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Abstract

We establish pathwise duality using simple predictable trading strategies for the robust hedging problem associ-
ated with a barrier option whose payoff depends on the terminal level and the infimum of a càdlàg strictly positive
stock price process, given tradeable European options at all strikes at a single maturity. The result allows for a
significant dimension reduction in the computation of the superhedging cost, via an alternate lower-dimensional
formulation of the primal problem as a convex optimization problem, which is qualitatively similar to the duality
which was formally sketched using linear programming arguments in Duembgen&Rogers[DR14] for the case where
we only consider continuous sample paths. The proof exploits a simplification of a classical result by Rogers[Rog93]
which characterizes the attainable joint laws for the supremum and the drawdown of a uniformly integrable mar-
tingale (not necessarily continuous), combined with classical convex duality results from Rockefellar[Roc74] using
paired spaces with compatible locally convex topologies and the Hahn-Banach theorem. We later adapt this result
to include additional tradeable One-Touch options using the Kertz-Rösler[KR90] condition. We also compute the
superhedging cost when in the more realistic situation where there is only finite tradeable European options; for
this case we obtain the full duality in the sense of quantile hedging as in Soner[Son15]), where the superhedge works
with probability 1 − ε where ε can be arbitrarily small), and we obtain an upper bound for the true pathwise
superhedging cost. In section 5, we extend our analysis to include time-dependent barrier options using martingale
coupling arguments, where we now have tradeable European options at both maturities at all strikes and tradeable
forward starting options at all strikes. This set up is designed to approximate the more realistic situation where we
have a finite number of tradeable Europeans at both maturities plus a finite number of tradeable forward starting
options.1

1 Introduction

For a martingale M with M0 = 0, if µ denotes the law of MT and µ̄ the law of M̄T where M̄t = sup0≤s≤tMs, then a
well known result of Blackwell&Dubins[BD63] and Kertz&Rösler[KR90] asserts that

µ ∨ δ{0} ≼ µ̄ ≼ µ∗ (1)

where µ∨δ{0} denotes the law of max(X, 0) whereX ∼ µ, and ≼ denotes the stochastic ordering and µ∗ is the the Hardy-
Littlewood transform of µ (see Theorem 2.7 in [Hob98] for details). The Hardy-Littlewood transform of µ is the law of
Bµ(X) if X ∼ µ, where Bµ(x) :=

∫
(x,∞)

yµ(dy)/µ((x,∞)) denotes the Barycentre function, which is also the law of the

terminal maximum for the Azéma-Yor Skorokhod embedding τAY with target law µ (τAY := inf{t : Wt ≤ B−1
µ (W̄t)}

for a Brownian motion W ), which (after a suitable time-change) maximizes the law of the supremum for a continuous
martingale X subject to X∞ ∼ µ. Hence the upper bound in (1) is not made sharper if we restrict attention to
continuous martingales. [KR90] also prove a converse result, namely that if µ is a probability measure on R with∫
|x|µ(dx) <∞ and µ̄ is another probability measure which satisfies (1), then there exists a martingaleM withMT ∼ µ

and M̄T ∼ µ̄. The lower bound in (1) arises from a trivial 1-step “model” (Xt)0≤t≤T with Xt = 0 for t < T and XT ∼ µ.
If we restrict ourselves to continuous martingales, then this trivial bound is replaced by the non-trivial bound associated
with the Perkins[Per86] Skorokhod embedding τP := inf{t : Wt ∈ (−γ+(W̄t), γ−(−W t))} for some functions γ+, γ−
depending on µ, and for this stopping time we have P(WτP ≥ b) = µ[b,∞)+infK≤b

1
b−K [

∫
((x−b)+−(K−x)+)dµ], also

known as the Minimax-Maximin embedding because it not only minimizes the law of the maximum but also maximizes
the law of the minimum (see Cox[Cox04] and Hobson[Hob10] for more on this). Cox&Obloj[CO15] develop these ideas

1The author would like to thank Professors Charles Akemann and Teemu Pennanen for useful discussions.
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further, and use pathwise inequalities to derive upper and lower bounds on the joint exit probabilities of a continuous
U.I. martingale given its terminal law, and by constructing new and explicit solutions to the Skorokhod embedding
problem, they show these bounds are sharp.

For a probability measure µ on [0,∞)× [0,∞), the classical article of [Rog93] gives four conditions on µ which (if
all four hold) provides a necessary and sufficient condition for µ to be the joint law of the supremum and the drawdown
for some càdlàg uniformly integrable martingale. If we restrict attention to continuous uniformly integrable (U.I.)
martingales, the result still holds with a simple modification, namely that the non-trivial Rogers condition becomes an
equality. [Rog93] also proves that if X is an a.s. convergent continuous local martingale, then X is a U.I. martingale if
and only if (i) E(|X|∞) < ∞, (ii) E(X∞) = 0 and (iii) lima→∞ aP(X̄t > a) = 0 (see Azéma,Gundy&Yor[AGY80] and
Elworthy,Li&Yor[ELY97] for further results of this nature).

In more recent work, Duembgen&Rogers[DR14] give a similar characterization for the joint law of the terminal
level, the minimum, the maximum, and the direction of the final excursion for a simple symmetric random walk
stopped at some almost-surely finite stopping time; from this they compute the minimal superhedging cost (and the
corresponding superhedge) for an exotic option whose payoff depends only on these four quantities, as the solution to
a linear programming problem.

Less work has been done on robust hedging for discontinuous price paths (for continuous paths, see e.g. [BCH16],
[GTT16],[GTT17],[GTT16b],[KTT17] et al.) because in this setting we can no longer express the price process as a
time-changed Brownian motion and appeal to the extensive literature on Skorokhod embeddings for Brownian motion.
[GTT17] consider the robust hedging problem on the Skorokhod space of càdlàg paths; the set of martingale measures
M(µ) consistent with a finite set of marginals µ here is not tight with respect to the standard topologies, which makes
it difficult to adapt known duality results in discrete-time settings to the continuous time case. Dolinsky&Soner[DS15]
circumvent this issue by using a limiting argument with a discretization of the price paths in an n-dimensional setting,
and imposing that the superhedge work pathwise and only allowing trading strategies with bounded variation so we can
define the stochastic integral pathwise using the Stieltjes integration-by-parts formula. [GTT17] derive a quasi-sure
duality result for càdlàg paths, using the S-topology on M(µ) introduced in Jakubowski[Jak97], which is induced by
the notion of S-convergence, and we can then define S∗-convergence as the convergence induced by the S-topology.
Rather than use the usual weak topology on the space of probability measures, they use another notion of convergence,
which allows for a variant of the standard Prokhorov theorem to hold under S-tightness, i.e. where tightness yields
sequential compactness (by S-tightness they are just replacing the usual notion of tightness using compact sets with a
set which is compact under the S-topology).

