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Transferring Human Impedance Behaviour to

Heterogeneous Variable Impedance Actuators
Matthew Howard, David J. Braun, Sethu Vijayakumar

Abstract—This paper presents a comparative study of ap-
proaches for controlling robots with variable impedance actu-
ators (VIAs), in ways that imitate the behaviour of humans.
We focus on problems where impedance modulation strategies
are recorded from human demonstrators for transfer to robotic
systems with differing levels of heterogeneity, both in terms of the
dynamics and actuation. We categorise three classes of approach
that may be applied to this problem, namely, (i) direct, (ii)
feature-based, and (iii) inverse optimal approaches to transfer.
While the first is restricted to highly biomorphic plants, the latter
two are shown to be sufficiently general to be applied to various
VIAs in a way that is independent of the mechanical design.
As instantiations of such transfer schemes, (i) a constraint-
based method, and (ii) an apprenticeship learning framework are
proposed, and their suitability to different problems in robotic
imitation, in terms of efficiency, ease of use and task performance
is characterised. The approaches are compared in simulation on
systems of varying complexity, and robotic experiments are re-
ported for transfer of behaviour from human electromyographic
data to two different variable passive compliance robotic devices.

Index Terms—Behaviour transfer, imitation learning, variable
stiffness actuation, passive impedance control.

I. INTRODUCTION

IN recent years, variable impedance actuation has become

increasingly popular in the design and control of novel

robotic mechanisms [1], [2]. Variable impedance actuators

promise many benefits for the next generation of robots,

including (i) increased safety in settings where there is human-

robot interaction [3], (ii) increased dynamic range (e.g., when

throwing, energy may be stored in spring-like VIAs, before

being released explosively for the throw [4]) and (iii) increased

robustness when interacting with the environment [5]. Despite

these benefits, however, a number of challenges remain as-

sociated with the deployment such actuators to the current

generation of robots. One major issue is that of how to control

such mechanisms, and in particular, how to best utilise variable

impedance so that the benefits (such as compliance) are

exploited, while compromise on other aspects of performance

(such as precision) is avoided.

A promising approach to finding appropriate impedance

control strategies on robots is to take examples from human

behaviour and attempt to mimic it. The human musculoskeletal

system, actuated by antagonistic muscles with inherent visco-

elastic properties [6], represents one of the best examples of a

system controlled with variable impedance actuation. A large
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body of research studying human impedance modulation exists

in the biological literature and, as such, may be a rich source

of inspiration for designing controllers for robots [7].

In order to exploit these biological insights for control

of robotic VIAs, a number of technical problems must be

addressed. A problem of primary concern is the heterogeneity

in the kinematics, dynamics and actuation between the human

musculoskeletal system and robotic VIAs. This affects the

transfer of impedance behaviour, both in terms of the control

of the variable impedance device and strategy employed in

achieving task goals.

More concretely, control of robotic VIAs to mimic human

impedance behaviour remains a challenging problem. The

control of impedance in the human musculoskeletal system

can be achieved by co-contraction of groups of antagonis-

tic muscles. By building robotic actuators with a similar

antagonistic layout [8], one can simplify the imitation task

(e.g., by drawing a direct correspondence between human

electromyography (EMG) signals and actuator commands).

However, often such designs are unfavourable since they tend

to have rather complex, coupled dynamics and can be hard

to build into multi-joint devices. Other proposed designs have

focused on simplifying the dynamics (and thereby the control)

[2] or improving scalability [9], [10]. These often have several

benefits, such as compactness, but the difficulty then lies

in finding appropriate controllers, especially when trying to

mimic the capabilities of humans [11] and exploit the benefits

of variable impedance.

On the other hand, some impedance strategies employed

by humans are highly adapted to certain specific properties

of the human body and may not transfer directly to those

of robotic plants. For example, it is well-known that the

human musculoskeletal system suffers from signal-dependant

noise, that is, noise in the kinematics of movement in direct

proportion to the control signal [12]. To counter the effects

of signal-dependant noise, humans adapt their impedance in

different ways, depending on the task, e.g., in tasks requir-

ing high precision, humans tend to increase impedance by

co-contracting [13]. However, most robotic systems do not

suffer from such noise characteristics (e.g., noise is more

commonly constant, additive and much smaller in magnitude)

so direct transfer of the human impedance strategy may not

be reasonable: maintaining the same level of stiffness on a

less noisy robot would waste energy and reduce compliance

without significantly improving accuracy.

To overcome such problems, in this paper, we suggest

two approaches to the problem of transferring impedance

control strategies across plants with heterogeneous dynamics
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and actuation:

The first is a scheme in which human impedance charac-

teristics can be directly tracked on a robotic VIA. We employ

a closed-loop tracking scheme (first proposed in [14]), and

illustrate its use in the context of imitation. In particular, we

focus on the issue of transfer of impedance (i.e., ‘impedance

matching’) between different systems with this approach, and

demonstrate its use in the context of online teleoperation

of robotic VIAs. This can be considered as imitation at the

control level, i.e., building controllers that achieve the same

impedance behaviour across heterogeneous systems.

The second approach is to employ inverse optimal control to

seek the objective of demonstrated behaviour in the form of a

performance measure (cost function) [15]. We use recordings

of task-oriented human behaviour in which the impedance

strategy employed is (assumed to be) optimised with respect to

his or her dynamics. By applying apprenticeship learning (AL)

[16], [17], we show how the underlying optimisation criteria,

used by the human to shape their impedance strategy, can be

extracted and transferred to design impedance strategies suit-

able to different (heterogeneous) variable impedance robots.

We demonstrate and compare these approaches in simulation

and through human/robot experiments.

II. PROBLEM DEFINITION

Our aim is to transfer behaviour of an expert demonstrator (e)
to an apprentice learner (l) given that the expert and learner

have a very different embodiment1, both in terms of their

dynamics and actuation. Specifically, we assume the expert has

state ex ∈ R
m, controls movement with commands eu ∈ R

n,

and has dynamics

eẋ = ef(ex, eu) ∈ R
m. (1)

Note that the effect of the commands eu on the dynamics (i.e.

the form of ef(·)) depends on the actuation mechanism of the

expert. In particular, we can rewrite (1) as

eẋ = eg(ex, eτ ) ∈ R
m

where eτ = eτ (ex, eu) is the (in general, state-dependent)

relationship between the expert’s command signal eu and the

torques/forces applied by the expert’s actuators.

Our goal is to transfer behaviour to a learner with a different

embodiment, both in terms of the dynamics and actuation. For

example, we may wish to take impedance behaviour measured

from the human arm (actuated by antagonistic muscles) and

transfer it to a robotic manipulator (actuated by VIAs). We

denote the learner’s state as lx ∈ R
r, command signal lu ∈ R

s

and dynamics

lẋ = lf(lx, lu) = lg(lx, lτ ) ∈ R
r (2)

where lτ = lτ (lx, lu) denotes the torques produced by the

learner’s actuators. Note that, in general, the state and action

1In principle, we avoid making any assumption on the extent to which the
expert and learner plants may differ. However, in order to make a meaningful
comparison between their respective behaviours, we assume that there is a
sufficient overlap in their capabilities, that they may both achieve similar
success at a given task.
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Fig. 1. Correspondence problem between human and robotic actuation
systems. Left: Humans use muscle activations (e.g., utriceps and ubiceps)
to control movement. Right: Robotic systems are controlled with command
signals to the different motors (e.g., umotor1 and umotor2). The torque
generated by those motors depends on the actuators used.
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Fig. 2. Routes to behaviour imitation. Starting with recordings of the expert
(human) behaviour, we can identify three ways in which behaviour can be
transferred. The first is to do a direct policy transfer, i.e., make a direct
correspondence between the human state and commands ex, eu and feed
those directly as commands to the robot lx, lu. The second is to record
features of the expert behaviour eφ(ex, eu) (e.g., the stiffness profile during
movement) and attempt to track these with corresponding features of the
robot lφ(lx, lu). The third is to take an inverse optimal approach, in which
recordings of task-oriented behaviour are used to extract the underlying
objective function eJ and then generate robot behaviour by optimising for
a corresponding robot cost function lJ .

space (ex, eu and lx, lu) may differ significantly between

the two plants: For example, for a human expert eu may

correspond to muscle activations whereas for a robot learner lu

may correspond to desired positions of a set of servo-motors).

