
Time and Memory Efficient Lempel-Ziv

Compression Using Suffix Arrays

Artur J. Ferreira1,3,4, Arlindo L. Oliveira2,4, Mário A. T. Figueiredo3,4

1Instituto Superior de Engenharia de Lisboa, Lisboa, PORTUGAL
2Instituto de Engenharia de Sistemas e Computadores, Lisboa, PORTUGAL

3Instituto de Telecomunicações, Lisboa, PORTUGAL
4Instituto Superior Técnico, Lisboa, PORTUGAL

Contact email: arturj@cc.isel.ipl.pt

Abstract

The well-known dictionary-based algorithms of the Lempel-Ziv (LZ) 77 family are the basis of
several universal lossless compression techniques. These algorithms are asymmetric regarding en-
coding/decoding time and memory requirements, with the former being much more demanding,
since it involves repeated pattern searching. In the past years, considerable attention has been
devoted to the problem of finding efficient data structures to support these searches, aiming at
optimizing the encoders in terms of speed and memory. Hash tables, binary search trees and suffix
trees have been widely used for this purpose, as they allow fast search at the expense of memory.

Some recent research has focused on suffix arrays (SA), due to their low memory requirements
and linear construction algorithms. Previous work has shown how the LZ77 decomposition can
be computed using a single SA or an SA with an auxiliary array with the longest common prefix
information. The SA-based algorithms use less memory than the tree-based encoders, allocating
the strictly necessary amount of memory, regardless of the contents of the text to search/encode.

In this paper, we improve on previous work by proposing faster SA-based algorithms for LZ77
encoding and sub-string search, keeping their low memory requirements. For some compression
settings, on a large set of benchmark files, our low-memory SA-based encoders are also faster than
tree-based encoders. This provides time and memory efficient LZ77 encoding, being a possible
replacement for trees on well known encoders like LZMA. Our algorithm is also suited for text
classification, because it provides a compact way to describe text in a bag-of-words representation,
as well as a fast indexing mechanism that allows to quickly find all the sets of words that start with
a given symbol, over a static dictionary.

Keywords: Lempel-Ziv compression, suffix arrays, time-efficiency, memory-efficiency, pattern
search.

1 Introduction
The Lempel-Ziv 77 (LZ77) and its variant Lempel-Ziv-Storer-Szymanski (LZSS) [14, 16, 19] lossless
compression algorithms are the basis of a wide variety of universal source coders, such as GZip,
WinZip, PkZip, WinRar, and 7-Zip, among others. Those algorithms are asymmetric in terms of
time and memory requirements, with encoding being much more demanding than decoding.

1

The LZ-based encoders use efficient data structures, like binary trees (BT) [6, 11], suffix trees
(ST) [5, 7, 9, 13, 17] and hash tables, thus allowing fast search at the expense of higher memory
requirement. The use of a Bayer-tree along with special binary searches, on a sorted sliding window,
to speedup the encoding procedure, has been addressed [6]. Suffix arrays (SA) [7, 10, 15], due to
their simplicity, space efficiency, and linear time construction algorithms [8, 12, 18] have been
a focus of research; for instance, the linear time SA construction algorithm suffix array induced
sorting (SA-IS) has been recently proposed [12].

SA have been used in encoding data with anti-dictionaries [4], to find repeating sub-sequences [1]
for data deduplication, among other applications. Recently, space-efficient algorithms for computing
the LZ77 factorization of a string, based on SA and auxiliary arrays, have been proposed to replace
trees [2, 3]. These SA-based encoders require less memory than ST-based encoder, with some
penalty on the encoding time, for roughly the same compression ratio. The amount of memory
for the SA-based encoder is constant, independent of the contents of the sequence to encode, as
opposed to tree-based encoders in which has to be allocated a maximum amount of memory.

In this paper, we improve on previous approaches [2, 3], proposing faster SA-based algorithms for
LZ77/LZSS encoding, without requiring any modifications on the decoder side. These low-memory
encoders are faster than the tree-based ones, like 7-Zip, being close to GZip in encoding time on
several standard benchmark files.

The rest of this paper is organized as follows. Section 2 presents the basic concepts of LZ77/LZSS
encoding using suffix arrays. Section 3 describes our proposed algorithm. The experimental results
are discussed in Section 4 and some concluding remarks are made in Section 5.