In this note, we simplify the Rogers result for the càdlàg case, showing that one of Rogers’ conditions is already
implied by the other conditions. We then give the corresponding result for µ to be the joint law of the infimum and
the drawup for some càdlàg U.I. martingale. Using this simplification, we then establish a pathwise duality result for
the robust hedging problem associated with a general type of barrier option on a càdlàg stock price path, subject to
tradeable European options at all strikes at a single maturity. By “pathwise” we mean the superhedge works for any
càdlàg stock price process (not necessarily a semi-martingale under some probability measure) and thus also works
for e.g. rough paths. We show that the primal problem now has an alternate lower-dimensional formulation; this
approach allows us to reduce the problem of computing the superhedging cost from a convex minimization problem
over martingale measures on the infinite-dimensional space of càdlàg paths to a convex maximization problem over
probability measures on a convex subset of (0,∞) × (0,∞) × (0,∞) × (0,∞). We then modify this result to include
the case when we also have tradeable One-Touch options at all barrier levels, for which the range of admissible prices
is given by the inequality (1) and the Kertz&Rösler result described above. We later extend these results to deal with
so-called time window barrier options where the barrier can change level at an intermediate maturity, given tradeable
European options at both maturities and tradeable forward-starting options. For this problem we again establish
pathwise duality using a conditional version of the simplified Rogers result.

1.1 Notation

• Xx0 := (0, x0]× (0,∞).

• Ω = D+
x0
[0, T ] is the space of strictly positive càdlàg paths on [0, T ] with X0 = x0 > 0.

• X = (Xt)0≤t≤T is the canonical process given by Xt(ω) = ωt for all ω ∈ Ω and Ft is the the right continuous
filtration Ft := ∩s>tFX

s .

• A probability measure Q on (Ω,FT ) is a martingale measure if the canonical process (Xt)t≥0 is martingale under
Q.

• M+ is the collection of all probability measures Q on (D+
x0
[0, T ],FT ) such that the canonical process Xt(ω) = ωt

is an Ft-martingale.
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• M+(µX) is the set of elements Q ∈ M+ for which X ∼ µX under Q.

• M+(µ1, µ2, µ3) ⊂ M+ is the elements of M+ such that XT1 ∼ µ1, XT2 ∼ µ2 and XT2/XT1 ∼ µ3.

• For a general measurable space (Ω̃, F̃), we let M(Ω̃) denote the space of signed Radon measures on Ω̃, M+(Ω)
the non-negative measures in M(Ω).

• M+
f ((0, x0)) is the convex cone of finite non-negative measures on (0,∞) of the form ν(da) =

∑n
i=1 αiδ{ai}(da)

with αi > 0, ai ∈ [0, x0), i.e. a finite positive linear combination of dirac masses.

• H is the space of all Ft-simple predictable processes.

• C+
c (Xx0) is the space of non-negative functions on Xx0 with compact support.

• X1 = (0, 1]× [0,∞).

• X̃ = (0, x0]× (0,∞)× (0, 1]× [0,∞) = Xx0 ×X1.

• E = {g : Xx0 7→ R, g(x, y) =
∫
(x+ y − a) 1x<a ν(da) , ν ∈ M+

f ((0, x0))}.

2 The class of admissible laws for the supremum and the drawdown of
a càdlàg martingale - simplifying the Rogers condition

We let Xx0 := (0, x0] × (0,∞) throughout. We now recall the classical result from Theorem 2.2 in [Rog93], on which
this article is based:

Proposition 2.1 Fix T > 0. A probability measure µ on [0,∞)× [0,∞) is the joint law of (ST , YT := ST −XT ) for
some càdlàg martingale (Xt)t≥0 (where St := sup0≤s≤tXs and X0 = 0) if and only if the following four conditions are
satisfied 

∫ ∫
|s− y|µ(ds, dy) <∞∫ ∫
(s− y − a)1s>a µ(ds, dy) ≥ 0 ∀a > 0∫ ∫
(s− y)µ(ds, dy) = 0

(2)

and c(a) := E(X1S>a)/P(S > a) = E(X|S > a) is increasing when P(S < a) > 0, and we use X and S as shorthand
for XT and ST .

Remark 2.1 If µ(S > a) = 0 for some a > 0, then the Rogers[Rog93] U.I. martingale X which embeds µ can never
exceed a, because clearly X̄t := sup0≤s≤tXs ≤ X̄T = S ≤ a for 0 ≤ t ≤ T .

Remark 2.2 If we replace càdlàg martingales with continuous martingales in Proposition 2.1, then the result still
holds but now the second condition in (2) is an equality; see [Rog12] and Theorem 3.1 in [Rog93] for details.

2.1 The Rogers condition for the infimum and the drawup

From here on we will refer to Xt −Xt as the drawup of X at time t. We now adapt Proposition 2.1 to characterize
the admissible joint laws of the infimum and the drawup of a nonnegative càdlàg martingale.

Proposition 2.2 Let Ga(x, y) := 1x<a (x+y−a). Then a probability measure µ on Xx0 is the joint law of (XT , YT :=
XT −XT ) for some càdlàg strictly positive martingale (Xt)t≥0 with X0 = x0 (where Xt = inf0≤s≤tXs) if and only if
the following three conditions are satisfied{ ∫ ∫

Ga(x, y)µ(dx, dy) ≤ 0 ∀a ∈ (0, x0)∫ ∫
(x+ y)µ(dx, dy) = x0

(3)

and c(a) :=
∫ ∫

(x + y)1x<adµ/
∫ ∫

1x<adµ is increasing in a whenever
∫ ∫

1x<adµ > 0, where
∫ ∫

indicates that we
are integrating over Xx0

.
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Proof. Condition 2.2iii) in [Rog93] can be re-written as

E((X − a)1S>a) ≥ 0 (4)

for all a > 0. But for any càdlàg martingale X with X0 = 0, clearly −X is also a càdlàg martingale and this
transformation is one-to-one. Hence (4) is equivalent to

E((−X − a)1
(−X)>a

) = E((−X − a)1−X>a) = E((−X − a)1X<−a) ≥ 0

and multiplying by −1 and setting a 7→ −a, this is also equivalent to

E((X − a)1X<a) ≤ 0

for all a < 0. If we now add x0 to X so X0 = x0 and set a 7→ a+ x0, we have

E((X − (a+ x0))1X<(a+x0)) ≤ 0

for all a < 0, or equivalently

E((X − a′)1X<a′) ≤ 0

for all a′ < x0. But we are also assuming that µ(X ≤ 0) = 0, so we can restrict attention to a′ ∈ (0, x0), which can
now be re-written in integral form as the first condition in (3). The second equation in (3) is the centering condition
Eq 2.4 in [Rog93]. Using that same X 7→ −X transformation as above, the final monotonicity condition on c(a) in
Proposition 2.1 is transformed to the monotonicity condition on c(a).

Lemma 2.3 The final monotonicity condition on c(a) in Proposition 2.2 is unnecessary, as it is already implied by
the other two conditions.

Proof. Let a2 > a1. Then we have

c(a2)− c(a1)

= E(X1X<a2)/P(X < a2)− E(X1X<a1)/P(X < a1)

=
E(X1X<a2)P(X < a1)− E(X1X<a1)P(X < a2)

P(X < a2)P(X < a1)

=
(E(X1X<a1) + E(X1X∈[a1,a2)))P(X < a1)− E(X1X<a1)(P(X < a1) + P(X ∈ [a1, a2))

P(X < a2)P(X < a1)

=
E(X1X∈[a1,a2))P(X < a1)− E(X1X<a1)P(X ∈ [a1, a2))

P(X < a2)P(X < a1))

≥
a1P(X ∈ [a1, a2))P(X < a1)− E(X1X<a1)P(X ∈ [a1, a2))

P(X < a2)P(X < a1))

≥
E((a1 −X)1X<a1)P(X ∈ [a1, a2))

P(X < a2)P(X < a1))

≥ 0

where we have used the first condition in (3) to obtain the final inequality.