The state of the robot lx may be sufficiently described by the

joint angles and positions (lx = (lq⊤, lq̇⊤)⊤), while that of

a human demonstrator may include additional biomechanical

variables (e.g., tendon slack lengths, muscle pennation angles,

etc. [18]). In addition, lf(·) and ef(·) may also differ, both in

terms of the parameter values (e.g., inertia, link lengths, joint

axis positions and orientations), as well as in their parametric

form.

Clearly, the differences in embodiment between demonstra-

tor and learner cause numerous difficulties when attempting

to transfer behaviour. As an example, consider the problem of

transferring the control strategy used by a human to perform

some task to a robotic imitator, as illustrated in Fig. 1. Imagine

that we are given a set of recordings of the behaviour (e.g, in

the form of muscle activation profiles) and we wish to use

this data to reproduce the movement on a robotic system.

Depending on the hardware, there are a number of approaches

we may take (see Fig. 2). In the following, we characterise

these approaches and the domains to which they are applicable.
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A. Direct Imitation for Biomorphic Systems

Firstly, if there is a close correspondence between the robot

and the human, the simplest approach is direct imitation of

behaviour. In the case of open-loop imitation, one would

define the correspondence eu ≡ lu (and therefore s = n)

and execute commands

lu(t) = eu(t) ∈ R
n. (3)

For closed-loop control, the demonstrator’s behaviour can be

described in terms of a control policy

eu = eπ(ex, t) ∈ R
n, (4)

and imitation is achieved by drawing correspondence in both

the state and action space (i.e., ex ≡ lx and eu ≡ lu) and

implementing a controller

lu = π̃(lx, t) ∈ R
n (5)

where π̃ is an approximation of eπ (e.g., estimated through

supervised learning on the demonstration data [19]–[22]).

Clearly, direct imitation is only possible in a few special

cases where the dynamics and actuation of the robot are

especially similar to that of the human. For instance, if

the robot is actuated with artificial muscles (e.g., McKibben

muscles [23]), it may be possible to directly feed the muscle

activations recorded from a human as a command signal to

the robot actuators. Evidently, this approach has the benefit

of simplicity, but its applicability is limited since such direct

correspondence between demonstrator and imitator is rare.

B. Feature-tracking for Abstracting Hardware Differences

A second approach is feature-based imitation of the observed

behaviour. The basis of this approach is to select a set of salient

features of the demonstrated behaviour eφ(ex, eu, t), find the

‘equivalent’ features of the robot’s behaviour lφ(lx, lu, t) and

draw correspondence between the two (i.e., lφ ≡ eφ) [24].

For example, the features might include the joint stiffness

and damping profiles of the human arm that occur during

movement. By drawing an equivalence between these and the

joint stiffness and damping of the robot, the feature-based

approach imitates behaviour by matching those features as

closely as possible during the movement.

1) Benefits of feature-based imitation: One of the benefits

of this approach is that it allows one to focus only on the

key features of the demonstrated behaviour, while ignoring

those that are irrelevant and emerge solely as a consequence

of the demonstrator’s specific embodiment. For example, it

is known that there is a coupling between the damping and

stiffness of the human musculoskeletal system [25] so that

any human demonstrated behaviour inherently contains a non-

negligible damping profile, in addition to stiffness and position

modulation. Since this damping is inherent to the dynamics

of the human, it cannot be avoided whether or not it is

beneficial for a given task. In throwing, for instance, damping

may be detrimental to performance as it dissipates energy that

could be used to throw greater distances. A robotic imitator

with decoupled control of stiffness and damping (e.g., [26])

is not subject to such restrictions, and therefore may profit

from imitating the stiffness only (to exploit energy storage,

similar to the human), while avoiding energy dissipation by

minimising the damping during the throw [4].

With a feature based approach, we would seek to match only

the key beneficial features, and ignore extraneous properties

of the demonstrations. In other words, we seek to abstract the

behaviour from the specific embodiment of the demonstrator

and seek ways to imitate these features independent of the

specific embodiment of the imitator system (i.e., design of the

robotic device). We clarify the issues involved in this with an

example.

2) Example: Ideal VSA, MACCEPA and Edinburgh SEA:

To illustrate the influence that different mechanical designs

have on the control of impedance features such as stiffness

and equilibrium position, we consider three possible designs

for a single-joint VSA.

The first and simplest of the three, is the idealised single-

joint VSA (see Fig. 2(a)), in which we assume that the stiffness

and equilibrium position are directly controllable (i.e., u =
(q0, k)

⊤) and the torque around the joint is given by

τ(q,u) = −k(q0 − q) ∈ R (6)

where q ∈ R is the joint angle. In this case, the control

of equilibrium position and stiffness is independent, enabling

any combination of position and stiffness to be selected. This

is illustrated in Fig. 2(a), right, where, for instance, moving

along the y-axis (corresponding to u2) adjusts the stiffness,

but has no effect on the equilibrium position, and vice versa.

Unfortunately, in real mechanisms it is rarely possible to

achieve such ideal behaviour.

In contrast, consider the MACCEPA [2] and the Edinburgh

SEA [27] as examples of actuators of differing designs, that

have both been realised in hardware. For the MACCEPA, the

joint torque is given by

τ(q,u)=κBC sin(u1−q)

(

1+
ru2−(C−B)

A(q, u1)

)

∈ R (7)

where u = (u1, u2)
⊤ are the commanded positions of the

two servomotors (see Fig. 2(b)), q ∈ R is the joint angle, κ
is the spring constant, r is the radius of the winding drum

(mounted on the servo that extends the spring). A(q, u1),
B and C are the distances illustrated in Fig. 2(b), with

A(q, u1) =
√

B2+C2−2BC cos(u1−q). Note that, due to

the multiplication of terms dependent on u1 and u2, there

exists a coupling between equilibrium position and stiffness,

making independent control of the two difficult. To illustrate

this, we can make a similar plot of the equilibrium position

and stiffness as a function of motor commands for this plant

(Fig. 2(b), right). Here, we can see that, though the equilibrium

position is only influenced by the first motor (u1), there is a

rather complex, non-linear relationship between u1 and u2 and

the stiffness.

For the Edinburgh SEA, an antagonistic arrangement is used

in which the motors adjust the position of two levers connected

through springs to the free link (see Fig. 2(c)). In this case,

the torque around the joint is given by

τ(q,u) = ẑ⊤((F2(q, u2)− F1(q, u1))× a(q)) ∈ R (8)
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(a) Ideal VSA.
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(b) MACCEPA.
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(c) Edinburgh SEA.
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Fig. 3. Left: Geometry, dynamics and hardware implementation of the 1-link variable stiffness actuators used in the numerical simulations and experiments.
Right: Equilibrium position and stiffness as a function of commands u (evaluated at q = 0 rad, q̇ = 0 rads−1).

where u = (u1, u2)
⊤ are the commanded positions of the two

servomotors, q ∈ R is the joint angle, ẑ is the unit vector

along the joint rotation axis, a(q) = (a cos q, a sin q, 0)⊤,

Fi(q, ui) = κ(σi − σ0)
σi

σi
, i ∈ {1, 2} are the forces due

to the two springs (both with spring constant κ), σ1 =
(−h − L sinu1,−d + L cosu1, 0)

⊤ + a(q) and σ2 = (h +
L sinu2,−d+ L cosu2, 0)

⊤ − a(q) are the extensions of the

two springs (i.e., the vectors CA, and DB respectively), and

all other quantities are illustrated in Fig. 2(c). In this case, due

to the antagonistic actuation, there is a strongly coupled, non-

linear relationship between the motor commands and the joint

equilibrium position and stiffness (as illustrated in Fig. 2(c))

making it difficult to control these quantities directly.

These examples illustrate the fact that, even for relatively

simple VSA designs, there is considerable difficulty in directly

regulating the position and stiffness. At first glance, it would

seem necessary to develop specialised controllers for each

design, in order to exploit their physical properties. However,

in Sec. III-A we will outline a general method for controlling

arbitrary VSAs with a constraint-based framework.

3) Disadvantages of Feature-based Imitation: While the

feature-based approach can be highly effective for behaviour

transfer in certain scenarios, it also has some difficulties in

its application. One of the primary problems is in identifying

which features of the demonstrator’s behaviour are key to

achieving good task performance. In particular, effective use of

feature-based imitation requires an appropriate understanding

of the way in which different features affect task performance

under the dynamics of both the demonstrator and the robotic

imitator. Often, humans’ strategies for employing variable

impedance are highly adapted to certain specific properties of

the musculoskeletal system. The consequence of this is that

care must be taken when attempting to imitate that behaviour

to ensure that it is appropriate for the robotic plant.

