size of the
planning problem for both the size of the graph and the time required to build it. If a plan
has m distinct steps, and n distinct propositions, the graph our algorithm creates will
have at most ((2 ∗n)+1) ∗m nodes, one node for each action and all possible noops at
each graph level, plus all possible propositions at each proposition level, indicating that
the size and time complexity of our algorithm is in the low polynomial scale. Regarding
the correctness of the algorithm and its termination guarantee, since the graph building
part of the algorithm is a subset of Graphplan, for which a proof of completeness and
termination exists, and the rest of the algorithm is an iteration in a directed acyclic
graph, it is trivial to show that the algorithm does terminate for any input.
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3.3 A production cell example

To illustrate how our algorithm derives a context condition, we introduce a production
cell scenario, shown in Figure 6, and consisting of a production cell composed of four
processing units (u1, u2, u3 and u4) and two conveyor belts controlled by our agent.
Parts enter the production cell through a feed belt, and are moved by the agent to dif-
ferent processing units, depending on the type of part being processed. Once a part has
been processed at the appropriate processing units, it is moved to the deposit belt to be
shipped. Even though there is no particular order specified for the processing of parts,
the order in which they are specified is generally followed. We consider three differ-
ent types of part for processing, in the following processing units: i) type one must be
processed by processing units 1, 2 and 3; ii) type two must be processed by processing
units 2 and 4; and iii) type three must be processed by processing units 1 and 3.

In addition, we assume two operations are available in this scenario, summarised
in Table 1.2 The first operator, move(P,A,B), moves a part from one device to another,
requiring the part to be over the initial device and the target device to be empty, and
causing the initial device to become empty, the part to be over the target device and the
deletion of the preconditions (note that while we represent explicitly negated proposi-
tions in the graph, we do not require the world to be described with explicitly negated
conditions). The second operator, process(P,A), causes a processing unit to process a
part located over it, requiring over(P,A) and causing processed(P).

Operator Preconditions Effects
move(P,A,B) empty(B) ˜empty(B)

over(P,A) ˜over(P,A)
over(P,B)
empty(A)

process(P,A) over(P,A) processed(P)

Table 1: Operations in the production cell scenario.

2 We use a Prolog-like notation, with variable names starting in uppercase and constants in
lowercase.



Fig. 7: A planning graph used in context extraction.

Now let us consider in more detail the process of generating the context for this
example. Nodes in an action level are connected to nodes in a proposition level either
through precondition edges, denoting that a proposition is a precondition of a given
action, or through effect edges, denoting that a proposition is an effect of a given action.
In the example of Figure 7, the operator process(p1,u2) in Level 4 is connected by
a precondition edge to the proposition over(p1,u2) in Level 3, and by precondition
edges to the proposition processed(p1,u2) in Level 5. Besides the actions included
in the planning problem, the planning graph includes noop (or maintenance) actions,
which connect identical propositions between adjacent proposition levels representing
that their truth values remain unchanged between plan steps, an example of which can
be seen connecting the proposition empty(u3) from Levels 1 to 5.

Figure 7 shows the graph generated in the process of deriving the context for a plan
composed of three actions: move(p1,u1,u2), process(p1,u2) and move(p1,u2,u3).
The initial graph created by our algorithm contains no maintenance actions and no in-
stances of empty(u3) in Levels 1 and 3. Then, while iterating the graph backwards,
the algorithm detects that none of the preconditions of move(p1,u2,u3) were caused
by the immediately preceding action, and adds a noop connecting the instances of
over(p1,u3) in Levels 3 and 5. Furthermore, it creates instances of empty(u3) in
Levels 1 and 3, connecting them with maintenance operators in Levels 2 and 4, thus
propagating empty(u3) to the initial plan level. Since no action in the plan resulted in
empty(u3) being true, this must have been true before the plan was adopted to make
the last action possible. These additions to the planning graph can be seen in Figure 7
as the dashed oval shapes and lines.



4 Experiments and Results

Traditional AgentSpeak(L) agents require a plan library containing plans for every con-
ceivable situation an agent might find itself in, since no plans can be created at runtime
to deal with unexpected events. Therefore, the ability to generate new plans at runtime
both increases an agent’s flexibility and eases agent development. On the other hand,
state space planners are complex, and a decrease in runtime performance is expected
over standard AgentSpeak(L). With the addition of an effective plan reuse strategy,
however, the time spent in the planning process can be mitigated over time, since new
plans will have the same runtime efficiency as traditional AgentSpeak(L).

Our prototypes were implemented using modified versions of Jason [10], a Java-
based AgentSpeak(L) interpreter with a few additional constructs such as plan anno-
tations and plan failure handling. Experiments with traditional AgentSpeak(L) agents
were conducted in an unmodified Jason interpreter, whereas planning agents were cre-
ated using the open-source implementation of AgentSpeak(PL) [6], unmodified for ex-
periments without plan reuse; and extended with our algorithm for context generation.

The experiment consists of simulating the arrival of parts of three types in three
production cells, one controlled by a traditional AgentSpeak(L) agent (AS), another
controlled by a naive version of AgentSpeak(PL) (NaiveAS) that does not reuse plans
and one controlled by the complete AgentSpeak(PL) (ASPL) capable of reusing plans.
Here, whenever a new part arrives for processing at the cell controlled by NaiveAS, the
full planning process is invoked to generate a new plan, regardless of previous instances
of the same problem having been considered in the past. The time spent planning and
achieving the final processing of every part is measured for each agent for an increasing
number of parts, ranging from 10 to 100 in 10 part increments.
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Fig. 8: Running times for the Production Cell scenario.