2.2 Description of the Rogers U.I. martingale

(This subsection can be omitted and is just for readers who are curious about the [Rog93] construction). The
Rogers[Rog93] martingale for the sufficiency part of Theorem 2.2 in [Rog93] is constructed as follows: take a Brownian
motion B and let T = inf{u : Bu ≤ h(Su)} where h : (0,∞) → R is given by h(s) := c−1(s) − v(c−1(s)) if c is
strictly increasing, where c is defined as in the proof of Proposition 2.1, v(s) :=

∫
yµ(dy|s) (i.e. E(Y |S)) and µ(ds, dy)

is the joint target law for (S, Y ). We then set At :=
∫ t
0
1u:Bu<c−1(Su)du, τt = inf{u : Au > t}, Mt := Bτt∧T , and

we see that τt is right but not left continuous in general because time is “lost” when Bu ≥ c−1(Su) which means
that M̄t < B̄τt∧T (see Figure 1 in [Rog93] for a nice graph of what is going on here). Then M is a U.I. martingale
with M̄∞ ∼

∫
y∈[0,∞)

µ(ds, dy) (i.e. the correct target marginal for the supremum), and M̄∞ −M∞ = v(M̄∞), where

v(s) =
∫
yµ(dy|s), i.e. M∞ is a deterministic function of M̄∞, similar to the well known Azéma-Yor Skorokhod

embedding (the fact that c(.) is increasing is key to the proof). Finally we set

Nt =

 Mt/(1−t) 0 ≤ t < 1
M∞ 1 ≤ t < 2
Z t ≥ 2

where Z is such that M̄∞ − Z ∼ µ(.|M̄∞). N is then the desired U.I. càdlàg martingale, i.e. (N̄∞, N̄∞ −N∞) ∼ µ.
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3 The first duality result

Let µX be a target probability measure on (0,∞) with
∫
xµX(dx) = x0. Using the sup norm on (0,∞), C0((0,∞))

is a normed vector space, and the dual space C0((0,∞))∗ (i.e. the space of linear functionals of C0((0,∞)) which are
continuous under the sup norm) is the space of signed Radon measures on (0,∞) (see e.g. section 7.3 in Folland[Fol99]
for details). Thus, if we know the value of the cost functional c ∈ C0((0,∞))∗ given by

c(ψ) :=

∫
ψ(x)µX(dx) (5)

for all ψ ∈ C0((0,∞)) 2, then µX is uniquely determined, and vice versa. Thus if we know the value of c(ψ) for all ψ
in Cb((0,∞)), then µX is also uniquely determined, because clearly C0((0,∞)) ⊂ Cb((0,∞)).

Let Ω = D+
x0
[0, T ] denote the space of strictly positive càdlàg paths on [0, T ] with X0 = x0 > 0. Let X = (Xt)0≤t≤T

be the canonical process given by Xt(ω) = ωt for all ω ∈ Ω and Ft denote the right continuous filtration Ft := ∩s>tFX
s .

A probability measure Q on (Ω,FT ) is a martingale measure if the canonical process (Xt)t≥0 is martingale under Q.

Let M+ denote the collection of all probability measures Q on (D+
x0
[0, T ],FT ) such that the canonical process

Xt(ω) = ωt is an Ft-martingale and M+(µX) denotes set of elements Q ∈ M+ for which X ∼ µX under Q.

For a general measurable space (Ω̃, F̃), we let M(Ω̃) denote the space of signed Radon measures on Ω̃, M+(Ω) the
non-negative measures in M(Ω).

We now state the first duality result.

Proposition 3.1 Let P := P(Xx0
) denote the space of probability measures on Xx0

, and F : Xx0
→ (0,∞) be bounded

and upper semicontinuous. Then we have

P := sup
P∈M+(µX)

EP(F (XT , YT ))

= P0 := sup
µ∈P

[

∫
F (x, y)µ(dx, dy) |

∫
(x+ y − a)1y<aµ(dx, dy) ≤ 0 ,

∫
ψ(x+ y)µ(dx, dy) = c(ψ)

∀a ∈ (0, x0) , ψ ∈ Cb((0,∞))]

= D0 := inf
ν∈M+

f ((0,x0)),ψ∈Cb((0,∞))

[
c(ψ) | F (x, y) ≤ ψ(x+ y) +

∫
(0,∞)

Ga(x, y)ν(da) ∀(x, y) ∈ Xx0

]
. (6)

where M+
f ((0, x0)) is the convex cone of finite non-negative measures on (0,∞) of the form ν(da) =

∑n
i=1 αiδ{ai}(da)

with αi > 0, ai ∈ [0, x0), i.e. a finite positive linear combination of dirac masses.

Proof. See Appendix A.

Remark 3.1 Note that the centering condition on µX (i.e. that
∫
xdµX = x0 which is also the second condition in

(3)) do not explicitly appear in the definition of P0, but it is implicitly imposed by the
∫
ψ(x + y)µ(dx, dy) = c(ψ)

constraint, because we are assuming that µX is centered and integrable.

3.1 The financial model and superhedging the Rogers payoff function with dynamic
trading

From here on we let (Xt)t≥0 be a strictly positive càdlàg function which models a stock price process, and we assume
zero interest rates throughout. As in [DS15], this is the only assumption that we make on our financial market.

Let τa := inf{t : Xt < a}, and define Xt and Yt as in Section 2 as the infimum and the drawup respectively of X at
time t. (−∞, a) is an open set and Ft is a right continuous filtration, so τa is an Ft-stopping time (see e.g. Theorem
3, Chapter I in Protter[Prot04]) so

Ha
t := 1t∈(τa∧T,T ] (7)

(defined for 0 ≤ t ≤ T ) is a simple predictable process (from the general definition of such a process), and of course
Ha is left continuous. Then from the definition of the stochastic integral for simple predictable processes and the right
continuity of X, we know that∫

[0,T ]

Ha
t dXt = (XT −Xτa∧T ) = (XT −Xτa)1XT<a

≥ (XT − a)1XT<a
.

2C0((0,∞)) is the space of continuous functions on (0,∞) which vanish at 0 and ∞.
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Hence we can superhedge the Rogers payoff (XT − a)1XT<a
with the simple predictable trading strategy (Ha

t )t∈[0,T ]

in (7), and thus trivially we can also superhedge
∫
(XT − a)1XT<a

ν(da) with the simple predictable trading strategy

(
∫
Ha
t ν(da))t∈[0,T ] for ν ∈ M+

f ((0,∞)), because elements of M+
f ((0,∞)) consist of just a finite number of positive

dirac masses.

3.2 The alternate formulation of the dual problem

In the previous subsection we saw that the Rogers payoff can be super-replicated by a simple predictable trading
strategy. Thus we see that

D0 ≥ D := inf
H∈H,ψ∈Cb((0,∞))

[
c(ψ) | F (XT , YT ) ≤ ψ(XT ) +

∫
[0,T ]

HtdXt ∀X ∈ D+
x0
[0, T ]

]
where H is the space of all Ft-simple predictable processes, because we are taking the inf over a larger set on the right
hand side than the left hand side, since a Rogers trading strategy of the form

∫
(XT−a)1XT<a

ν(da) for ν ∈ M+
f ((0,∞))

is simple predictable, and for any strictly positive càdlàg functionX withX0 = x0 > 0, we clearly have thatXT ∈ (0, x0]
and XT −XT ∈ (0,∞).