As an example, consider the task of point-to-point reaching

in free space (i.e., in the absence of external loads or other

perturbations). Commonly, in such tasks, humans tend to

increase their impedance toward the end of the movement

to ensure that the target is hit accurately [13], [28] (i.e., to

counter the effects of signal-dependent noise [12]). This comes

at the cost of increased energy expenditure, since the human

must co-contract muscles to achieve this. However, for a less

noisy robotic imitator, this may be unnecessary, since relatively

high accuracy (compared to the human) may be achieved even

at relatively low impedance. As such, a better strategy for

the robot would be to keep impedance low throughout the

movement, thereby avoiding unnecessary energy consumption.

While the feature-based approach may suffer from such

issues, this does not mean that it should be ruled out for all ap-

plications. For example, in the context of online, teleoperated

control of a robot, the feature-based approach can be exploited

to provide an intuitive way for a human operator to control a

slave robot. Feature-based imitation is particularly suitable in

such online, interactive control scenarios, since its speed and

efficiency makes the control responsive, and the proficiency

of the operator at controlling the robot for a given task can

help to overcome errors due to the mismatch in the dynamics.

It is, therefore, worthwhile to consider feature-based imitation

in the light of the requirements of applications. In Sec. III-A,

we outline a constraint-based approach to feature tracking for

the control of VIAs, and illustrate its use experimentally in

Sec. IV.



HOWARD et al.: TRANSFERRING HUMAN IMPEDANCE BEHAVIOUR TO HETEROGENEOUS VARIABLE IMPEDANCE ACTUATORS 5

C. Inverse Optimal Control for Task-based Imitation

The third behaviour transfer approach considered in this paper,

is that of task-based imitation through inverse optimal control.

The idea behind this approach is to seek the objectives (i.e.,

task goals) of the demonstrated behaviour and then present

a corresponding set of objectives to the imitator. Specifi-

cally, in this approach, it is assumed that the demonstrator’s

behavioural goals are encoded in the form of some objec-

tive function eJ(·) by which task performance is measured.

Demonstrated behaviour is assumed to optimise this function

with respect to the demonstrator’s dynamics, and therefore

similarly optimal behaviour may be achieved by the imitator

if a correspondent objective function lJ(·) can be defined and

optimised2.

With this representation (i.e., drawing the correspondence
eJ ≡ lJ), behaviour is transferred at the level of task goals

(i.e., via the objective function that defines the task), inde-

pendent of the specific control strategy or embodiment of the

demonstrator. Furthermore, by optimising the imitator (robot)

behaviour in such a way as to take into account the imitator’s

dynamics, task-based imitation allows different strategies to

be planned that are tailored to the imitator’s embodiment.

1) Objective Functions for Demonstrated Trajectories:

While inverse optimal control may be formulated in several

different ways according to the setting [17], [29]–[31], in

this paper we primarily focus on discrete movements (i.e.,

with a finite duration). Specifically, we assume that each

demonstration is given in the form of a trajectory through the

state-action space of the demonstrator, ex(t), eu(t), from start

state ex0, and with duration3 T . The trajectory is assumed to

be optimal with respect to some (unknown) objective function

eJ = eh(ex(T )) +

∫ T

0

el(ex, eu, t) dt (9)

where eh(·), el(·) ∈ R are cost functions defined on the state-

action space of the demonstrator. For instance, el(ex, eu, t)
may describe the instantaneous power consumed by the

demonstrator’s actuators (e.g., the metabolic energy consumed

by human muscles at a given activation). Note that here, since

the optimality of the demonstrated trajectories depends on the

demonstrator’s dynamics ef(·), the recorded trajectories will

not, in general, be optimal under the dynamics of a different

(learner) system lf(·), i.e.4 {ex̄, eū | ef(·)} 6= {lx̄, lū | lf(·)}.

Accordingly, in order to seek appropriate strategies for the

imitator, an equivalent objective function

lJ = lh(lx(T )) +

∫ T

0

ll(lx, lu, t) dt (10)

must be defined on the learner’s state-action space, where the

terms lh(·), ll(·) ∈ R define cost terms with a meaningful

2By convention, in this paper it is assumed that eJ and lJ represent cost,
so that their minimisation indicates better performance.

3For simplicity, through the paper we assume finite length trajectories of
equal length. However, as discussed in [17], [31], inverse optimal control
techniques are also readily extended to variable length, or even infinite horizon
tasks.

4For compactness, here we use the ’bar’ notation to denote optimality, i.e.,
ū denotes the optimal command sequence, and x̄ the optimal trajectory in
state space.

correspondence to those of the expert eh(·), el(·). For example,

if the term el(ex, eu, t) of a human demonstrator represents

the energy consumption of the muscles, one might define
ll(lx, lu, t) as the electrical power consumed by the motors of

a robotic manipulator. The goal of imitation then, is to find the

optimal behaviour for the learner {lx̄, lū} under the dynamics
lf(·) with respect to the equivalent objective function (10).

2) Benefits of Task-based Imitation: Similar to feature-

based approaches to imitation (see Sec. II-B), the ease with

which we can define correspondent cost functions (9)-(10) will

depend on the specific embodiments of the two plants. For

example, cost terms dependent on features such as end-effector

position may be defined as exactly correspondent, whereas

terms dependent on other properties such as the applied

torque or impedance may require more complex definitions.

A major benefit of this approach, however, is that often it

is much easier to define correspondence at the level of the

task, rather than at the detailed control level of the plants.

For instance, when imitating human behaviour (Fig. 1), the

selection of which dynamics characteristics to match (e.g.,

stiffness, damping etc.) in a feature-based imitation approach

will depend critically on the effect those have on the dynamics

of the two plants with respect to the task goals. In contrast,

with task-based imitation, only the salient features (e.g., target

accuracy, energy consumption) are specified, with the low-

level details of the behaviour automatically handled by the

control optimisation.

III. METHOD

In this section, we turn to the implementation details of

behaviour transfer under the different approaches. We first

outline a method for feature-based transfer tailored to imitation

of impedance using a closed-loop tracking framework. We

then describe an approach to task-based imitation, through

apprenticeship learning for inverse optimal control.

A. Imitation by Impedance Feature Matching

Here, we consider the problem of (feature-based) transfer of a

demonstrator’s impedance on a robotic system. In particular,

we wish to imitate the stiffness and equilibrium position of

the demonstrator, as features of the behaviour, i.e., we draw

the correspondence

eφ ≡ lφ ⇒ (eq0
⊤, ek⊤)⊤ ≡ (lq0

⊤, lk⊤)⊤ (11)

where eq0 ∈ R
p is the joint equilibrium position vector5 of the

demonstrator, ek = vec(eK) ∈ R
p2

is the demonstrator’s joint

stiffness matrix eK ∈ R
p×p in vector form, and lq0 and lk are

the corresponding equilibrium position and stiffness elements

for the learner. Since we are considering impedance matching

in joint space, we also assume that there is some meaningful

correspondence between the joint space kinematics (q0) and

impedance (k) of the two systems, i.e., between eq and lq,

and in particular, that they are of equal dimension eq, lq ∈ R
p

5For space reasons, here we primarily consider impedance matching in
the joint space, however, the methods presented can easily be extended to
stiffness and equilibrium position matching in task-space through the approach
described in [14].
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(and therefore lq0 ∈ R
p, lk ∈ R

p2

, and eφ, lφ ∈ R
µ with

µ = p+ p2).

1) Estimation of Impedance Features: In order to achieve

imitation of the features defined in (11), some scheme for

their estimation (or measurement) is required both for (i)

the demonstrator and (ii) the imitator. In the case of the

former, feature estimation is required for extracting the desired

impedance from the demonstrations, i.e., to provide a reference

to the imitator. In the latter case, estimation is desirable for

feedback purposes (i.e., to evaluate the accuracy with which

the demonstrator’s impedance is reproduced).