2 Lempel-Ziv Compression using Suffix Arrays
The LZ77 and LZSS [14, 16, 19] lossless compression techniques use a sliding window over the
sequence of symbols to be encoded, which has two sub-windows: the dictionary (holding symbols
already encoded) and the look-ahead-buffer (LAB, containing the next symbols to be encoded). As
the string in the LAB is encoded, the window slides to include it in the dictionary (this string is
said to slide in); consequently, the symbols at the far end of the dictionary are dropped (slide out).

At each step of the LZ77/LZSS encoding algorithm, the longest prefix of the LAB which can be
found anywhere in the dictionary is determined and its position stored. For these two algorithms,
encoding of a string consists in describing it by a token. The LZ77 token is a triplet of fields, (pos,
len, sym), with the following meanings:

• pos - location of the longest prefix of the LAB found in the current dictionary; this field
uses log2(|dictionary|) bits, where |dictionary| denotes the length (number of bytes) of the
dictionary;

• len - length of the matched string; this requires log2(|LAB|) bits;

• sym - the first symbol in the LAB that does not belong to the matched string (i.e., that
breaks the match); for ASCII symbols, this uses 8 bits.

In the absence of a match, the LZ77 token is (0,0,sym). Each LZ77 token uses log2(|dictionary|) +
log2(|LAB|) + 8 bits; usually, |dictionary| � |LAB|. In LZSS, the token has the format (bit,code),

2

with the structure of code depending on value bit as follows:
{

bit = 0 ⇒ code = (sym),
bit = 1 ⇒ code = (pos, len).

(1)

In the absence of a match, LZSS produces (0,sym). The idea is that, when a match exists, there
is no need to explicitly encode the next symbol. Besides this modification, Storer and Szymanski
[16] also proposed keeping the LAB in a circular queue and the dictionary in a binary search
tree, to optimize the search. LZSS is widely used in practice since it typically achieves higher
compression ratios than LZ77. In LZSS, the token uses either 9 bits, when it has the form (0,sym),
or 1 + log2(|dictionary|) + log2(|LAB|) bits, when it has the form (1,(pos,len)). The fundamental
and most expensive component of these encoding algorithms is the search for the longest match
between LAB prefixes and the dictionary.

Assuming that the decoder and encoder are initialized with equal dictionaries, the decoding of
each LZ77 token (pos,len,sym) proceeds as follows: 1) len symbols are copied from the dictionary
to the output, starting at position pos of the dictionary; 2) the symbol sym is appended to the
output; 3) the string just produced at the output is slid into the dictionary. For LZSS decoding,
we have: 1) if the bit field is 1, len symbols, starting at position pos of the dictionary, are copied
to the output; otherwise sym is copied to the output; 2) the string just produced at the output is
slid into the dictionary.

Both LZ77 and LZSS decoding are low complexity procedures, and thus decoding is much faster
than encoding, because it involves no search. In this work, we address only the encoder side data
structures and algorithms, with no effect in the decoder.

2.1 Suffix Arrays
A suffix array (SA) is the lexicographically sorted array of the suffixes of a string [7, 10]. For a
string D of length m (with m suffixes), the suffix array P is the set of integers from 1 to m, sorted by
the lexicographic order of the suffixes of D. For instance, if we consider dictionary D = mississippi

(with m = 11), its SA is P = {11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3} and we get the suffixes shown in Fig. 1,
along with the use of SA for LZ77/LZSS encoding:

• with LAB = issia, the LZ77 encoder outputs (5, 4, a) or (2, 4, a), depending on how we search
P and how we choose the match; for LZSS, we have (1(5, 4)) or (1(2, 4)) followed by (0, (a));

• with LAB = bsia, the LZ77 tokens are (0, 0, b) followed by (7, 2, a) or (4, 2, a); LZSS produces
(0, (b)) followed by (1(7, 2)) or (1(4, 2)) and finally (0, (a)).

Each of the integers in P is the suffix number corresponding to its position in D. Finding a sub-
string of D as in LZ77/LZSS, can be done by searching array P ; for instance, the set of sub-strings
of D that start with symbol ‘s’, can be found at indexes 7, 4, 6, and 3 of D, ranging from index 7
to 10 on P . There are several linear time algorithms for SA construction [8, 12, 18]; we have used
the suffix array induced sorting (SA-IS) algorithm [12] .

