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Abstract— Internal impedance is one of the key factors
determining the quality of embodied perception and action in
biological organisms and robots. Though the role of impedance
control in robotic actuation has been well studied, its signifi-
cance in the accuracy of proprioception with embodied sensors
is not well known yet. Therefore, it is important to characterize
the relationship between the entropy of sensor information and
the impedance of their physical embodiment, through which
sensors feel the internal state of the body and the environment.
In this paper, we address the role of internal impedance in
the accuracy of embodied perception. To investigate this, we
pose the problem of using only torque data measured at the
stationary base of a two link planar manipulator, to estimate the
deflection caused by an external torque in the McKibben type
pivot joint with variable stiffness. Based on analytical modelling
and experimental validation, this paper presents, for the first
time, that non-linear static memory primitives relating internal
impedance, internal kinematic variables, and forces felt at the
base of the manipulator - similar to the functionality of tendon
organs of biological counterparts - can be used to tune optimal
internal impedance parameters to maximize the accuracy of
internal state estimation during external perturbations.

I. INTRODUCTION

Embodied sensing in a biological system such as
mechanoreceptors in the hand [1], are modulated by the
physical changes of the body [2]. This in-turn influences
the sensorimotor coupling network resulting in changes in
behavior [3]. For instance, as we are required to estimate the
weight of an object, we would not hold it with a stiff hand.
Instead, we bring the internal impedance of the hand to some
optimal state and gently bob the object up and down to use
proprioceptive feedback to estimate its weight. This can be
skilfully utilized to maximize information gain in sensing to
control underactuated robots. As signified in recent findings
in passive compliance of biological musculoskeletal systems
[4], control of dynamic interactions with the environment
can be simplified through its embodiment itself. Therefore,
recent findings in the emergence of adaptive behaviors of
muscular-hydrostats like octopus due to its ability to control
the stiffness distribution and morphology of the body [5],
has caught a lot of attention among the robotics research
community.

An essential set of mathematical tools to understand the
role of internal impedance in control of dynamic systems
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Fig. 1. In an embodied system, the system interacts with the environment
through its embodied structure. The internal impedance required for accurate
perception through its embodied sensor can differ from that required to
take appropriate action. Taken action with an appropriate impedance could
likewise effect the quality of perception of the environment.

were first laid down by Hogan in [6]. Hogan’s theory pro-
poses that a body in dynamic contact with the environment
should be able to adapt its internal impedance (stiffness,
damping, and inertia parameters) in order to maintain a
stable dynamic coupling with the environment. However, the
main focus of the robotics community has so far been on
internal impedance control for effective actuation than its
role in perception, especially in proprioception. For instance,
impedance control in the joint space has been achieved for
rigid body robotic digging [7], direct contact with humans
in robotic massage systems [8], companions for humans [9],
human motor rehabilitation [10], adaptive prosthetic limbs
[11], adaptive exoskeletons [12].

Robotic active perception has also attracted recent atten-
tion especially in the context of vision [13]. Though active
exploration for visual cues in the external world has been
widely studied for instance in recognition and exploration
of robot’s activities while interacting with environment [14],
active exploration in the internal impedance domain for
enhanced proprioception has not been studied so far.

Passive dynamics based locomotion is another interesting
area of research that views embodiment as a powerful
infrastructure to emerge behavior with no sensing at all.
Passive dynamic walkers presented in [15] use solely the
interaction between the walker and the environment to
emerge a metastable walking behavior. In fact, it seems
that biological evolution too solve the problem of energy
efficient locomotion through tuning the embodiment to be
able to harness energy from the environment as shown
in an experiment where a dead trout swimming against a
water stream [16]. As opposed to a fully actuated robotic
fish [17]; an underactuated robotic fish that utilizes the
passive dynamics of the embodiment with single actuator



and multiple passive variable stiffness joint, is proven to
be more energy efficient while being able to emerge more
natural movements [18].

In general, the implications of the embodiment concept
are mostly studied in the context of enhancing the actuation,
visual perception, or as an assistive element in granting, or
enhancing stability in locomotion. They take advantage of
passive body dynamics and the interaction with environment
to achieve the required goals without a rather high-level
cognitive processes [19].