3.3 The weak duality

Consider an admissible superhedging strategy, i.e. a pair (ψ,H) ∈ Cb((0,∞))×H such that

F (XT , YT ) ≤ ψ(XT ) +

∫
[0,T ]

HtdXt ∀X ∈ D+
x0
[0, T ]

(we know such a pair exists because F is bounded), and let A denote the space of all admissible strategies. Now take
a P ∈ M+(µX) (we also know such a P exists - we can just use our favourite Skorokhod embedding to embed µX at
time T ). Then taking expectations under P we see that

EP(F (XT , YT )) ≤ c(ψ) .

Taking the sup over all P ∈ M+(µX) on the left hand side, and the inf over A on the right hand side, we obtain the
so-called weak duality, i.e.

P ≤ D . (8)

3.4 The full duality

Combining Proposition 3.1 with the weak duality in (8) and the fact that D ≤ D0, we obtain the first main result:

Theorem 3.2

P = P0 = D0 = D

i.e.

sup
P∈M+(µX)

EP(F (XT , YT )) = inf
H∈H,ψ∈Cb((0,∞))

[
c(ψ) | F (XT , YT ) ≤ ψ(XT ) +

∫
[0,T ]

HtdXt ∀X ∈ D+
x0
[0, T ]

]
.

Remark 3.2 Recall that we only imposed that F be bounded and USC, so the duality result includes e.g. the case
when F is the payoff of a down-and-in One-Touch option with upper semicontinuous payoff 1XT≤b at T for some
b ∈ (0, x0) (i.e. F (x, y) = 1x≤b) or a standard down-and-in put option which pays (K − XT )

+1XT≤b at T (i.e.
F (x, y) = (K − x− y)1x<b).

Remark 3.3 Theorem 3.1 shows that the minimal cost D of superhedging F for all càdlàg strictly positive stock price
paths, using simple predictable trading strategies plus a static position in the tradeable options is (as we would expect)
equal to P , the supremum of the expected value of the claim F over all martingale models which are calibrated to
the market prices of the tradeable European options. But from the Rogers result, P is also equal to P0, which is just
a minimization problem over probability measures on a convex subset of (0,∞) × (0,∞). Note that we only assume
X to be càdlàg but not necessarily a semimartingale, so the superhedge here still works if e.g. X is the exponential
of fractional Brownian motion or (more generally) a rough path with Hölder exponent H ̸= 1

2 , or a martingale Lévy
process (e.g a compensated Poisson process or a pure jump martingale Lévy process as extreme cases).
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Remark 3.4 Note that we can further reduce the cardinality of the constraints for P0 in (6) by re-writing it as

P0 = sup
µ∈P

[

∫
F (x, y)µ(dx, dy) |

∫
(x+ y − a)1y<aµ(dx, dy) ≤ 0 ,

∫
eik(x+y)µ(dx, dy) =

∫
eikxµX(dx) ∀a ∈ (0, x0) , k ∈ R)] .

This suggest a numerical approximation scheme where we only impose the two constraints on a finite grid of a-values
and k-values, which then reduces to a semi-infinite linear programming problem (see Davis,Obloj&Raval[DOR14] for
more on this and in particular the Karlin-Isii duality theorem for such problems).

3.5 Adding One-Touch options as additional tradeable instruments and the Kertz-
Rösler condition

Consider a One-Touch option on X which pays 1XT≤b at time T , for b < x0. Then to preclude arbitrage, the price of
this option should be given by

O(b) = Q(XT ≤ b)

for some martingale measure Q. Thus if we are given O(b) for all b ∈ [0, x0], we can extract a target marginal law µ
X

for XT , in addition to the target law for X that we can extract from European call option prices using the standard
Breeden-Litzenberger argument. Define µ̃(dx) := µX(−(dx − x0)), µ̄ := µ

X
(−(dx − x0)) as the mirror images of µX ,

µ
X

after shifting the starting point back to zero. Then if µ̃, µ̄ satisfy the Kertz-Rösler condition in (1) (or equivalently

if µX , µ
X

are the X and X marginals respectively of some µ ∈ P(Xx0) which satisfies the two Rogers conditions in

(3)) we know there exists a martingale such that X1 ∼ µX and X1 ∼ µ
X
. Then we can trivially amend the proof of

the main Theorem 3.2 to show that

sup
P∈M+(µX):XT∼µ

X

EP(F (XT , YT )) = inf
H∈H, ψ,ϕ∈Cb((0,∞))

[
c(ψ) + c(ϕ) | F (XT , YT ) ≤ ψ(XT ) + ϕ(XT ) +

∫
[0,T ]

HtdXt ,

∀X ∈ D+
x0
[0, T ]

]
(9)

where c(ϕ) :=
∫
(0,x0]

ϕdµ
X
, which is the minimial superhedging cost when we include these One-Touch options at all

barrier levels as tradeable instruments, in addition to the tradeable European options at all strikes with target law µX .

4 Finite tradeable European and lookback options

In this section we assume there is only a finite number of tradeable European put options at strikesK1 < K2 < ... < KN

with prices 0 ≤ P1 ≤ P2 ≤ ... ≤ PN for i = 1..N . For this we make the following natural assumption throughout this
section.

Assumption 4.1 There exists a µ ∈ P((0,∞)) with
∫
xdµ = x0 and

∫
(Ki − x)+dµ = Pi for i = 1..N .

(see Theorem 3.1 in [DH07], and Proposition 2.1 in [DOR14]) for conditions on (Ki)i=1..N which ensure the existence
of such a µ).

By adapting the proofs of Proposition 3.1 and Theorem 3.2, we obtain the following duality result.

Theorem 4.2 Under Assumption 4.1, Let P(Xx0) denote the space of probability measures on Xx0 , and F : Xx0 →
[0,∞) be bounded and upper semicontinuous and R > x0. Then we have

PR := sup
P∈M+ :EP((Ki−XT )+)=Pi, i=1..N, P(XT>R)=0

EP(F (XT , YT ))

= PR0 = sup
µ∈P(Xx0 )

[ ∫
F (x, y)µ(dx, dy) |

∫
(x+ y − a)1y<aµ(dx, dy) ≤ 0 ,

∫
(Ki − x− y)+µ(dx, dy) = Pi ,∫

(x+ y)µ(dx, dy) = x0 , ∀a ∈ (0, x0) , i = 1..N , µ{x+ y > R} = 0
]

= DR
0 := inf

ν∈M+
f ((0,x0)),α∈R,β0∈R,β∈RN

[
α + β0x0 +

N∑
i=1

βiPi | F (x, y) ≤ α + β0(x+ y) +
N∑
i=1

βi(Ki − x)+

+

∫
(0,∞)×(0,∞)

Ga(x, y)ν(da) , ∀(x, y) ∈ Xx0 : x+ y ≤ R
]

= inf
H∈H,α∈R,β∈RN

[α+
N∑
i=1

βiPi | F (XT , YT ) ≤ α+
N∑
i=1

βi(Ki −XT )
+ +

∫
[0,T ]

HtdXt ∀X ∈ D+
x0
[0, T ] : xT ≤ R]
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Proof. See Appendix C.