3 Proposed Algorithm
We have adopted the following encoded file format. The header has 48 bits: the first 8 bits (np)
represent the number of bits used to represent the pos field of the token; these are followed by

3

Figure 1: LZ77 and LZSS encoding with SA, with dictionary D = mississippi. In part a), with LAB = issia, we
have four possible matches delimited by left and right. In part b) with LAB = bsia there is no suffix that starts
with ‘b’ (which is encoded as a single symbol), but after ‘b’ we find four suffixes whose first symbol is ‘s’; two of
these suffixes start with ‘si’.

another 8 bits (nl) with the number of bits used by the len field; the following 32 bits are the
original file size. The header is followed by |LAB| ASCII symbols and the remainder of the file
consists in a sequence of LZSS tokens. Our decoding algorithm does not need any special data
structure and follows standard LZSS decoding, as described in Section 2.

The encoding algorithm uses two SA to represent the dictionary and an auxiliary array of 256
integers named LI (LeftIndex). This array holds, for each ASCII symbol, the first index of the suffix
array where we can find the first suffix that starts with that symbol (the left index for each symbol,
as shown in Fig. 1). The symbols such that are not the start of any suffix, the corresponding entry
is marked with -1, meaning that we have an empty match for those symbols. Fig. 2 shows the LI
for dictionary D = mississippi; for instance, the first suffix that starts with symbol ‘i’ is at index
0 in P , suffixes starting with ‘p’ are at index 5 of P . Using LI, we don’t have to search for the left
index for each sub-string in the LAB that we need to encode.

Figure 2: The LI (LeftIndex) auxiliary array: for each symbol that starts a suffix it holds the index of the SA P

in which that suffix starts. For the symbols that are not the start of any suffix, the corresponding entry is marked
with -1, meaning that we have an empty match for sub-strings that start with that symbol.

As shown in Algorithm 1, the encoder starts by reading input symbols into the LAB. The
first |LAB| symbols are written directly on the output file, because the dictionary is empty at
that stage. We then slide the LAB into the dictionary and proceed by computing the SA for
the dictionary until it is not full. When the dictionary is full, on every subsequent iteration,
after each full LAB encoding, the corresponding SA and LI indexes are updated. This update,

4

Algorithm 1 LZSS Encoding using Suffix Array
Input: In, input stream to encode; m, length of dictionary; n, length of LAB.
Output: Out, output stream with LZSS description of In.

1: Write 48-bit header: np, nl and FileSize (as described above).
2: Read the first look-ahead-buffer LAB, with |LAB| symbols, from In.
3: Write LAB into Out.
4: Initialize every position of LI to -1.
5: Do coded← 0.
6: while coded < FileSize do
7: Slide in LAB into dictionary D and read next LAB.
8: if coded < m then
9: Build SA, using SA-IS algorithm [12], for D and name it P . {/* Dictionary is filling. */}

10: else
11: Update P (as in algorithm UD and Fig. 3). {/* Runs after each LAB encoding. */}
12: end if
13: Scan P and update LI (as described in Fig. 2).
14: Do i ← 0.
15: while i < n do
16: left = LI[LAB[i]]. {/* Loop to encode n symbols in the LAB. */}
17: if (left == −1) then
18: output (0, LAB[i]); i← i+ 1; continue. {/* Empty Match. No suffix starts with LAB[i].*/}
19: end if
20: Find right, such that D[P [right]] = LAB[i]. {/* Get left and right as in Fig. 1. */}
21: From the set of suffixes between P [left] and P [right], choose the suffix at index pos, such that

left ≤ pos ≤ right. {/* Choose between “fast” and “best” compression. */}
22: Do len← the match-length of sub-strings starting at D[P [pos]] and LAB[i].
23: Output (1(pos, len)) into Out; i← i+ len.
24: end while
25: coded = coded + n.