From embodied perception perspective, a major challenge
in this study is to investigate how body’s internal impedance
can be regulated to gain the accurate perception. This paper
focuses on the role of internal impedance modulation in the
embodied perception of a simple planar 2-links manipulator
system with variable joint stiffness. The experimental results
are used to approximate the stiffness calibration curve for dif-
ferent pre-tension states of the stiffness element. We use the
transfer entropy from Kullback Leibler divergence approach
as an indicator to the information gain across pre-tension
state of the stiffness element. Newton-Raphson optimization
and Hooke-Jeeves pattern search are compared to search for
the best pre-tension state that maximizes transfer entropy to
arrive at a best estimate for angular displacement of a joint
between two links given the torque measured at the base.

This paper is structured as follows. First the experimental
platform is described, including the joint stiffness model’s
numerical simulation, followed by the methodology em-
ployed in the experiments. Thereafter, results and analysis
are exhibited. Lastly, the paper is discussed and concluded.

II. EXPERIMENTAL SETUP

A. Manipulator Platform with Variable Joint Stiffness

A design of the antagonistic manipulator used in the
experiment consists of two manipulator links - base link of
length l1 = 15 cm, and an upper link of length l2 = 17 cm.
The design of the variable joint stiffness in this platform is
based on the ’Mechanically Controlled Stiffness’ approach
[20].The stiffness of the McKibben type pivot joint between
these two links can be adjusted by moving the anchor point
of the two springs as shown in figure 2 and figure 3. As
depicted in figure 3, the angle α between each lever arm
and the centre of link 2 can be pre-configured; and the
springs can be preloaded by changing the position of the
anchor point. The system is mounted on a table and fixed
with a clamp underneath. Apart from ball bearings, the
whole system is designed in SolidWorks and fabricated from
ABS plastic using the Dimension SST768 3D-printer. In this
experiment, we focus mainly on the perception of the angular
displacement θ2 of the upper link relative to the base link
based on the torque τf sensed at the base of the manipulator
around z-axis using a ATI Mini40 six axis force/torque (F/T)
transducer at 100 Hz. For verification of the accuracy of
estimating θ2, we used an XSENS MTx wireless motion
capturing sensor sampled at 100 Hz as shown in figure 2.

Fig. 2. (a) a design of two-links planar manipulator with a variable stiffness
joint. The rotational displacement of the upper link, θ2, is recorded using
an XSENS MTx Motion Capturing sensor; whereas the torque experienced
at the base of the manipulator during such movement is measured by ATI
Mini40 6-axis Force/Torque Transducer, (b) a photo of the experimental
platform attached on the table with a clamp.

B. Joint Stiffness Model

From figure 3, the distance between the axis of the pivot
joint and the anchor point of the two springs at rest is denoted
by ld. The resting lengths of each spring are r1 and r2. The
length of the lever arms connected at the two free ends of
the springs are d = 3 cm. The changes in the length of each
spring are denoted by ∆r1 and ∆r2.

Fig. 3. Top view of the manipulator, focusing on the variable stiffness
element at the joint. (a) Joint stiffness configuration, when θ2 = 0 and
the stiffness elements are mounted at the origin point. (b) Joint stiffness
configuration, when θ2 = 0 and both springs are extended by moving the
anchor point. (c) Second joint is rotated at particular angle θ2

From figure 3 (a), the resting lengths of both springs can
be computed as given by

ri =

√
ld

2 + d2 − 2dldcosαi. (1)

where i = 1, 2.



Hence, from figure 3 (b) and (c) we can obtain the
resulting length of both springs due to the change of both
joint angular position, θ2, and the position of the anchor
point, x, as following.

r1 + ∆r1 =

√
(ld + x)

2
+ d2 − 2d(ld + x)cos (α+ θ2)

r2 + ∆r2 =

√
(ld + x)

2
+ d2 − 2d(ld + x)cos (α− θ2) (2)

Given that each spring constant Ki of the stiffness ele-
ments are known, the force contribution ~Fsi by each spring
at the pivot can be calculated based on the kinematic relations
shown in figure 3 (c) as given by

~Fsi = ∆riKi (3)

Hence, the torques around the pivot axis developed by
both stiffness elements can be found by