Remark 4.1 R can be made arbitrarily large here, and from the Markov inequality, we know that P(XT > R) ≤ x0

R
for all P ∈ M+, hence by choosing R = x0

ε , we can ensure that the superhedge works with probability ≥ 1 − ε. This
quantile hedging approach (see also [Son15]) still allows for paths where X̄T > R; conversely a trader may wish to
choose a particular finite R value which be believes that the stock price cannot exceed at maturity, which then allows
him to reduce the superhedging cost.

Remark 4.2 The most common practical situation to apply Theorem 4.2 would be when F is the payoff of a down-
and-in One-Touch option with USC payoff 1XT≤b at T for some b ∈ (0, x0) (i.e. F (x, y) = 1x≤b) or a standard
down-and-in put option which pays (K −XT )

+1XT≤b at T (i.e. F (x, y) = (K − x− y)1x<b as in Remark 3.2.

Remark 4.3 We can also easily amend this result to include M tradeable lookback options with prices Lj and
payoff function (Kj − x)+ for j = 1..M if there exists a µ ∈ P(Xx0) with

∫
xdµ = x0 and

∫
(Ki − x)+dµ = Pi for

i = 1..N and
∫
(Kj − x)+dµ = Lj for j = 1..M .

4.1 Removing the XT ≤ R restriction - an upper bound for the superhedging cost

If we wish to remove the x+ y ≤ R restriction in Theorem 4.2, we can adapt the duality proof to obtain

P := sup
P∈M+ :EP((Ki−XT )+)=Pi, i=1..N

EP(F (XT , YT ))

≤ P0 = sup
µ∈P(Xx0 )

[ ∫
F (x, y)µ(dx, dy) |

∫
(x+ y − a)1y<aµ(dx, dy) ≤ 0 ,

∫
(Ki − x− y)+µ(dx, dy) = Pi ,∫

(x+ y)µ(dx, dy) ≤ x0 , ∀a ∈ (0, x0) , i = 1..N
]

= D0 := inf
ν∈M+

f ((0,x0)),α∈R,β0≥0,β∈RN

[
α + β0x0 +

N∑
i=1

βiPi | F (x, y) ≤ α + β0(x+ y) +

N∑
i=1

βi(Ki − x− y)+

+

∫
(0,∞)×(0,∞)

Ga(x, y)ν(da) , ∀(x, y) ∈ Xx0

]
.

(proof follows from trivial modifications to Appendix C). We can only assert that P ≤ P0 now (as opposed to P = P0)
because we are only imposing that

∫
xdµ ≤ x0 in the definition of P0; the reason we cannot get equalities here is the

Folland lemma in the Appendix requires the superhedging payoff to be bounded from below, which is not the case for
a negative position in a forward contract, which we have excluded here. But we also know that D ≤ D0 and P ≤ D
where

D := inf
H∈H, α∈R, β∈RN

[
α +

N∑
i=1

βiPi | F (XT , YT ) ≤ α +

N∑
i=1

βi(Ki −XT )
+ +

∫
[0,T ]

HtdXt ∀X ∈ D+
x0
[0, T ]

]
so

P ≤ D ≤ D0 = P0

which gives an upper bound for the superhedging cost D.

5 Robust hedging of options with a time-dependent barrier with trade-
able European options at two maturities and tradeable forward-starting
options

Now let 0 < T1 < T2 and µ1, µ2 be probability measures on (0,∞) which are strictly increasing in the convex order
and let µ3 be an additional probability measure which will be used to incorporate forward-starting options into the
calibration set. Let

X̃ = (0, x0]× (0,∞)× (0, 1]× [0,∞) = Xx0 ×X1 (10)

where X1 = (0, 1]× [0,∞).
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Assumption 5.1
∫
(0,∞)

xµ1(dx) =
∫
(0,∞)

xµ2(dx) = x0.

Let XT1,T2 := XT2/XT1 , XT1,T2
:= infs∈[T1,T2]Xs/XT1 and YT1,T2 = XT1,T2 −XT1,T2

. We let M+(µ1, µ2, µ3) ⊂ M+

denote those elements of M+ such that XT1 ∼ µ1, XT2 ∼ µ2 and XT2/XT1 ∼ µ3 and we assume µ3 is such that
M+(µ1, µ2, µ3) is non-empty (see Corollary 5.4 below for a precise if and only if statement for when this condition is
satisfied).

Assumption 5.2
∫
(0,∞)

xpµ3(dx) <∞ for some p ∈ (1,∞).

Proposition 5.3 Let (X,Y, V,W ) be a random variable defined on (X̃ ,B(X̃ ),Q) for some probability measure Q. Then
the law of (X,Y, V,W ) is the law of (XT1

, YT1 , XT1,T2
, YT1,T2) for some càdlàg martingale with X0 = x0 > 0 if and

only if the following four conditions are satisfied
E((X − a)1X<a) ≤ 0 ∀a ∈ (0, x0)
E((V +W − b)1V <b 1(X,Y )∈A) ≤ 0 ∀b ∈ (0, 1) , A ∈ B(Xx0)
E(X) = x0
E((V +W − 1)1(X,Y )∈B) = 0 ∀B ∈ B(Xx0)

(11)

where X := X + Y , and all expectations here are taken under Q.

Proof. See Appendix D.

Corollary 5.4 (µ1, µ2, µ3) ∈ M+(µ1, µ2, µ3) if and only if there exists a probability measure µ on X̃ such that if
(X,Y, V,W ) ∼ µ, then the four conditions in (11) are satisfied and X + Y ∼ µ1, X(V +W ) ∼ µ2 and V +W ∼ µ3,
where X = X + Y .

Proof. This is a direct consequence of the previous proposition.

Lemma 5.5 If E(|V +W |p) < ∞ for some p ∈ (1,∞) (which corresponds to the final condition in Assumption 5.2),
the second and fourth conditions in (11) are satisfied if and only if{

E((V +W − b)1V <b φ1(X,Y )) ≤ 0 ∀b ∈ (0, 1), φ1 ∈ C+
c (Xx0)

E((V +W − 1)φ2(X,Y )) = 0 ∀φ2 ∈ C+
c (Xx0)

(12)

where C+
c (Xx0) denotes the space of non-negative functions on Xx0 with compact support.

Proof. Cc(Xx0) is dense in L
q(Xx0 ,Q) for 1 ≤ q <∞ (see e.g. Proposition 7.7.9 in [Fol99]); hence for any A ∈ B(Xx0)

(without loss of generality) we can find a sequence φn ∈ C+
c (Xx0

) such that E(|1A − φn(X,Y )|q)
1
q ≤ 1

n and hence

E((V +W − b)1V <b(1A − φn(X,Y ))) ≤ E(|V +W − b|p)
1
p · E(|1A − φn(X,Y )q|

1
q

(where
1

p
+

1

q
= 1, using Holder’s inequality

≤ (E(|V +W |p)
1
p + E(bp)

1
p ) · 1

n
(by the Minkowski inequality)

≤ C1 ·
1

n

and some finite constant C1, dealing with the second equation in (12) follows similarly.