26: end while

described in Algorithm 2 (named UD), runs when the dictionary is full, after each LAB encoding,
performing the following actions: remove from P the suffixes in the range {1, . . . , |LAB|} because
they slide out ; update in P the suffixes in the range {|LAB| + 1, . . . , |dictionary|} to the range
{1, . . . , |dictionary| − |LAB|}, subtracting |LAB| to each suffix number; insert into P the slide in
suffixes in the range {|dictionary| − |LAB|, . . . , |dictionary|}, after their proper sorting; this sorting
is done by computing an SA for the LAB. To perform these actions on a single array is time
consuming. To speed-up the update we use two SA of length |dictionary|, named PA and PB, and
a pointer P (to PA or PB). After each LAB encoding, we toggle pointer P between PA and PB,
to avoid unnecessary removals, copies, and (slow) displacement of the elements of the working SA.
After the update procedure, P points to the new updated array. If the previous LAB encoding
was done with PA, the following will be carried out using PB and vice-versa. Fig. 3 illustrates this
procedure with (|dictionary|,|LAB|)=(16,4) and the dictionary contents this is the file, with
pointer P set to PA. We compute the SA for the LAB=_the and insert the new suffixes at indexes
{2, 4, 8, 14} of PB; all other positions of PB are updated from PA, subtracting |LAB| from PA. After
encoding LAB=enco, the update process is repeated using PA as destination.

5

Figure 3: Update step with pointer P set to PA initially; the first update is done using PB as destination. Array
I holds the indexes where to insert the new suffixes; ‘U’ and ‘R’ are the Update and Remove indexes, respectively.
On the right hand side, we have the initial and updated dictionary contents.

Algorithm 2 UD - Update Dictionary (line 11 of Algorithm 1)
Input: PA, PB, m-length SA; P , pointer to PA or PB; Pdst, pointer to PB or PA;

LAB, look-ahead buffer; LI, 256 position length LeftIndex array.
Output: PA or PB updated; P pointing to the recently updated SA.

1: if P points to PA then
2: Set Pdst to PB.
3: else
4: Set Pdst to PA.
5: end if
6: Compute the SA PLAB for the encoded LAB. {/* Sorts the suffixes in the LAB. */}
7: Using LI and PLAB, fill the |LAB|-length array I with the insertion indexes (slide in suffixes).
8: for j = 0 to |LAB| − 1 do
9: Pdst[I[j]] = PLAB[j] + |dictionary| − |LAB|. {/* The |LAB| Insert Suffixes. */}

10: end for
11: Do updateCounter = |dictionary| − |LAB|.
12: for j = 0 to |dictionary| − 1 do
13: if (P [j]− |LAB|) > 0 then
14: Pdst[j] = P [j]− |LAB|. {/* The |dictionary| − |LAB| Update Suffixes. */}
15: updateCounter = updateCounter - 1;
16: if (updateCounter==0) then
17: break; {/* Break immediately if |dictionary| − |LAB| updates have been done. */}
18: end if
19: end if
20: end for

21: Set P to Pdst. {/* P points to recently updated SA. */}

In line 6 of Algorithm 2, we get the sorted suffixes corresponding to the recently encoded LAB.
After line 7, array I contains |LAB| integers with the indexes where these new suffixes are to be
inserted (with lexicographical order) into Pdst; this search finds |LAB| positions, being quite fast
because we use array LI to get the index of P , in which to start searching. The loop in lines 8 to
10 performs the sorted insertion at the corresponding indexes given by I on the target SA pointed

6

by Pdst. The loop in lines 12 to 20 updates the suffixes in the range {|LAB| + 1, . . . , |dictionary|}
to the range {1, . . . , |dictionary| − |LAB|}. With the use of two SA, we don’t have to explicitly
(slowly) remove the suffixes from the old SA.

We have also developed another version of Algorithm 1, which updates the SA at each and every
token, thus being a smooth sliding window suffix array. The update procedure is divided into two
situations, depending on the length of the token (1 or len symbols). For len symbols, we have the
same procedure as described above, using len instead of |LAB|. When we have a match of a single
symbol, we subtract one from each position of P , and remove the suffix corresponding to the single
slide out symbol; finally, we insert the single suffix number |dictionary| corresponding to symbol at
its corresponding position. This version turned out to be 2 ≈ 3 times slower than Algorithm 1,
achieving about the same compression ratio.

4 Experimental Results
Our experimental tests were carried out on a laptop with a 2 GHz Intel Core2Duo T7300 CPU
and 2 GB of RAM, using a single core. The code1 was written in C, using Microsoft Visual
Studio 2008. The linear time SA construction algorithm SA-IS [12] (available at http://yuta.