To satisfy these requirements, we may appeal to sev-

eral existing approaches for estimation of the demonstrator’s

impedance. For example, one approach is to use, surrogate

measures of the impedance, based on measurable quantities

such as muscle activations/cocontraction levels from EMG

sensors [32]–[35]. An alternative approach (favoured in this

paper), is to use estimates of the demonstrator and imitator

impedance derived from models of their respective dynamics.

Specifically, we assume that for both plants, the relationship

between the state e,lx, the command vector e,lu, and the joint

torque is given, i.e.,

eτ = eτ (ex, eu) ∈ R
p (12)

for the demonstrator, and

lτ = lτ (lx, lu) ∈ R
p (13)

for the imitator. These may be given in closed form6 or as a

non-parametric model (e.g., from non-parametric regression).

The equilibrium position of the joints7 as a function of state

and command,

q0 = q0(x,u) ∈ R
p, (14)

is defined as the solution of τ (x,u) = 0 for q. This may be

found either analytically, or numerically with a root-finding

algorithm such as the Newton-Raphson method. The joint

stiffness matrix is defined as

K = K(x,u) = −
∂τ (x,u)

∂q

∣

∣

∣

q
∈ R

p×p. (15)

Again, this may be derived in closed-form, or numerically,
e.g., through finite differences. Computing (14) and (15) from

(12) therefore provides an estimate of the demonstrator’s

stiffness and equilibrium position, and computing the same

from (13) yields similar estimates for the imitator.

Note that, for both plants, (14) and (15) may be non-linear

functions of the state and commands, and that, depending on

the system, the number of independent elements of K may

vary. For example, the stiffness of each joint may be coupled

so that K is (non-diagonal) symmetric, as in the human

6In our experiments, we employ a biomechanical model of the muscu-
loskeletal system (including muscle dynamics) to predict human impedance
features, and a rigid-body model of the actuators, validated by a system
identification, for the robots (for details, see Sec. IV).

7For simplicity, we assume that the torque functions e,lτ (·, ·) in (12)/(13)
represent the torque around the joint in the absence of an external load, and
therefore (14) represents the unloaded equilibrium position. If, instead, we
wish to estimate the (link side) equilibrium position under an external load,
then q0(x,u) must instead be computed as the solution to τ (x,u)+τ e = 0

where τ e represents the external torque due to the load.

musculoskeletal system where synergistic muscle groups, bi-

articular muscles, the arrangement of tendons, etc., can cause

cross coupling of joints (e.g., see [6]). Alternatively, the

stiffness of individual joints may be independent (as would

be the case, for example, in a chain of MACCEPAs [2]), in

which case K reduces to a diagonal matrix. In such cases,

the dimensionality of the imitation problem (11) may be

reduced (and computation efficiency gained) by omitting those

elements that cannot be independently varied.

2) Resolved Equilibrium and Stiffness Tracking Control:

Given estimates of the equilibrium position and stiffness for

both the demonstrator and imitator, we are now in a position

to design controllers that enable the robotic imitator to mimic

the demonstrated impedance. While different approaches for

stiffness modulation in VSAs have been proposed [36], [37],

here, we briefly outline a recent model-based approach that

is well-suited for closed-loop stiffness tracking on a variety

of different VSAs [14]. The proposed approach is based on

closed-loop tracking, using the estimated stiffness eK and

equilibrium position eq0 of the demonstrator as the reference

target.

Noting that, in general (13) may a non-linear function of the

commands u, a direct (linear, orthogonal) decomposition for

control of (the imitator’s) equilibrium position and stiffness

is not feasible in general. Instead, we move to the command

velocity space for control: taking the time derivative of (14)

and (15) for the imitator, the linearised, forward impedance

dynamics are

lq̇0 = Jq0
(lx, lu)lu̇+Pq0

(lx, lu)lẋ, (16)

l
k̇ = Jk (lx, lu)lu̇+Pk (lx, lu)lẋ, (17)

where lq̇0,
l
k̇ are the change in equilibrium position and

stiffness with respect to time, lu̇ ∈ R
s is the rate of change

of motor commands, Jq0
∈ R

p×s and Jk ∈ R
p2×s are

the Jacobian of the equilibrium position and the stiffness

with respect to motor commands, while Pq0
∈ R

p×r and

Pk ∈ R
p2×r are the corresponding Jacobians with respect to

the state.

To simultaneously control equilibrium position and stiffness

(in joint space8), we can invert this relationship to yield9

lu̇ = J†ṙ+ (I− J†J)u0 (18)

where ṙ = (lq̇0 − Pq0

lẋ,
l
k̇ − Pk

lẋ)⊤ ∈ R
p+p2

, J =
(Jq0

,Jk)
⊤ is the combined Jacobian, I ∈ R

s×s is the identity

matrix, J† denotes the Moore-Penrose pseudoinverse of J and

u0 ∈ R
s is an arbitrary vector. The latter can be used to resolve

8Please note, the present approach can also be used for tracking task (e.g.,
end-effector) space stiffness and equilibrium position. Denoting the task space
coordinates as s ∈ R

p and the Jacobian from joint to task space as W(lq) ∈
R
p×p (assumed to be square and full-rank), the task space stiffness is lKs =

(W⊤)−1lKW−1 ∈ R
p×p and the task space equilibrium position ls0 ∈

R
p is the solution of

Fs = (W⊤)−1lτ = 0

where Fs is the task-space restoring force. Given ls0 and lKs, we can then

derive the Jacobians Js0 ∈ R
p×s and Jks ∈ R

p2×s with respect to the

motor commands lu and perform tracking in a similar way as in the joint
space approach [14].

9We omit the dependence on lx and lu for readability.



HOWARD et al.: TRANSFERRING HUMAN IMPEDANCE BEHAVIOUR TO HETEROGENEOUS VARIABLE IMPEDANCE ACTUATORS 7

any further redundancy in the actuation (such as additional

actuators used for varying damping [38], or for mechanisms

where multiple actuators are used to control variable stiffness

elements, e.g., [39]).

Application of (18) requires state derivatives, provided by

feedback, or calculated from the analytical model of the

system dynamics. To avoid the requirement on analytical mod-

elling, and also to circumvent the noise and phase-lag issues

related with the feedback on lẋ, we employ on-line feedback

about the current stiffness and equilibrium states, i.e., we

choose ṙ according to the difference in the desired and actual

equilibrium and stiffness values ṙ = κp(
eq0 −

lq0,
ek− lk)⊤

where κp is a gain parameter. This solution is similar to

closed-loop inverse kinematic control [40], and also mitigates

instabilities due to drift [41].

3) Benefits of Resolved Impedance Tracking: Imitation of

the demonstrated impedance through this approach has several

benefits. The first, is that it enables us to match these features

of the demonstrator’s behaviour, with relative ease, in a device-

independent way. For example, if we wish to track the stiffness

of a single joint of a human demonstrator, then we are free to

choose the robotic mechanism: in this case, any of the VSAs

described in Sec. II-B could be used.

A second benefit is the flexibility that this approach gives

in selecting the correspondence between demonstrator and

imitator features. In particular, the explicit decomposition into

task and nullspace parts in (18), means that features deemed

to have lower importance in the imitated behaviour can be

either ignored (by eliminating rows of J), or tracked with

lower priority (by pushing these features into the nullspace).

For example, consider the case of behaviour transfer from

a demonstrator with stiffness matrix eK that is constrained

always to be symmetric (e.g., due to joint coupling arising

from bi-articular muscles) to a (fully actuated) robotic im-

itator (e.g., [10]) where the entire stiffness matrix lK can

be controlled. In this case, we can draw correspondence

on a subset of the elements of eK and lK (e.g., define

the feature vectors as eφ = (eq0
⊤, diag(eK)) ∈ R

2p and
lφ = (lq0

⊤, diag(lK)) ∈ R
2p) and then use the remaining

degrees of freedom of the imitator for other objectives (e.g.,

joint stabilisation through active damping [42]). The latter

may be incorporated into the imitator’s behaviour through the

nullspace term u0 in (18).

B. Imitation by Inverse Optimal Control

In this section, we consider the transfer of behaviour through

inverse optimal control. In particular, we wish to imitate the

demonstrator on the level of task goals as encoded by the

objective function optimised, i.e., drawing the correspondence

eJ ≡ lJ ∈ R (19)

where eJ and lJ are objective functions for the expert and

learner, respectively.