Using this lemma, we obtain the main duality result for this section:

9



Theorem 5.6 Let F : X̃ → (0,∞) be bounded and upper semicontinuous. Then we have the following duality result:

P = sup
P∈M+(µ1,µ2,µ3)

EP(F (XT1
, YT1 , XT1,T2

, YT1,T2))

= P0 := sup
µ∈P(X̃ )

[ ∫
F (x, y)µ(dx, dy, dv, dw) |

∫
Ga(x, y)µ(dx, dy, dv, dw) ≤ 0,

∫
Gb(v, w)φ(x, y)µ(dx, dy, dv, dw) ≤ 0 ,∫

ψ1(x+ y)µ(dx, dy, dv, dw) = c1(ψ1) ,

∫
ψ2((x+ y)(v + w))µ(dx, dy, dv, dw) = c2(ψ2),∫

ψ3(v + w)µ(dx, dy, dv, dw) = c3(ψ3) , ∀a ∈ (0, x0) , b ∈ (0, 1), φ ∈ C+
c (Xx0) , ψ1, ψ2, ψ3 ∈ Cb((0,∞))

]
= inf

ν1∈M+
f ((0,x0)) , ν2∈M+

f ((0,1)),φ∈C+
c (Xx0 ), ψ1,ψ2,ψ3∈Cb((0,∞))

[c1(ψ1) + c2(ψ2) + c3(ψ3) | F (x, y, v, w) ≤ ψ1(x+ y)

+ψ2((x+ y)(v + w)) + ψ3(v + w) +

∫
(0,x0)

Ga(x, y)ν1(da) +

∫
(0,1)

Gb(v, w)φ(x, y)ν2(db) ∀(x, y, v, w) ∈ X̃ ]

= inf
H∈H,ψ1,ψ2,ψ3∈Cb((0,∞))

[
c1(ψ1) + c2(ψ2) + c3(ψ3) | F (XT1

, YT1 , XT1,T2
, YT1,T2) ≤ ψ1(XT1) + ψ2(XT2) + ψ3(XT2/XT1)

+

∫
[0,T2]

HtdXt ∀X ∈ D+
x0
[0, T2]

]
(13)

where ci(ψi) :=
∫
ψi(x)µi(dx) for i = 1, 2, 3.

Proof. See Appendix C.

Remark 5.1 This result includes the case when F is a general barrier option with upper semicontinuous payoff
(K−XT2)

+1XT1
≤b11infT1≤t≤T2

Xt≤b2 for K, b1, b2 ∈ (0,∞), which is a down-and-in put option with a time-dependent

barrier level.

P is the minimal cost of superhedging a (possibly) time-dependent barrier option with payoff F (XT1
, YT1 , XT1,T2

, YT1,T2)
using dynamic trading in the underlying and European options with all strikes at maturities T1 and T2 and forward-
starting options which pay (XT2/XT1 −K)+ for all strikes K > 0.
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A Proof of Proposition 3.1

Throughout we let z = (x, y). We first define the following class of functions

E = {g : Xx0 7→ R, g(x, y) =

∫
(x+ y − a) 1x<a ν(da) , ν ∈ M+

f ((0, x0))} .

Then all elements of E are bounded from below (because x + y ∈ (0, x0]) and ν is just a finite sum of non-negative
dirac masses) and lower semicontinuous in the usual sup norm topology. Hence throughout all Appendices, all infs or
sups over g ∈ E are in fact infs/sups over M+

f ([x0, 0)).

We now recall Theorem 1 from Rockafellar[Roc74]:

Theorem A.1 Let X and U be real linear spaces and let F : X × U → [−∞,∞] be convex. Then

Φ(u) = inf
x∈X

F (x, u)

is convex.
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To apply the conjugate duality framework in [Roc74], we choose the X space at the start of section 3 in [Roc74]
to be C0(Xx0) paired with its dual space V = X∗ = C0(Xx0)

∗ (the space of signed Radon measures on Xx0)) with the
bilinear form ⟨x, v⟩ =

∫
Xx0

xdv. We use the sup norm topology on X and the weak* topology on V , which are consistent

topologies in the sense of section 3 in [Roc74] i.e. both these topologies are locally convex and any continuous linear
functional F on V under the weak* topology can be represented by a unique element of x ∈ X as F (µ) = ⟨x, µ⟩ (see
e.g. Corollary 4.8, page 123 in Weaver[Wea13]).

We define the value function φ : C0(Xx0) → R as

φ(u) = inf
ψ∈Cb((0,∞)), g∈E

[c(ψ) | F + u ≤ ψ + g]

= inf
ψ∈Cb((0,∞)),ν∈M+

f ((0,x0))
[c(ψ) | F + u ≤ ψ +

∫
(x+ y − a) 1x<aν(da)]

= inf
ψ∈Cb((0,∞)),ν∈Mf ((0,x0))

[c(ψ) | F + u ≤ ψ + gν , ν
−((0, x0]) = 0]

= inf
ψ∈Cb((0,∞)), ν∈Mf ((0,x0))

[c(ψ) + ∞ · 1(ψ,ν,u)/∈C ] (A-1)

where ν− is the negative part of ν, C = {(ψ, ν, u) : ψ ∈ Cb((0,∞)), ν ∈ M+
f ((0, x0)), F + u ≤ ψ + gν} and

F + u ≤ ψ + gν means that F (z) + u(z) ≤ ψ(x) + gν(z) for all z ∈ Xx0 . We note that C is a convex subset of
Cb((0,∞))×Mf ((0, x0))× C0(Xx0).

We let z = (x, y) throughout Appendix A. We first need to verify that φ is convex. To this end, proceeding as on
page 1 in [Roc74] we first note that the function f defined by f(ψ, ν, u) = c(ψ) is affine in ψ, and thus is classically

convex on C. Thus the function f̂ defined by f̂ = f on C and f̂ = +∞ otherwise is convex as an extended real-valued
function, i.e. the epigraph epi f̂ := {(ψ, ν, u, α) : ψ ∈ Cb((0,∞)), ν ∈ Mf ((0, x0)), u ∈ C0(Xx0), α ∈ R, α ≥ f̂(ψ, ν, , u)}
is convex as a subset of Cb((0,∞)) ×Mf ((0, x0)) × C0(Xx0) × R. Cb((0,∞)) and Mf ((0, x0)) are linear spaces, and
thus so is Cb((0,∞))×Mf ((0, x0)), so convexity follows from Theorem A.1.

By the Riesz representation theorem, the dual of C0(Xx0) may be identified with M(Xx0). Thus the conjugate of
φ can be written as

φ∗(µ) = sup
u∈C0(Xx0 )

[

∫
udµ − φ(u)]

= sup
u∈C0(Xx0 ),ψ∈Cb((0,∞)),g∈E

[

∫
udµ − c(ψ) | F + u ≤ ψ + g ]

for µ ∈ M(Xx0). The following lemma will be needed:

Lemma A.2 If µ /∈ M+(Xx0), then there exists a u ∈ C0(Xx0) such that u ≤ 0 and
∫
udµ > 0.

Proof. See Appendix B.

From this we obtain the trivial corollary:

Corollary A.3 For µ /∈ M+(Xx0), we have supu∈C0(Xx0 ),u≤0

∫
udµ = ∞.

Lemma A.4 For µ /∈ M+(Xx0) we have

sup
u∈C0(Xx0 )

[

∫
udµ | F + u ≤ ψ + g ] = +∞ . (A-2)

Proof. Let ū ∈ C0(Xx0) satisfy the constraint F + ū ≤ ψ + g. Then for µ /∈ M+(Xx0) we have

sup
u∈C0(Xx0 )

[

∫
udµ | F + u ≤ ψ + g ] = sup

u∈C0(Xx0 )

[

∫
(u+ ū)dµ | F + u+ ū ≤ ψ + g ]

≥ sup
u∈C0(Xx0 ),u≤0

[

∫
(u+ ū)dµ | F + u+ ū ≤ ψ + g ]

=

∫
ūdµ + sup

u∈C0(Xx0 ),u≤0

∫
udµ = ∞

from Corollary A.3.
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Corollary A.5 φ∗(µ) = +∞ for µ /∈ M+(Xx0).