τi = ~Fsi × ld + x = ~Fsi⊥(ld + x), (4)

where ~Fsi⊥ is the force acting perpendicular to the base
link at the pivot joint given by

dsin(α+ θ2)

r1 + ∆r1
=

~Fs1⊥
~Fs1

→ ~Fs1⊥ = ~Fs1
dsin(α+ θ2)

ri + ∆r1
,(5)

dsin(α− θ2)

r2 + ∆r2
=

~Fs2⊥
~Fs2

→ ~Fs2⊥ = ~Fs2
dsin(α− θ2)

ri + ∆r2
.(6)

From equations (4), (5), and (6), the stiffness-element-
contributed torque perceived at the base link can then be
computed as given by

τs1 = ~Fs1
dsin(α+ θ2)

r1 + ∆r1
(ld + x), (7)

τs2 = ~Fs2
dsin(α− θ2)

r2 + ∆r2
(ld + x), (8)

τs = τs1 + τs2. (9)

Then we simulated the torque perceived at the base by
changing the pre-tension state of x between 4, · · · , 8 cm for
αi = 55◦ and 25◦ in order to ascertain the landscape of the
torque felt at the base τf as a function of relative angular
displacement θ2 of the upper link and the pre-tension state
x of the stiffness element. From figure 4 we can note that
the level of non-linearity in this landscape tends to decrease
to almost a linear one when the angular configuration of the
two lever arms α reduces.

Therefore, in order to study the role x of the stiffness
element in the information gained by measuring the torque
felt at the base τf to estimate θ2, it is important to have
a reasonable level of non-linearity in the above relationship
shown in figure 4. In our experiments, α was set to be 55◦.

(a) (b)

Fig. 4. Contour plot of the torque perceived at the base as x varies from
4 to 8 and θ2 = −90◦, .., 90◦, when (a) α = 55◦ and (b) α = 25◦

III. EXPERIMENTS AND RESULTS

The main purpose of our experiment is to examine the
role of body internal impedance in an accurate embodied
perception. In this case, we limit our study to embodied
perception during slow movements, so that a static calibra-
tion of sensors can be used in a dynamic condition as static
memory primitives of embodiment and kinematic variables.
The relative angular displacement of the upper link and the
torque felt at the base in a static condition are denoted
by θ2

sta and τf
sta respectively, and those in a dynamic

condition are denoted by θ2dyn and τf dyn respectively. Here
we investigate as to how the non-linear relationship between
θ2

sta and τf sta can be exploited to search for the optimal x to
maximize information gained about θ2dyn during a dynamic
movement of the upper link (action).

A. Static Movement

As described and illustrated in section II-B, there is a non-
linear characteristic presented in our design of variable joint
stiffness. In order to identify the landscape of this nonlinear
relationship and to construct the static memory primitives for
internal state estimation, the data was recorded for 10 trials
for each configuration of the stiffness element for statistic
evaluation. The static torque τf sta was measured at different
pre-tension states, x = 4, · · · , 8 cm at different θ2sta values.
Measurements were taken after leaving the system to settle
down to a steady state (ex. after the vibrations in the springs
were damped out). For each trial, the recorded data is mapped
using a third order best fit polynomial function. Figure 5 (a)
show the variability of the fitted torque data across 10 trials
for each configuration of stiffness element, x = 4 cm to
x = 8 cm.

The average torque profile τf
sta, from all 10 trials is

shown in 5 (b), from which the corresponding contour
representing the non-linear static memory primitives can
be constructed. It should be noted that the experimental
results shown in figure 5 (c) is comparable to that obtained
in numerical simulation shown in figure 4 (a) (average
probability of the hypothesis that the columns of figure 5
(c) are the same as those in figure 4 (a), is statistically
significant in Mann-Whitney U test), confirming the validity
of our analytical model.

From the relationship between the torque experienced at
the base and the relative angular displacement of the upper
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Fig. 5. (a) The variability of torque perceived at the base across 10 trials for
different pre-tension states x. (b) best fit thrid order polynomials to τf sta

vs θ2sta primitives across different x ∈ [4, · · · , 8]cm in blue, magenta,
green, orange, and red lines respectively, (c) the corresponding contours of
the approximated torque profile, (d) the rotational spring constant profile.

link, the joint stiffness, K(θ2
sta), can be obtained from the

tangent of the function of torque with respect to the angular
displacement at any given θ2sta as given by:

K(θ2
sta) =

∂τf
sta

∂θ2
sta . (10)

The resulting rotational spring constant profile K(θ2
sta)

is shown in figure 5(d).