256.googlepages.com/sais) was used. For comparison purposes, we also present the results of
a BT-encoder [11], GZip2, and the LZ Markov chain algorithm (LZMA3). The test files are from
the standard corpora Calgary (18 files, 3 MB) and Silesia (12 files, 211 MB), available at http:

//www.data-compression.info. We use the “best” compression option (choice of the longest
match, at line 21 of Algorithm 1).

4.1 Performance Indicators and Measures
In our tests, we used the Calgary and Silesia Corpus files, to assess the following measures: encoding
time (in seconds, measured by the C function clock); compression ratio (in bits per byte, bpp);
amount of memory for encoder data structures (in bytes). This amount for our encoder data
structures is MSA = |dictionary| + |LAB| + 2|P| + |LI| + |P LAB|. The integer array LI has 256
positions, regardless of the length of the dictionary. PLAB is the SA for the LAB, with |LAB|
integers. The BT-encoder [11] uses 3 integers per tree node with |dictionary|+ 1 nodes, occupying
MBT = 13× |dictionary|+ 12 bytes, using 4-byte integers. A suffix tree algorithm4 uses 3 integers
and a symbol for each node, occupying 16 bytes, placed in a hash table [9], using the maximum
amount of memory MST = 25×|dictionary|+4×hashsz+16 bytes, where hashsz is the hash table
size. The GZip encoder occupies MGZIP=313408 bytes, as measured with the ‘C’ sizeof operator.
The LZMA encoder data structures occupy5

MLZMA = 4194304 +

9.5|dictionary|, if MF = BT2
11.5|dictionary|, if MF = BT3
11.5|dictionary|, if MF = BT4
7.5|dictionary|, if MF = HC4

, (2)

1Available at http://www.deetc.isel.ipl.pt/sistemastele/docentes/AF/AF.htm
2http://www.gzip.org/
3http://www.7-zip.org
4http://www.larsson.dogma.net/research.html
5As reported in http://mancubus.net/svn/hosted/gzdoom/trunk/lzma/lzma.txt

7

Table 1: Amount of memory, total encoding time (in seconds), and average compression ratio (in bpb), for several
lengths of (|dictionary|, |LAB|) on the Calgary Corpus, using “best” compression. GZip “fast” obtains Time=0.5
and bpb=3.20 while GZip “best” does Time=1.2 and bpb=2.79. The best encoding time is underlined.

Calgary Corpus SA “best” BT “best” LZMA “best”

|Dictionary| |LAB| Memory Time bpb Memory Time bpb Memory Time bpb

1 2048 1024 24576 2.2 5.77 26636 3.92 5.65 4217856 4.7 2.99

2 4096 1024 43008 2.5 5.40 53260 4.3 4.98 4241408 4.8 2.82

3 4096 2048 48128 2.4 5.75 53260 11.1 5.48 4241408 4.8 2.82

4 8192 2048 84992 3.8 5.49 106508 11.7 4.88 4288512 5.1 2.69

5 16384 256 149760 9.1 4.36 213004 4.5 4.12 4382720 5.2 2.61

6 32768 256 297216 18.4 4.31 425996 5.5 4.08 4571136 4.9 2.54

7 32768 1024 301056 11.1 4.86 425996 7.5 4.40 4571136 4.9 2.54

8 32768 2048 306176 9.5 5.16 425996 15.8 4.57 4571136 4.9 2.54

bytes, depending on the match finder (MF) used as well as on |dictionary| with BT# denoting
binary tree with # bytes hashing and HC4 denoting hash chain with 4 bytes hashing. For instance,
with (|dictionary|, |LAB|) = (65536, 4096) we have MSA =611328, MBT =851980, MST =1900560,
and MLZMA=4816896 bytes. If we consider an application in which we only have a low fixed amount
of memory, such as the internal memory of an embedded device, it may not be possible to instantiate
a tree or a hash table based encoder.

The GZip and LZMA6 encoders perform entropy encoding of the dictionary tokens achieving
better compression ratio than our LZSS encoding algorithms. Like GZip, LZMA is built upon
the deflate algorithm, being the default compression method of 7z format in the 7-Zip program.
These encoders are useful as a benchmark comparison, regarding encoding time and the amount of
memory occupied. For both compression techniques, we have compiled their C/C++ sources using
the same compiler settings, as for our encoders.