Intuitively, for µ ∈ M+(Xx0) we want to make u as large as possible whilst ensuring that the constraint is satisfied,
by setting u = u1 = ψ + g − F . However g is only known to be bounded from below and LSC and ψ is only known
to be in Cb((0,∞)), so we may not have u1 ∈ C0(Xx0). To deal with this issue, we recall the following lemma from
Folland[Fol99]:

Lemma A.6 (Corollary 7.13 in [Fol99]). If µ is a non-negative Radon measure and f is bounded from below and
lower semicontinuous, then ∫

fdµ = sup
h∈C0(Xx0 )

[

∫
hdµ | h ≤ f ] . (A-3)

Thus, using this lemma and using that ψ, g and −F are lower semincontinuous and bounded from below, we have
the following corollary:

Corollary A.7 For µ ∈ M+(Xx0) we have

sup
u∈C0(Xx0 )

[

∫
udµ | F + u ≤ ψ + g ] =

∫
[ψ + g − F ]dµ

where
∫
ψdµ is shorthand for

∫
ψ(x)µ(dx, dy).

Thus we can re-write φ∗(µ) as

φ∗(µ) = sup
ψ∈Cb((0,∞)),g∈E

[

∫
(ψ + g − F ) dµ − c(ψ)]

for µ ∈ M+(Xx0). Using (5) we can re-write
∫
ψdµ− c(ψ) as∫

ψdµ− c(ψ) =

∫
ψdµ −

∫
ψ(x)µX(dx) .

If there exists a ψ ∈ Cb((0,∞)) such that c(ψ) ̸=
∫
ψdµ then (by linearity) we see that

sup
ψ∈Cb((0,∞))

[

∫
ψdµ −

∫
ψ(x)µX(dx)] = +∞ .

Thus we have

φ∗(µ) =

{
supg∈E [

∫
(g − F ) dµ] if µ ∈ P(Xx0) ,

∫
ψdµ = c(ψ) ∀ψ ∈ Cb((0,∞)),

+∞ otherwise .

We now take the supremum over g ∈ E , and let R denote the set of probability measures on Xx0 which satisfy the first
condition in (3). If µ /∈ R then we can find a g ∈ E such that

∫
gdµ > 0 and thus (by linearity) φ∗(µ) = ∞; otherwise

we have that
∫
g dµ = 0 for all g ∈ E . Putting this together we have

φ∗(µ) =

{
−
∫
F dµ if µ ∈ R,

∫
ψdµ = c(ψ) ∀ψ ∈ Cb((0,∞)),

+∞ otherwise

By the bi-conjugate theorem (cf. Theorem 5 in [Roc74]), we have that φ∗∗ = cl coφ, where cl denotes the closure
operator and co denotes the convex hull (see [Roc74] for definitions). Since φ is convex, coφ = φ, and (setting ψ = α
a constant so c(ψ) = α, and g ≡ 0) we also note that

φ(u) = inf
ψ∈Cb((0,∞)), g∈E

[c(ψ) | F + u ≤ ψ + g] ≤ inf
α∈R

[α | F + u ≤ α] ≤ ∥F∥+ ∥u∥ < ∞ (A-4)

so domφ is the whole space C0(Xx0), i.e. φ is finite on C0(Xx0) and in particular is bounded on any ball around the
origin by ∥F∥ + |δ| where δ is the size of the ball. But a proper convex function f is continuous on int dom f if and
only if it is bounded from above on a neighborhood of an interior point of dom f (Theorem 2.14 in [BP12]), thus φ is
continuous on C0(Xx0) and hence clφ = φ, and

φ(u) = φ∗∗(u) = sup
µ
(

∫
udµ− φ∗(µ)) = sup

µ∈R
(

∫
(u+ F ) dµ |

∫
ψdµ = c(ψ) , ∀ψ ∈ Cb((0,∞))

so in particular

φ(0) = φ∗∗(0) = sup
µ∈R

[

∫
Fdµ |

∫
ψdµ = c(ψ) ∀ψ ∈ Cb((0,∞)) ] = P0 .

But φ(0) = infψ∈Cb((0,∞)),g∈E [ c(ψ) | F (z) ≤ ψ(x) + g(z) ∀z ∈ Xx0
] = D0. Finally the fact that P = P0 just follows

from Proposition 2.2.
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B Proof of Lemma A.2

M+(Xx0) is a closed convex subset of M(Xx0), and any µ ∈ M(Xx0) \ M+(Xx0) is a closed compact subset of M.
Thus, by the Hahn-Banach separation theorem, there exists a λ ∈ C0(Xx0) such that

⟨λ, µ⟩ > sup
ν∈M+(Xx0 )

⟨λ, ν⟩ (B-1)

We now need to verify that λ is non-positive. If there exists a z ∈ Xx0 such that λ(z) > 0 then ⟨λ, α δ{z}⟩ = αλ(z) > 0
for every α > 0, so the sup on the right hand side of (B-1) can be made infinitely large, which violates the inequality.
Thus, we must have λ ≤ 0. In that case, the sup on the right equals zero (setting ν = 0). Thus ⟨λ, µ⟩ > 0 which
completes the proof.

C Proof of Theorem 4.2

Proceeding along similar lines to Appendix A, we define φ : C0(Xx0) → R as

φ(u) = inf
α,β0∈R, β∈RN , g∈E

[α + β0x0 +
N∑
i=1

βiPi | F + u ≤ α + β0(x+ y) +
N∑
i=1

βi(Ki − x− y)+ + g + ∞ · 1x+y>R]

We can easily verify that φ is convex using the same arguments as Appendix A and

φ∗(µ) = sup
u∈C0(Xx0 )

[

∫
udµ − φ(u)]

= sup
u∈C0(Xx0 ),α,β0∈R,β∈RN , g∈E

[

∫
udµ− α − β0x0 −

N∑
i=1

βiPi | F + u ≤ α + β0(x+ y)

+
N∑
i=1

βi(Ki − x− y)+ + g + ∞ · 1x+y>R]

for µ ∈ M(Xx0
), and using almost identical arguments to Appendix A, we find that φ∗(µ) = +∞ for µ /∈ M+(Xx0

).

Corollary C.1 For µ ∈ M+(Xx0
) we have

sup
u∈C0(Xx0 )

[

∫
udµ | F + u ≤ α + β0(x+ y) +

N∑
i=1

βi(Ki − x− y)+ + g +∞ · 1x+y>R ]

=

∫
[α + β0(x+ y) +

N∑
i=1

βi(Ki − x− y)+ + g + ∞ · 1x+y>R])− F ] dµ .

Proof. α+β0(x+ y)+
∑N
i=1 βi(Ki−x− y)+g+∞· 1x+y>R−F is LSC and bounded from below, so the result follows

from again from Corollay 7.13 in [Fol99]. Note that without the ∞ · 1x+y>R term, this function is not bounded from
below if β0 < 0.