In this paper, we pursue an approach based on apprentice-

ship learning [17] whereby the demonstrator’s cost function is

approximated by a parametric model J̃(w) with the parame-

ters w estimated from the demonstration data. A schematic

overview is illustrated in Fig. 2 (outer path), showing the

processing steps, and the inputs required at each stage. Read-

ing from the top left, we first collect demonstrations from

an expert (e.g., a human) performing some task. This is fed

into a module for apprenticeship learning (top right) along

with information about the demonstrator’s dynamics. Based

on these, estimates w̃ of the parameters of the expert’s cost

function are made, that are then fed to the optimal control

(OC) module (bottom right) along with a model of the imitator

(robot) dynamics. The OC module finds the optimal strategy

for the imitator, with respect to the learnt cost function and

imitator dynamics, and this is finally sent to the robot for

execution. In the following, we briefly describe the details of

the AL and OC components.

1) Multiplicative Weights Apprenticeship Learning: In re-

cent years, numerous approaches to inverse optimal control

have been proposed [17], [29]–[31], [43]–[46]. The method

chosen here is called Multiplicative Weights Apprenticeship

Learning (MWAL), originally developed in [16]. The algo-

rithm is based on principles of adversarial game theory, and

as such has been shown to be a robust method for AL.

Furthermore, its efficiency makes it well-suited for learning

in the robotics domain, where state-action spaces are typically

high-dimensional and continuous.

The method works on data given as a set of J trajecto-

ries D = {(exj
0,

eu
j
0), · · · , (

ex
j
T ,

eu
j
T )}

J
j=0 of states ex and

actions eu recorded from the demonstrator. In the model-

based approach described here, the expert’s dynamics (1) are

assumed known, i.e., the function

eẋ = ef(ex, eu) ∈ R
m

is given, or may be approximated either through a system

identification or dynamics learning10 [8], [48].

The trajectories in D are assumed to be optimal under the

dynamics (1), with respect to a cost function of the form

eJ =

η
∑

i=1

wi
ehi(

ex(T ))+

I
∑

i=η+1

wi

∫ T

0

eli(
ex, eu, t) dt (20)

or, more compactly

eJ = w⊤ψ(ex, eu). (21)

Here, ehi(·),
eli(·) ∈ R are a set of basis functions repre-

senting terminal and running costs, respectively, i.e., ψ =

(eh1, · · · ,
ehη,

∫ T

0
elη+1dt, · · · ,

∫ T

0
elIdt)

⊤. These may be

made up of a set of bases for a generic function approximator

(e.g., Gaussian radial basis functions), or a set of salient fea-

tures of the task (e.g., energy or accuracy costs). The weights

w = (w1, . . . , wI)
⊤ are the parameters to be estimated, and it

is assumed (by renormalisation, if necessary) that wi > 0∀ i
and

∑

i wi = 1.

The idea behind MWAL is that the weights wi specifying

the importance of the different components of the objective

function (21) can be determined efficiently by comparing the

expected value of the observed behaviour D with that of a

10Note, however, that even in the absence of a model of ef , MWAL may
also be applied using model-free approaches. See, for example, [47].
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Algorithm 1 MWAL (modified from [16])

1: Given

• demonstration data D{(exj
0,

eu
j
0), · · · , (

ex
j
T ,

eu
j
T )}

J
j=0,

• expert dynamics model ef(ex, eu),
• cost bases ψ = (ψ1, · · · , ψI).

2: Initialise

3: • Let β =

(

1 +
√

2 log I
P

)−1

for some P ∈ Z
+.

4: • Estimate eṽ = (eṽ1, . . . ,
eṽI) from trajectories D

according to (22) and (23). Normalise
e
v̂ = eṽ/‖eṽ‖.

5: For p = 1, . . . ,P do

6: • Find trajectories pD that optimise J̃ =
∑

i
pw̃iψi

under dynamics eẋ = ef(ex, eu)
7: • Estimate pv̂i from trajectories pD for all i
8: • Let p+1w̃i =

pw̃iβ
−α(ev̂i−

pv̂i) for i = 1, · · · , I
9: • Re-normalise w̃

10: end for

11: Return w̃

second set of trajectories pD that are optimal with respect to

an estimate of (21) with weights w̃i. Specifically, since the

cost bases ehi(·),
eli(·) are given (as part of our model), we

can estimate the value of the trajectories in D and pD, with

respect to each of the bases separately. That is, for the ith
basis function

ṽi =
1

J

J
∑

j=0

∫ T

0

eli(
exj(t),

euj(t), t) dt (22)

if it is a running cost and

ṽi =
1

J

J
∑

j=0

ehi(
exj(T )) (23)

if it is a terminal cost. We can then compare the difference in

these value estimates to adjust the weights w̃i, by scaling up

those for which the value of the expert trajectories is lower

(indicating a stronger preference to minimise these compo-

nents of the cost), and scaling down those for which the values

are higher (indicating the opposite). In successive iterations,

MWAL alternates between solving the forward OC problem

under the current estimate of w̃ to find trajectories pD, and

then updating the estimate based on the difference in estimated

values eṽ = (eṽ1, . . . ,
eṽI)D and pṽ = (pṽ1, . . . ,

pṽI)pD.

This proceeds until convergence to a set of weights that,

when optimised, reproduces the demonstrated behaviour D.

MWAL is summarised in Algorithm 1, and full details can be

found in11 [16]. For the forward optimisation step (Step 6 of

Algorithm 1) the Iterative Local Quadratic Gaussian (ILQG)

algorithm [49] is used, details of which are described below.

11Please note that, in Algorithm 1 we have made two adjustments to the
formulation described in [16]. These are (i) introduction of a learning rate
parameter α, and (ii) normalisation of the vectors ev̂ = eṽ/‖eṽ‖ and pv̂ =
pṽ/‖eṽ‖. While these adjustments do not affect the convergence properties of
the algorithm (effectively, they correspond to a scaling of β), we found them
convenient for adjusting the speed of learning while maintaining robustness.

2) Transferring the Learnt Objective to the Imitator:

Having completed the AL stage to find a model of the

demonstrator’s objectives, our next task is to find an appro-

priate behaviour for the imitator. For this, we use local OC

to optimise an equivalent cost function to that used by the

demonstrator. Specifically, we parametrise the learner’s cost

function as a similar weighted combination of terms

lJ =

η
∑

i=1

w̃i
lhi(

lx(T )) +

I
∑

i=η+1

w̃i

∫ T

0

lli(
lx, lu, t) dt. (24)

Here, lhi(·),
lli(·) ∈ R are a set of basis functions that

correspond to those of the expert (21), and w̃i are the weights

learnt by MWAL in the previous step. At this point a design

decision must be made as to the appropriate correspondence

between the learner’s cost bases lhi(·),
lli(·) and those of

the expert ehi(·),
eli(·). In general, this will depend on the

specific embodiments (dynamics and actuators) of the two

plants. However, as noted in Sec. II-C in practical settings this

is relatively easily resolved (and at worst, is no more difficult

than specifying the correspondence in features eφ(·), lφ(·) for

feature-based imitation). For example, different terms might

include the total work done by the two plants, or accuracy

(e.g., in terms of the end-effector positions of the two plants).

Further examples are given in the experiments (Sec. IV).

Having defined correspondence in terms of these bases,

and given the learnt weights w̃, all that remains is to solve

the optimal control problem defined by (24) and (2). Here,

since we are interested in high-dimensional, continuous robot

control problems, we use an efficient local OC method. In the

next section, we briefly describe the details.

3) Forward Optimal Control with ILQG: In our framework,

solving the forward optimal control problem enters at two

points. First, in MWAL, the optimal trajectories pD with

respect to the estimated cost function are sought at every

iteration for updating the weights. Second, as discussed above,

given the learnt cost function, we seek the optimal movement

for the imitator plant. In both cases, we need a technique

that (i) can cope with continuous, non-linear systems and (ii)

is efficient (since it is called multiple times during MWAL).

There are numerous recent forward optimal control algorithms

available for this [50]–[52]. The algorithm employed here is

ILQG [49] since we found it to be an efficient, approximate

model-based solver of optimal control problems.

Briefly, ILQG works by making a local linear-quadratic-

Gaussian (LQG) approximation to optimal control problems

and iteratively improving its solution around a nominal tra-

jectory. It starts with a time-discretised initial guess of a

control sequence ūj of length T . At each iteration j this is

used to find the corresponding state sequence x̄j under the

deterministic forward dynamics f(·) via numerical integration.