The compression ratio of our encoders as well as that of the BT-encoder can be easily improved
by entropy-encoding the tokens, like in GZip and LZMA. Our purpose is to focus only on the
construction of the dictionary and searching over it, using less memory than the conventional
solutions with trees and hash tables.

4.2 Comparison with other encoders
We encode each file of the two corpora and compute the total encoding time as well as the average
compression ratio, for different configurations of (|dictionary|, |LAB|), using “best” compression
option. Table 1 shows the results of these tests on the Calgary Corpus. Our SA-encoder is faster
than BT, except on tests 5 to 7; on test 6 (the GZip-like scenario), BT-encoder is about 3.5 times
faster than SA. Table 2 shows the results for the Silesia Corpus. In these tests, the SA-encoder
is the fastest except on tests 5 and 6. On test 3, the SA-encoder is about 5 times faster than the
BT-encoder, achieving about the same compression ratio. We see that when |LAB| is not too small
(as compared to the dictionary), the SA-encoder is faster than the BT-encoder. Fig. 4 shows the
trade-off between time and memory on the encoding of the Calgary and Silesia corpora, on the tests
shown on Tables 1 and 2, for SA and BT-encoders, including GZip test results for comparison; the
SA-encoder offers a good trade-off, especially on tests 1 to 5, using (much) less memory than GZip.

6LZMA SDK, version 4.65, released 3 February 2009, available at http://www.7-zip.org/sdk.html

8

Table 2: Amount of memory, total encoding time (in seconds) and average compression ratio (in bpb), for several
lengths of (|dictionary|, |LAB|) on the Silesia Corpus, using “best” compression. GZip “fast” obtains Time=19.5 and
bpb=3.32 while GZip “best” does Time=74.4 and bpb=2.98. The best encoding time is underlined.

Silesia Corpus SA “best” BT “best” LZMA “best”

|Dictionary| |LAB| Memory Time bpb Memory Time bpb Memory Time bpb

1 2048 1024 24576 118.7 5.66 26636 249.5 5.65 4217856 333.53 3.05

2 4096 1024 43008 116.9 5.41 53260 303.4 5.25 4241408 349.05 2.90

3 4096 2048 48128 112.9 5.68 53260 694.9 5.63 4241408 349.05 2.90

4 8192 2048 84992 143.4 5.44 106508 668.9 5.27 4288512 356.77 2.76

5 16384 256 149760 319.1 4.55 213004 254.6 4.44 4382720 366.47 2.62

6 32768 256 297216 542.7 4.41 425996 318.1 4.31 4571136 356.34 2.52

7 32768 1024 301056 322.2 4.80 425996 382.6 4.64 4571136 356.34 2.52

8 32768 2048 306176 302.3 5.02 425996 979.8 4.81 4571136 356.34 2.52

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
5

G
f
G

b

A
1

T
1

A
2

T
2A

3
T

3

A
4

T
4

A
5

T
5

A
6

T
6

A
7

T
7

A
8

T
8

 Time−Memory Trade−off on Calgary Corpus

 Time [seconds]

 M
em

or
y

[k
B

]

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
5

G
f

G
b

A
1

T
1

A
2

T
2A

3
T

3

A
4

T
4

A
5

T
5

A
6

T
6

A
7

T
7

A
8

T
8

 Time−Memory Trade−off on Silesia Corpus

 Time [seconds]

 M
em

or
y

[k
B

]

Figure 4: Time-memory trade-off between SA (A#) and BT (T#) for the Calgary and Silesia Corpus, on the 8
encoding tests of Tables 1 and 2. We include GZip for comparison: Gf is GZip “fast”, Gb is GZip “best”.

For all these encoders searching and updating the dictionary are the most time-consuming tasks.
A high compression ratio like those of LZMA and GZip can be attained only when we use entropy
encoding with appropriate models for the tokens. The SA encoder is faster than the BT encoder,
when the LAB is not too small. Our algorithms (without entropy encoding) are thus positioned
in a trade-off between time and memory, that can make them suitable to replace binary trees on
LZMA or in sub-string search.