B. Dynamic Movement

As stated earlier, the main objective of our experiments is
to explore the influence of internal impedance on dynamic
behaviour of perception. Therefore, the dynamic torque,
τf

dyn, and angular displacement, θ2dyn were recorded at
different pre-tension states x, during dynamic movement.
The dynamic movement trial is carried out by releasing the
upper link from a certain angle, i.e. θ2 = 75◦. Data were
recorded until the system is settled down to its steady state
where θ2 = 0. An example of such movement is illustrated in
figure 6. The measured torque versus rotational displacement
trajectory is mapped using a third order best fit polynomial
function as shown in figure 7 (a) for each joint stiffness
configuration, x = 4, · · · , 8 cm.

Fig. 6. τf
dyn and θ2dyn profiles during the dynamic movement for pre-

tension state x = 6 cm

C. Perception Information Gain with Transfer Entropy

If we consider τf as a random variable, its entropy for
a given θ2 depends on the pre-tension state x. Therefore,
the transfer entropy defined in equation 11 - additional
information gained about the relationship between τf and
θ2 by changing the pre-tension state x - is a good indicator
to search for an optimum x [21].

G = P (τf |x, θ2) log
P (τf |x, θ2)

P (τf |xini, θ2)
, (11)

where G ≥ 0 is the non-negative information gain,
P (τf |x, θ2) is the probability distribution of dynamic torque
over the pre-tension state x and angular displacement θ2
constructed using 10-trials of static torque data, and xini
is an initial value of x. This implies that if information gain
G = 0, the joint stiffness has no influence on the causal
relationship between τf dyn and θ2dyn.

In order to find an optimum pre-tension state x, we use
algorithm 1.

(a) (b)

Fig. 7. (a) the best fit third order polynomial functions for the measured
dynamic torque profiles, (b) the information gain evaluation with the pre-
tension state x = 4 · · · 8 cm; the randomly selected initiaal pre-tension state
xini = 6 cm; and the angular displacement of endeffector, θ2 = −5◦.

D. Results: Optimization of Joint Stiffness for Perception

In this paper we compare Newton-Raphson optimization
method (requires gradient information) and the Hooke-Jeeves
Pattern search method (does not require gradient informa-
tion) to search for the best x that maximizes transfer entropy
G to arrive at a best estimate for θ2 given the torque
measured at the base τf .

1) Newton-Raphson Optimization: Newton-Raphson op-
timization method is a technique to find an extrema in a
solution space of a funtion based on a local gradient [22].

Figure 8 depicts this approach in finding the optimum gain
when θ2 = −5◦, and xini = 6 cm as an example. The search



Algorithm 1 Algorithm to find an optimum pre-tension state.
Step 1: Choose a set of torque data measured during a
dynamic movement of the upper link for a randomly chosen
initial pre-tension state xini.
Step 2: Randomly sample the angular displacement θ2dyn

of the upper link using the relationship corresponding to the
xini, established in figure 7 (a).
Step 3: Construct entropy profile based on τf

dyn retrieved
from random parameters in Step 1 and Step 2, together with
the non-linear static memory primitives established in figure
5 (b), and (c).
Step 4: From transfer entropy profile shown in figure 7
(b), search for the best x that would maximize the transfer
entropy G profile across x using search algorithms described
in section III-D (figure 8 and 9).
Step 5: Use the optimum pre-tension state xbest to compute
the best approximation θ2

pred of a ’real’ θ2dyn given only
the torque reading, τf dyn using the static memory primitives
corresponding to the xbest, established in figure 5 (b).

Fig. 8. Implementation of Newton-Raphsons optimization method on a
tansfer entropy profile computed at θ2 = −5◦, and xini = 6 cm. The
algorithm starts from three different initial points, namely: xstart = 4.5 cm
(black circle), xini (red trapezoid), and 7.5 cm (magenta star) respectively.
The search algorithm finishes the iteration in the local minima for all three
starting points. Therefore, utilizing this approach yields xbest ≈ 6.

algorithm for the optimum parameter jump around across
iteration and the solution for the ’xbest’ converges to the
local minima of the gain profile resulting in xbest = 6.