Next, the dynamics are linearly approximated with a Taylor

expansion, and, similarly, a quadratic approximation of the

cost function around x̄
j
t and ū

j
t is made. Both approximations

are formulated as deviations δxj
t = x

j
t−x̄

j
t and δuj

t = u
j
t−ū

j
t

from the current trajectory and therefore form the local LQG

problem. The latter can be solved efficiently via a modified

Ricatti-like set of equations.
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With the solution to these equations, a correction to the

control signal δūj is found, which is used to improve the

control sequence for the next iteration: ūj+1(t) = ūj(t)+δūj .

Finally, ūj+1(t) is applied to the system dynamics and the new

total cost along the trajectory is computed. The algorithm stops

once the cost ceases to decrease significantly (∆J ≈ 0). After

convergence, ILQG returns a control sequence ū, gains L̄ and

a state sequence x̄ which represents the optimal trajectory. In

our framework, these trajectories are then either collected as

sample data for Step 6 of the MWAL algorithm, or used for

optimal control of the imitator plant, using the gains to provide

local optimal feedback.

IV. EVALUATIONS

In this section, we evaluate the different approaches to im-

itation in several impedance control scenarios. In the first

investigation, we conduct a simulation study into behaviour

transfer from a model of the human wrist, to two robotic VIAs

with heterogeneous dynamics. We then report an experiment

in which feature-based imitation is used for online behaviour

transfer in the context of human teleoperation of a non-

biomorphic robotic device. Finally, we report experiments

in which task-based imitation is used to learn from human

demonstrations for behaviour transfer to the Edinburgh SEA

[53].

A. Transferring Impedance behaviour on a Single Joint

The goal of the first investigation, is to compare the three

approaches for transferring human impedance behaviour to

heterogeneous robotic systems. As a case study for this,

we look at the problem of transferring a ‘hitting’ behaviour

onto two different robotic VIAs (as illustrated in Fig. 4) in

simulation.

As demonstrator, a biomechanical model of the human wrist

is used. The wrist model consists of a single joint, actuated by

two antagonistic muscles with Kelvin-Voight muscle dynamics

[6] (see Fig. 4, left). Its equation of motion is

Ieq̈ + beq̇ = eτ(eq, eq̇, eu) (25)

where I = 4.5× 10−3 kgm2 is the moment of inertia, b =
5×10−3Nmsrad−1 is the damping, and the joint torque is

given by

eτ(eq, eq̇, eu) = −A⊤T(eq, eq̇, eu), (26)

where the control inputs eu ∈ R
2 represent muscle activations,

A = (0.025,−0.025)⊤m are moment arms12, and T ∈ R
2

are the muscle tensions

T(eq, eq̇, eu) = Km(eu)
(

lr(
eu)− l(eq)

)

−Bm(eu)l̇(eq̇).
(27)

Here, l(eq) = l(q=0)−Aeq ∈ R
2 are muscle lengths, l(q=0) ∈

R
2 is the muscle length at eq = 0,

Km(eu) = diag(k01+ gk
eu) ∈ R

2×2, (28)

12In general, the moment arms around different joints (e.g., complex joints
such as the shoulder) may depend on additional variables such as the joint
angle q [18]. However here, for simplicity, we assume the moment arms to
be constant for this relatively simple joint [6].

q
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Fig. 4. Transfer from human wrist model (left) to the Edinburgh SEA (top
right) and the MACCEPA (bottom right).

is the muscle stiffness,

Bm(eu) = diag(b01+ gb
eu) ∈ R

2×2 (29)

the muscle damping, and lr(
eu) = l0 + diag(gr)

eu ∈ R
2 is

the muscle rest length. The elasticity coefficients gk=1459.44
and k0 = 121.62 are given from the muscle model [6], l0 is

set such that l(q=0) − l0= 0, and gr = (0.05, 0.05)⊤. In this

evaluation, the viscosity coefficients are also set to zero13 (i.e.,

gb=0, b0=0).

Combining all of the above, the expert’s dynamics can be

written as
ef(ex, eu) = (eq̇, (eτ − b)/I)⊤. (30)

Using (26)-(29), the joint equilibrium position and stiffness

can be computed through (14) and (15) as

eq0(
eu) = (A⊤KmA)−1A⊤Km(l(q=0) − l0 + diag(gr)

eu))
(31)

and
ek(eu) = A⊤KmA. (32)

The task is to hit a target as hard as possible. For this, the

expert uses the cost function

eJ = w1(
eq(T )− q∗)2 − w2

eq̇(T ) + w3

∫ T

0

eτ2 dt

= w1
eh1 + w2

eh2 + w3

∫ T

0

el3 dt (33)

where q∗=30◦ is the target position in joint space and eτ is the

torque applied around the joint (as given by (26)). The three

terms of (33) respectively correspond to (i) minimising the

distance to the target (ball) at the time of impact (T = 0.18 s),
(ii) maximising the angular velocity at impact, and (iii) min-

imising effort during movement. The trade-off between these

objectives is determined by the weights w = (w1, w2, w3)
⊤ =

(0.9970, 0.0025, 0.0005)⊤.

To generate demonstrations, ILQG is used to plan a set of

trajectories optimising (33) under the dynamics (30). Specif-

ically, a set of J = 20 such trajectories, from a uniform-

random distribution of start states eq(t = 0) = U [−20, 0]◦

are used. An example trajectory is illustrated in the leftmost

column of Fig. 5, where we plot the joint position, stiffness,

torque and velocity over time.

As imitators, simulations of (i) the Edinburgh SEA

(Fig. 2(c)) and (ii) the MACCEPA (Fig. 2(b)) are used,

13Note that, to facilitate comparison of the imitated robot behaviour
with that of the demonstrator, in this experiment we remove the command
dependent muscle damping from the wrist model, so the only damping comes
from the fixed joint damping term b. In Sec. IV-C the full muscle model is
used, including command-dependent damping.
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with dynamics as described in Sec. II-B. The former is a

biomimetic plant, with close (homomorphic) correspondence

to the demonstrator (both have antagonistic actuation where

co-activation of the commands u leads to increased stiffness).

The MACCEPA is non-biomorphic (i.e., geometrically dis-

similar), but biomimetic in the sense that it also has variable

stiffness (albeit controlled with a different mechanism). To en-

able fair comparison of demonstrated and imitated behaviour,

the parameters of the robotic plants are optimised as far

as possible to have similar characteristics to those of the

demonstrator: the dynamics parameters (e.g., inertia, damping,

friction constants) of the robots are made identical to those of

the human, and the actuator parameters (e.g., spring constants,

geometric parameters) are optimised so that the human and

robots have similar capabilities in terms of the approximate

torque, equilibrium position and stiffness ranges. Note that,

in reality, robotic actuators are often designed in a similar

way, i.e., to try to match the capabilities and characteristics of

humans. However, note also that the correspondence in these

systems is not exact since the actuation relations ((26), (8) and

(7)) are different.

To compare the different methods, we apply

1) direct imitation by feeding the (re-normalised) expert

action sequence {eu0, · · · ,
euT } as commands to the

robot. Correspondence is defined as
e
û ≡ l

û (where
e
û, lû are the commands normalised by their admissible

range)14.

2) feature-based imitation, tracking the computed equilib-

rium position and stiffness of the expert on the robots (as

described in Sec. III-A). Here, correspondence is defined

as (eq̂0,
e
k̂)⊤ ≡ (lq̂0,

l
k̂)⊤ (where, similarly, φ̂ denotes

feature φ normalised by its admissible range).

3) apprenticeship learning, as described in Sec. III-B (us-

ing the jth trajectory {(ex0,
eu0), · · · , (

exT ,
euT )}j as

training data D, the expert’s dynamics ef(·) as de-

scribed by (30), with α = −300 and P = 150). Here,

correspondence is drawn on the three terms of (33),

i.e., (eh1,
eh2,

el3)
⊤ ≡ (lh1,

lh2,
ll3)

⊤ where lh1 =

(lq(T )− q∗)2, lh2 = −lq̇(T ) and ll3 =
∫ T

0
lτ2 dt.

The imitation approaches are applied to each of the J
demonstrations and evaluated by computing the average cost

accumulated in each trajectory (according to the true expert

cost (33)). The results are summarised in Table I, and examples

of the imitated behaviour are plotted in Fig. 5.