5 Conclusions
In this paper, we have proposed a new Lempel-Ziv encoding algorithm based on suffix arrays,
improving on earlier work in terms of encoding time, being faster than previous approaches, with
similar low memory requirements. The proposed algorithm uses an auxiliary array as an accelerator
to the encoding procedure, as well as a fast update of the dictionary based on two suffix arrays. This
algorithm has considerably lower memory requirements than binary/suffix trees and hash tables.

The proposed algorithm allows a priori computing the exact amount of memory necessary for
the encoder data structures; usually this may not be the case when using (binary/suffix) trees,
because the number of nodes and branches to allocate depends on the contents of the text, or when
we allocate a memory block that is larger than needed as it happens with hash tables.

We have compared our algorithm (on benchmark files from standard corpora) against tree-
based encoders, including GZip and LZMA. The experimental tests showed that in some (typical)

9

compression settings, our encoders occupy less memory and are faster than tree-based encoders,
thus being time and memory efficient LZ77 and LZSS encoders, based on suffix arrays. The tree-
based encoders can only be faster at the expense of memory usage. Our algorithm is positioned in
a trade-off between time and memory, that can make it suitable to replace the use of trees, like in
LZMA (7-Zip), reducing the amount of memory and encoding time, keeping the same compression
ratio, which is better than that of GZip.

These encoders also provide a more compact way to represent the dictionary which is suited
for text categorization, based on bag-of-words representations. Using a single suffix array and the
256-position auxiliary array, we have a fast indexing mechanism to quickly find all the sets of words
that start with a given symbol, on a static dictionary. This will be topic of future research.

References

[1] C. Constantinescu, J. Pieper, and Tiancheng Li. Block size optimization in deduplication systems. In DCC ’09:

Proc. of the IEEE Conference on Data Compression, page 442, 2009.

[2] M. Crochemore, L. Ilie, and W. Smyth. A simple algorithm for computing the Lempel-Ziv factorization. In
DCC ’08: Proc. of the IEEE Conference on Data Compression, pages 482–488, 2008.

[3] A. Ferreira, A. Oliveira, and M. Figueiredo. On the use of suffix arrays for memory-efficient Lempel-Ziv data
compression. In DCC ’09: Proc. of the IEEE Conference on Data Compression, page 444, 2009.

[4] M. Fiala and J. Holub. DCA using suffix arrays. In DCC ’08: Proc. of the IEEE Conference on Data Com-

pression, page 516, Washington, DC, USA, 2008. IEEE Computer Society.

[5] G. Gonnet, R. Baeza-Yates, and T. Snider. New indices for text: PAT trees and PAT arrays. Information

retrieval: data structures and algorithms, pages 66–82, 1992.

[6] U. Gräf. Sorted sliding window compression. In DCC ’99: Proc. of the IEEE Conference on Data Compression,
page 527, Washington, DC, USA, 1999.

[7] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press, 1997.

[8] J. Karkainen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. Journal of the ACM,
53(6):918–936, 2006.

[9] N. Larsson. Structures of String Matching and Data Compression. PhD thesis, Department of Computer Science,
Lund University, Sweden, 1999.

[10] U. Manber and G. Myers. Suffix Arrays: a new method for on-line string searches. SIAM Journal on Computing,
22(5):935–948, 1993.

[11] M. Nelson and J. Gailly. The Data Compression Book. M & T Books, New York, 2nd edition, 1995.

[12] G. Nong, S. Zhang, and W. Chan. Linear suffix array construction by almost pure induced-sorting. In DCC

’09: Proc. of the IEEE Conference on Data Compression, pages 193–202, 2009.

[13] M. Rodeh, V. Pratt, and S. Even. Linear algorithm for data compression via string matching. Journal of the

ACM, 28(1):16–24, 1981.

[14] D. Salomon. Data Compression - The complete reference. Springer-Verlag London Ltd, London, 2007.

[15] M. Salson, T. Lecroq, M. Léonard, and L. Mouchard. Dynamic extended suffix arrays. Journal of Discrete

Algorithms, In Press, Corrected Proof, 2009.

[16] J. Storer and T. Szymanski. Data compression via textual substitution. J. of the ACM, 29(4):928–951, 1982.

[17] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[18] S. Zhang and G. Nong. Fast and space efficient linear suffix array construction. In DCC ’08: Proc. of the IEEE

Conference on Data Compression, page 553, 2008.

[19] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on Information

Theory, IT-23(3):337–343, 1977.

10