2) Hooke-Jeeves Pattern Search: Hook-Jeeves Pattern
Search is a directional search algorithm to obtain the point
in the solution space with best fitness. The algorithm was
developed by Hooke and Jeeves in 1961 and can be found
in Appendix B of their paper [23].

Hooke-Jeeves Pattern Search is suitable for only unimodal
search spaces. Handling a multimodal function with this
method may cause the algorithm to get stuck in local
maxima. This problem can be minimized by introducing the
same dual search approach. An example of this Hooke-Jeeves
Pattern Search is shown in figure 9 with the parameter of:
θ2 = −5◦, and xini = 6 cm.

The algorithm converges to its maxima of the transfer
entropy profile from two starting points, namely: x1 = 4.5

Fig. 9. Implementation of Hooke-Jeeves pattern search method on a tansfer
entropy profile computed at θ2 = −5◦, and xini = 6 cm. The algorithm
starts from three different initial points, namely: xstart = 4.5 cm (black
circle), xini (red trapezoid), and 7.5 cm (magenta star) respectively. While,
the algorithm with starting point, xstart = 7.5, gets stuck in the local
minima; the rest algorithms converges to the optimum point, xbest ≈ 4.8,
of which G is at the maximum.

(black circle), and x1 = xini (red trapezoid); whereas the
algorithm gets stuck in the local minima for the starting
point, x1 = 7.5. From this, we obtain the optimum stiffness
configuration parameter: xbest ≈ 4.8.

IV. CONCLUSION

This paper has discussed how a robot with controllable
internal impedance can maximize information gain in pro-
prioception by searching for an optimal stiffness under a
nonlinear relationship between the entropy of sensor in-
formation and the impedance of the physical embodiment.
In order to investigate this, we used a laboratory made
two link planar manipulator with a McKibben type pivot
joint (elbow) with controllable stiffness. Then, we posed the
problem of using only torque data measured at the fixed
base manipulator, to estimate the deflection at the McKibben
type elbow caused by an external force at the free end.
There was a unimodal nonlinear relationship between the
transfer entropy of proprioception under varying stiffness -
determined by the pre-tension state x - of the McKibben type
pivot joint. We call it a nonlinear internal memory primitive
that the robot can use to enhance proprioception.

In this paper, we provide analytical results and experi-
mental evidence as to how we can exploit such nonlinear
memory primitives of embodiment and kinematic variables
to enhance the accuracy of the estimation of the internal
states of the system during the dynamic behaviours through
modulating the internal impedance. Transfer entropy of em-
bodied perception of the internal state - deflection angle of
the McKibben type pivot joint in this case - is used as an
indicator in searching for an optimal level of pre-tension
state for accurate perception. We have compared alternative
approaches to enable real-time search of the optimal internal
impedance level, namely: Newton-Raphsons Optimization;
and Hooke-Jeeves pattern search approach.

The performance of each algorithm is evaluated by the
average error in approximation of the θ2 state. Hooke-Jeeves



pattern search method outperforms the Newton-Raphsons
optimization approach in term of the average error of approx-
imation of θ2 as shown in figure 10 (a). Furthermore, though
Hooke-Jeeves optimization requires on average more itera-
tions to converge, its corresponding error deviation (shown
in error bar) is overall smaller than that of Newton-Raphson
Optimization as shown in figure 10 (b).

Based on our results, we speculate that biological counter-
parts may also be using nonlinear memory primitives similar
to the one demonstrated in this study to tune embodied
proprioception. Therefore, it would be interesting to study
whether embodiment of muscle spindles (position and speed
sensing) and tendons (force/torque sensing) benefits from
some real-time internal impedance regulating strategy, and
the shapes of the corresponding memory primitives.

(a)

(b)

Fig. 10. (a) The average error of angular displacement, ε, is taken
from the average error of prediction of state, θ2pred, with respect to the
dynamic angular displacement θ2dyn, ranging from −10◦ to 10◦, across
xini. The average error along with corresponding error bars produced
using Hooke-Jeeves and Newton-Raphsons approach are shown in blue and
pink bars respectively, (b) the average number of iterations required until
the alternative algorithms - Hooke-Jeeves pattern search (blue bars) and
Newton-Raphson optimization (pink bars) - converge with the error bars.
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