Looking at the results for the Edinburgh SEA, we see that

feature-based and direct imitation are both able to reproduce

the hitting task. This can be confirmed by looking at the

reproduced behaviour (Fig. 5), where we see (i) the hitting

target (◦) is reached accurately and (ii) peak velocity occurs

at the end of the movement. The same is true for feature-

based imitation on the MACCEPA, despite its totally non-

biomorphic design. Accurate tracking of the joint stiffness and

equilibrium position is achieved, albeit with a very different

command profile (ref. Fig. 6). These results indicate that, at

14Note that since there is no direct correspondence between the human
model and the MACCEPA, direct imitation is only performed with the
Edinburgh SEA.
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Direct Feature Inv. Opt.

Swinger −0.014±0.005 −0.017±0.007 −0.027±0.004
MACCEPA - −0.017±0.006 −0.066±0.003

TABLE I
AVERAGE COST

lJ OF IMITATED TRAJECTORIES FROM DIFFERENT START

STATES UNDER DIFFERENT IMITATION STRATEGIES. SHOWN ARE

(MEAN±S.D.) COST IMITATING TRAJECTORIES FROM 50 RANDOM START

STATES. AVERAGE COST INCURRED BY EXPERT DURING

DEMONSTRATIONS: eJ = −0.026± 0.002.

minimum, (i) for a biomimetic hardware design, feature-based

imitation is sufficient to reproduce the task, and (ii) if the plant

is additionally biomorphic direct imitation is sufficient.

However, looking at the task performance (average cost), it

is evident that neither of these approaches reach comparable

performance to that of the demonstrator (see Table I). This is

unsurprising since, due to differences in the dynamics, the

optimal hitting strategy for the demonstrator is suboptimal

for the imitators. If we take the inverse optimal imitation

approach, on the other hand, the gap in performance is closed.

For the Edinburgh SEA, inverse optimal imitation achieves

similar performance to that of the demonstrator by adjusting

the hitting strategy (e.g., compare differences in stiffness and

equilibrium profiles in Fig. 5). For the MACCEPA, inverse

optimal imitation significantly changes the hitting strategy so

that performance even exceeds that of the demonstrator. This

is possible since inverse optimal imitation explicitly takes into

account the imitator’s dynamics which, for the MACCEPA, are

apparently better suited to the hitting task than the antagonistic
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plants.

B. Tracking Human Impedance Profiles

While feature-based approaches evidently do not always pro-

vide optimal behaviour with respect to task goals, this does

not rule out their use entirely. In particular, the simplic-

ity and computational efficiency of feature-based imitation

make it appealing for online, interactive transfer, where the

demonstrator’s expertise can help to compensate for errors

(see Sec. II-B). In our next experiment, we investigate the

transfer of impedance (equilibrium position and stiffness) in

this setting, through the approach described in Sec. III-A. The

experimental setup is as follows.

Data, in the form of muscle activations, are collected

from a human operator demonstrating simple movements and

variations of impedance. More specifically, a pair of EMG

sensors (surface EMG electrodes, Otto Bock), affixed to the

wrist extensor and flexor muscles of the forearm (see Fig. 7),

measure muscle activation at a 500Hz sampling rate. The raw

signals are (i) filtered through a band pass filter to remove

the lowest and highest frequency components and smooth

out noise, and (ii) normalised, so that the activation at rest

corresponded to eu = 0 and maximum voluntary contraction

(m.v.c.) corresponds to eu = 1, respectively.

For simplicity, the same muscle model as described in

the preceding section is used to predict the demonstrator’s

impedance. Note that, this model provides a minimalistic

model of the muscle dynamics in terms of the activations, and

has been widely used in the literature to predict impedance

behaviour of humans [6], [27], [54].

The model is adjusted to the demonstrator through a combi-

nation of direct measurement, and/or estimation of parameters

according to existing biomechanical models. In particular,

the mass of the free-moving link (i.e., hand) is estimated as

m = 400g (i.e., the average adult male hand mass [55], [56],

the muscle stiffness and damping properties (k0, gk, b0, gb) are

taken from [6] (which in turn are based on earlier measure-

ments of joint stiffness in humans [57]), the muscle pre-tension

(i.e., l(q=0) − l0) is assumed zero at the rest posture, and

the moment arms (A in (27)) are measured directly from the

demonstrator’s wrist. The only remaining free parameter is the

muscle extension coefficient gr, which is manually adjusted to

ensure that the (kinematic) response of the model matched that

of the demonstrator when presented with the same inputs (i.e.,

when simulating the wrist using the demonstrator’s recorded

muscle activations as control inputs to the model).

The feature-based approach (as detailed in Sec. III-A) is

applied, using (31) and (32) to estimate the demonstrator’s

impedance from the recorded muscle activations. The (esti-

mated) impedance of the demonstrator is then transferred onto

the robotic imitator. For the latter, the MACCEPA [2] is used

as an illustrative example of a non-biomorphic robotic actuator.

To illustrate performance, imitation is performed for 25 s of

operation in which the demonstration is broken into distinct

phases: (i) alternating left-right hand movement with muscles

relaxed, (ii) alternation between low and high stiffness at

q = 0 (sequentially relaxing and co-contracting muscles) and,

(iii) alternating left-right hand movement with muscles tensed

(i.e., high activation/co-contraction). Representative results are

reported in Fig. 7, where the first and last conditions are

indicated by the shaded regions in the plots.

As can be seen, during phase (i), the EMG signals indicate

alternating activation between the two muscles (Fig. 7(a)),

resulting in a left-right movement of the wrist equilibrium

position (Fig. 7(c)). The robot tracks this movement with

considerable accuracy, albeit with a slight time delay, which

we attribute to the limited speed of the servos used in the

device. During phase (ii), the hand remains at the rest position

q=0 and the operator co-contracts three times. As can be seen,

this causes three spikes in the stiffness profile (Fig. 7(d)),

which are also accurately tracked. It is interesting to note

in the plot of the commands to the MACCEPA (Fig. 7(b)),

the controller primarily relies on the second (pre-tensioning)

motor for this, since there is a linear dependence between

u2 and stiffness at equilibrium. Finally, during phase (iii)

we again see good tracking of the equilibrium position with

increased overall stiffness, despite the relatively high noise in

the recorded EMG.

Finally, in all three phases we note that, for each spike

in muscle activations, there is a corresponding spike in the

stiffness (Fig. 7(d)). This is in accordance with the accepted

view in biomechanics that stiffness increases with muscle

activation even outside isometric conditions [35]. Here, this

characteristic of human impedance behaviour is reproduced

on the robotic actuator.

C. Inverse Optimal Control from Human Data

In this final experiment, we apply the inverse optimal control

approach to learning from a set of human demonstrations

with the goal of transferring behaviour to the Edinburgh SEA

(Fig. 2(c)). For ease of comparison with the simulation studies

(Sec. IV-A), we study the same hitting task, in which the

demonstrator attempts to hit a target (ball) as hard as possible

while minimising effort. The goal is to learn a model of the

human’s objective function in order to transfer it to the robotic

hardware. The experimental setup is as follows.

For collecting demonstrations, the measurement rig shown

in Fig. 8 is used. The rig consists of a hinge joint with a

paddle attached, that is aligned to a ball suspended from a

string. The rig has a handle which the demonstrator grasps to

rotate the joint and hit the ball with the paddle. A magnetic

motion sensor (Flock of Birds, Ascension Tech. Corp.) is

used to measure the angle of the demonstrator’s wrist (hinge

angle) at a 500Hz sampling rate. Simultaneously, surface

EMG sensors (as described in Sec. IV-B), placed on the

antagonistic muscles of the demonstrator’s forearm measure

the muscle activations of the demonstrator at the same 500Hz

rate. With this setup, trajectories of the human through state-

action space are recorded, where the state is modelled as
ex = (eq, eq̇) ∈ R

2, i.e., the instantaneous wrist angle and
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Fig. 8. Apparatus for recording human demonstrations of the hitting task.

velocity and actions are modelled as the (feed-forward15)

muscle activations eu ∈ R
2 as measured by the normalised

EMG.