The results of this experiment can be seen in the graph of Figure 8, which shows
that, though NaiveAS takes significantly more time to perform its reasoning cycle, this
overhead is constant. Now, when the plan reuse strategy is used by ASPL, runtime



AS ASPL
# plans 12 7

Table 2: Plan library size comparison.

performance improves considerably, approaching that of AS. With three different part
types, the number of possible world configurations at the time of planning is limited, and
most of the planning effort occurs at the beginning of the agent execution. As more parts
of the same type are introduced in the production cell, the plans generated previously
are invoked rather than the planning module, amortising the cost of the initial planning.
Evidence of this effect is provided by the ASPL curve approaching that of AS as the
number of total parts increases. Moreover, since the plans generated through planning
are a linear sequence of actions, which do not rely on the tests distributed throughout a
branching structure of plans in the plan library, they are inherently faster to be executed
than the equivalent AS representation, surpassing it in the long term.

It is important to note that, although ASPL can create plans for situations in which
AS would fail, we have avoided using these problems in our benchmark, focusing only
on runtime, by considering an AS agent with plans for all situations possible during
testing. By relying on a planning approach, we also diminish the size of the agent spec-
ification, since we no longer need to create a procedural plan to cope with every world
configuration relevant to the accomplishment of an individual plan. The numbers of
plans necessary in the (initial) plan libraries are shown in Table 2.

5 Related Work

Work on using planning modules to augment existing architectures has been conducted
by several researchers, such as in Propice-Plan [12] and JADEX [13, 14]. These efforts
provide some insight into many practical issues that may arise from the integration of
BDI with AI planners, such as how to modify a planning algorithm to cope with changes
in the initial state during planning [12], and how to cope with conflicts in concurrently
executing plans [13].

Propice-Plan [12] is a PRS-based system that includes planning capabilities through
a modified version of the IPP planner [15]. It includes refinements to allow an agent to
anticipate alternative execution paths for its plans, as well as the ability to update the
state of the planning process in order to cope with a highly dynamic world. Propice-
Plan is similar in principle to the architecture described here, but it differs in two key
aspects: its reliance on a modified PRS description formalism for agents, and its reliance
on a tailor-made planner implementation, limiting the choice of planners to be used in
tandem with the agent interpreter.

The work of Walczak et al.[13] is a recent approach to merging BDI reasoning with
planning capabilities, and is based on a continuous planning and execution framework
implemented in the JADEX agent framework [16]. The system uses a modified HTN
state-based planner with domain-specific information to select the actions to achieve
goals or refine goals in an agent’s agenda. The emphasis in this system is on perfor-
mance and reaction time rather than generality, since JADEX uses a Java-like represen-
tation for the agent’s data structures, such as goals and actions. Admittedly, an HTN



planner could be used to generate new plans following a task-oriented approach (and
hence not for declarative goals), but this is not what is accomplished in JADEX.

Considering the many similarities between BDI programming languages and HTN
planning, Sardina et al.[14] formally define how HTN planners can be integrated into
a BDI architecture. Sardina shows that the HTN process of systematically substituting
higher-level goal tasks until concrete actions are derived is analogous to the way in
which a PRS-based interpreter pushes new plans onto an intention structure, replacing
an achievement goal with an instantiated plan. Taking advantage of this almost direct
correspondence, an HTN planner is used to add lookahead capabilities to an agent,
allowing it to optimise plan selection and maximise an agent’s chance of successfully
achieving goals. By verifying beforehand the selection of plans for achieving subgoals,
the agent minimises the chance of failure as a result of poor plan selection.

The idea of analysing one formalism to derive planning-like pre and post condi-
tions has been attempted previously in the context of web service composition through
planning. Initial efforts by McIlraith and Fadel [17] at a theoretical level, involved con-
verting web services described by hand using Golog into PDDL and ADL. However,
this lacked generality due to its heavy reliance on human intervention in the process,
preventing it from being used in a completely automated fashion, as is needed by our
work. Later, this idea was refined by Pistore et al.[18], converting web services defined
in BPEL4WS into PDDL, allowing for automation. However, BPEL is much more com-
plex than AgentSpeak, and understandably the conversion algorithm has polynomial
complexity, though on the exponential scale. In this respect, our approach compares
favourably by having non-exponential polynomial complexity.

6 Conclusions

In this paper we have described a plan reuse strategy for AgentSpeak(PL), a planning-
capable extension of AgentSpeak(L), able to reason about declarative goals. This stra-
tegy is based on the generation of the simplest context information necessary for newly
created plans to be successful when responding to the same event that triggered the
agent to plan. Since planning is a computationally intensive task, being able to effec-
tively reuse previously generated plans offsets time spent on the planning process, as
new plans are as efficient as AgentSpeak(L) procedural plans. This bridges the perfor-
mance gap between traditional AgentSpeak(L) agents and declarative goal-based agents
developed in AgentSpeak(PL), which is the primary contribution of this paper.

The strategy used in the generation of context information is based on the generation
of a greatly simplified planning graph analogous to the graph used in Graphplan [11].
Building this graph has low polynomial complexity in both time and space, and there-
fore the performance overhead imposed on the planning process is negligible. More-
over, we believe that the process used to generate initial context information can be
expanded to allow reasoning about interference from concurrent plans, and we intend
to explore this possibility as future work.
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