Data is collected from a human attempting to hit the ball

(suspended at a point corresponding to wrist angle q∗ = 34.0◦)

as hard as possible with the paddle, from a series of start

positions, given a fixed time duration in which to complete the

movement. Specifically, 3 trajectories are recorded from each

of 5 start positions q = {10, 0,−10,−20,−30}◦, with a fixed

duration of 0.2 s. To reduce the effects of noise and variability

in the execution of the trajectories, the data are preprocessed

by (i) smoothing the signals with a Butterworth filter and (ii)

temporal alignment of trajectories around the time of impact

with the ball. The trajectories from each of the start states are

then averaged, and the resultant J = 5 mean trajectories used

as training data for the learning.

Since our inverse optimal control approach requires a model

of the expert’s forward dynamics, the demonstrator’s wrist

dynamics are approximated using the same two-muscle wrist

model as described the preceding two sections, (i.e., with

dynamics as computed from (25)-(29)), with the parameters

optimised with respect to the normalised error between the

recorded trajectories D = {(exj
0,

eu
j
0), · · · , (

ex
j
T ,

eu
j
T )}

J
j=0

15Note that, while muscle activations recorded through EMG may also
contain contributions from feedback controllers in general, in the short
duration, explosive movement considered here, such feedback contributions
may be assumed to be negligible in the face of the inherent feedback delays
of the human neuromuscular system [58].

and those predicted by integrating the model under the same

command sequence D̃ = {( ˜ex0
j
, euj

0), · · · , ( ˜exT
j
, euj

T )}
J
j=0.

For estimating the human objective, the cost function

model (33) is used, with the the best fit to the coefficients

w = (w1, w2, w3)
⊤ sought through MWAL. Note that, in

this experiment, as eτ cannot be directly measured during

movement, we use the optimised parametric model to estimate

the torques for the third term in (33) using (26). The model is

trained on the demonstrated trajectories, with α=300 for 20
iterations. Note that, since the parameters of the true human

cost function (i.e., w) are unknown, we cannot explicitly

calculate the error in the weight estimate. Instead, convergence

can measured by examining the magnitude of the weight

update (i.e., ∆w̃ in Algorithm 1). The results reported below

are for the convergent estimate.

For evaluation, we compare the behaviour of the robot

when imitating behaviour through (i) the inverse optimal

control approach and, (ii) the direct imitation approach. For

the former, ILQG is used to find the optimal controller for

the Edinburgh SEA with respect to the cost function (i.e.,

(33), using the learnt weights). For the latter, the human

EMG signals are scaled according to the maximum admissible

commanded angle of the robot motors, and then fed directly

as commands to the robot, i.e., drawing the correspondence
e
û ≡ l

û where
e
û and

l
û are the commands normalised by

the admissible ranges for the human and robot, respectively.

Note also that, since the response of the robot’s servomotors

is significantly lower than than that of the human (in terms

of control frequency and other delays), control of the robot

is scaled in time so that the command sequences have 0.5 s
duration for both of the approaches compared.

The results are shown in Fig. 9 for an example trajectory

starting at q = 0◦. Looking at the joint angle and velocity

profiles, we can see that the strategy used by the human is

to first move the wrist away from the target before rapidly

moving it in the positive direction toward the target. A similar

movement occurs on the robot when using both the direct and

the inverse-optimal approaches. However, comparing these, we

see that for the direct approach, the amplitude of the movement

is reduced and the velocity at the time of impact is much

smaller. In contrast, the inverse optimal approach optimises the

command sequence for the robot dynamics, resulting in earlier
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onset time for the movement, and a much larger movement of

the motors (see Fig. 9). Consequently, it achieves a higher

hitting velocity (with the ball travelling a greater distance)

when executed on the robotic hardware. This can be verified

in the accompanying video.

V. DISCUSSION

In this paper, a study of competing methods for transferring

behaviour from humans to robots in the context of variable

impedance control has been presented. We have illustrated

the difficulties that this problem poses given the inescapable

heterogeneity between the human musculoskeletal system and

robotic systems, and analysed the relative pros and cons of

different approaches that may be employed to overcome these

difficulties.

Approaches based on (i) direct transfer, (ii) feature-based

tracking, and (iii) transfer based on inverse optimal control

have been compared. The first, we may rule out in almost

all cases unless the robotic system is highly biomimetic.

The second two avoid this restriction, but, as shown in our

experiments, are best applied in different settings.

Our findings indicate that feature-based tracking can be

effective in many settings where online, interactive control of

the robotic device is required. This is the case, for example, in

the teleoperation domain where behaviour is transferred (in a

supervised way) from a human operator. We have presented a

model-based method for control of variable stiffness actuators

using constraints on equilibrium positions and stiffness in

task and joint space. The proposed approach is generic by

its formulation, and can be applied to many different designs

of variable stiffness devices for accurate tracking of desired

stiffness and equilibrium position profiles. As shown in our

experiments, it is fast to compute and can be used with ease for

online behaviour transfer, such as in the teleoperation setting

explored here.

Outside such domains, however, our investigations show

that transfer based on inverse optimal control can be more ef-

fective in dealing with heterogeneous dynamics and actuation

between plants. Such an approach is effective for task-oriented

behaviour transfer, where we rather avoid prescribing specific

features of behaviour and instead require our system to derive

its own strategies to meet task goals. We have presented a

framework based on a two-step approach to learning, where

in the first step, a parametric model of the objective function

underlying observed behaviour is learnt using apprenticeship

learning. This enables us to find a task-based representation

of the data in terms of the objectives (cost minimised), and

then apply local optimal control techniques to find a similarly

optimal behaviour for the imitator, taking into account the dif-

ferences in dynamics and actuation. Our experiments show the

effectiveness of this approach, where the proposed approach

actually exploits the dynamics characteristics of the imitator in

order to out-perform the feature-based imitation approaches,

and in some cases even surpass the task-performance of the

expert.

A number of directions for future research remain. One

issue to be investigated is that of scaling the different ap-

proaches to more complex tasks and plants. For example, with

regard to feature-based imitation of impedance, it remains an

open research issue as to the accuracy with which human

impedance can be estimated, and thereby tracked, during

complex, multi-joint movements, e.g., during full body motion.

Methods exploiting impedance observer techniques [59]–[61]

and novel measurement devices [62], [63] may be exploited

in future work. With regard to the inverse optimal approach,

related issues of scalability exist in terms of the selection

of cost basis functions. One such issue is the problem of

finding appropriate cost bases to describe more complex task

objectives. With this in mind, however, it should be noted

that increased complexity of the plant dynamics does not

necessarily equate to an increase in the complexity of the

cost function. For example, for the task of hitting, even if the

task is to be performed by a system with complex, non-linear

dynamics (such as full arm punching [15]), the indicators of

task success (i.e., the cost bases) nominally remain the same
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(e.g., accuracy, impact velocity, effort), albeit their functional

form may be more complex to compute and the (forward)

optimisation may become more difficult.

Another issue warranting further investigation, is that of the

selection and design of cost function models for the inverse

optimal approach. At present, the selection of appropriate

terms in the cost function is left open to the designer of the

learning system (ref. Sec. II-C): (S)he must make appropriate

consideration of the important components of the task and the

correspondence between demonstrator and imitator. While this

was feasible in the present study, it remains an open issue as

to how to perform this selection in general.

In the hitting experiment presented in Sec. IV-C, for in-

stance, a cost function was chosen that is intuitively suitable

for the task. It is not known whether this cost function can

represent the demonstrator’s true cost function without error.

Crucially, however, the cost function chosen here is flexible

enough that imitation could have failed: if the parameters

had been incorrectly learnt, the task would not have been

reproduced. For example, if the learning outcome had been

a high weight on the velocity term and a low weight on the

accuracy term, then the resultant behaviour would have been a

’powerless’ or ’missed’ hit (with high velocity toward the end

of the movement, but poor accuracy, the robot would either

hit the ball prematurely, or not at all16). This was not seen in

the experiments reported here (the hitting task was correctly

reproduced), lending support to the chosen cost model.

In general, however (and especially with more complex

problems or greater heterogeneity in the dynamics), this issue

of selection of the cost model will be less straightforward. An

important direction of future work, therefore, is to look for

robust ways of making this selection, and to investigate the

sensitivity of the choice of model with respect to (i) the differ-

ences in dynamics between the demonstrator and imitator and

(ii) the set of task outcomes afforded by optimising behaviour

within the parameter space of that model. Nevertheless, a

contribution of the present paper, is to illustrate that, under the

right conditions, the inverse optimal approach can be a power-

ful alternative to the direct and feature-based approaches, when

dealing with behaviour transfer across highly heterogeneous

systems.
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