Thus we can re-write φ∗(µ) as

φ∗(µ) = sup
α∈R,β0∈R,β∈RN ,g∈E

[

∫
(α + β0(x+ y) +

N∑
i=1

βi(Ki − x− y)+ + g + ∞ · 1x+y>R − F ) dµ − α − β0x0 −
N∑
i=1

βiPi]

for µ ∈ M+(Xx0).

If there exists a i = 1..N such that
∫
(Ki − x− y)+dµ ̸= Pi then (by linearity) we see that φ∗(µ) = +∞. Similarly,

if µ is not a probability measure, then
∫
αdµ− α ̸= 0, so we also see that φ∗(µ) = +∞. Likewise, if

∫
(x+ y)dµ ̸= x0

then φ∗(µ) = +∞. And if µ{x+y > R} > 0 then clearly we also have that φ∗(µ) = +∞. Putting these facts together,
we see that

φ∗(µ) =

{
supg∈E

∫
(g − F ) dµ µ ∈ P(Xx0) ,

∫
(x+ y)dµ = x0 ,

∫
(Ki − x− y)+dµ = Pi ∀i = 1..N, µ(x+ y > R) = 0

+∞ otherwise
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We now consider the supping over g ∈ E , and let R denote the set of probability measures on Xx0 which satisfy the
first condition in (3). If µ /∈ R then we can find an a ∈ (0, x0) such that

∫
(x + y − a)1x<adµ > 0 and hence there

exists a g ∈ E such that
∫
gdµ > 0 and thus (by linearity) φ∗(µ) = ∞; otherwise we have that

∫
g dµ ≤ 0 for all g ∈ E .

Putting this together we have

φ∗(µ) ={
−
∫
F dµ if µ ∈ R , µ{x+ y > R} = 0 , µ ∈ P(Xx0) ,

∫
(x+ y)dµ ≤ x0 ,

∫
(Ki − x− y)+dµ = Pi ∀i = 1..N

+∞ otherwise

By the bi-conjugate theorem (cf. Theorem 5 in [Roc74]), we have that φ∗∗ = cl coφ, where cl denotes the closure
operator and co denotes the convex hull (see [Roc74] for definitions). We wish to show that cl coφ = φ.

Since φ is convex, coφ = φ and φ is continuous at the origin if and only if it is bounded from above on a
neighborhood of the origin (Theorem 8 in [Roc74]). If we now consider a neighborhood of u = 0 with ∥u∥ ≤ δ with
δ > 0, then we have

φ(u) ≤ inf
α
[α | F + u ≤ α] < ∞

where the second line follows by setting β0 = 0, β = 0, g ≡ 0, and using that F is bounded. Thus φ is finite on
a neighborhood of u = 0, so φ is continuous at the origin. But a convex function that is continuous at a point is
continuous throughout the interior of its domain (so if the domain is the whole space, it is continuous everywhere).
Thus we have clφ = φ,

φ(u) = φ∗∗(u) = sup
µ
(

∫
udµ− φ∗(µ)) = sup

µ∈R

∫
(u+ F ) dµ |

∫
α + β0(x+ y) +

N∑
i=1

βi(Ki − x− y)+dµ =

N∑
i=1

βiPi

∀α + β0(x+ y) +

N∑
i=1

βi(Ki − x− y)+ ∈ C0((0,∞)× (0,∞))

so in particular

φ(0) = φ∗∗(0) = sup
µ∈R

[

∫
Fdµ |

∫
(x+ y − a)1y<aµ(dx, dy) ≤ 0 ,

∫
(Ki − x− y)+µ(dx, dy) = Pi ,∫

(x+ y)µ(dx, dy) ≤ x0 , ∀a ∈ (0, x0) , i = 1..N , µ{x+ y > R}] = P0 .

But φ(0) = D0. Finally the fact that P = P0 just follows from Proposition 2.2.

D Proof of Theorem 5.6

We now let z = (x, y, v, w) and we first define the following classes of functions

E1 = {g1 : Xx0 → R : g1(x, y) =

∫
(x+ y − a) 1x<aν1(da) , ν1 ∈ M+

f ((0, x0))} ,

E2 = {g2 : X̃ → R : g2(x, y, v, w) =

∫
(v + w − b)φ(x, y)1v<b ν2(db) , ν2 ∈ M+

f ((0, 1)), φ ∈ C+
0 (Xx0)} .

Then all elements of E1, E2 are bounded from below and LSC in the usual sup norm topology.

Similar to Appendix A, we define the value function φ : C0(X̃ ) → R as

φ(u) = inf
ψ1,ψ2,ψ3∈Cb((0,∞)),g1∈E1,g2∈E2

[c1(ψ1) + c2(ψ2) + c3(ψ3) | F + u ≤ ψ1 + ψ2 + ψ3 + g1 + g2] (D-1)

where X̃ is defined in (10), and again we can trivially show that φ is convex using Theorem 1 in [Roc74]. The conjugate
of φ (which we denote by φ∗ : M(X̃ ) → R) can be written as

φ∗(µ) = sup
u∈C0(X̃ )

[

∫
udµ − φ(u)]

= sup
u∈C0(X̃ ),ψ1,ψ2,ψ3∈Cb((0,∞)),g1∈E1,g2∈E2

[

∫
udµ− c1(ψ1)− c2(ψ2)− c3(ψ3) | F + u ≤ ψ1 + ψ2 + ψ3 + g1 + g2 ]
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and by repeating the steps in Appendix A we can again verify that φ∗(µ) = ∞ for µ /∈ M+(X̃ ).

For µ ∈ M+(X̃ ) we want to make u as large as possible whilst ensuring that the constraint is satisfied, by setting
u = ψ1 + ψ2 + ψ3 + g1 + g2 − F . Hence for µ ∈ M+(X ), using Corollary 7.13 in [Fol99] as before we have

sup
u∈C0(X̃ )

[

∫
udµ | F + u ≤ ψ1 + ψ2 + ψ3 + g1 + g2 ] =

∫
[ψ1 + ψ2 + ψ3 + g1 + g2 − F ]dµ .

Thus we can re-write φ∗(µ) as

φ∗(µ) = sup
ψ1,ψ2∈Cb((0,∞)),g1,g2∈E

[

∫
(ψ1 + ψ2 + ψ3 + g1 + g2 − F ) dµ − c1(ψ1)− c2(ψ2)− c3(ψ3)] .

We can re-write
∫
(ψ1 + ψ2 + ψ3)dµ− c1(ψ1)− c2(ψ2)− c3(ψ3) as∫

(ψ1 + ψ2 + ψ3)dµ − c1(ψ1)− c2(ψ2)− c3(ψ3)

=

∫
(ψ1 + ψ2 + ψ3)dµ −

∫
ψ1(x)µ1(dx) −

∫
ψ2(x)µ2(dx) −

∫
ψ3(x)µ3(dx) .

If there exists a ψ1 or a ψ2 or a ψ3 ∈ Cb((0,∞)) such that c1(ψ1) ̸=
∫
ψ1dµ or c2(ψ2) ̸=

∫
ψ2dµ or c3(ψ3) ̸=

∫
ψ3dµ

then (by linearity) we see that

sup
Cb((0,∞))

[

∫
(ψ1 + ψ2 + ψ3)dµ −

∫
ψ1(x)µ1(dx) −

∫
ψ2(x)µ2(dx) −

∫
ψ3(x)µ3(dx)] = +∞ .

Thus

φ∗(µ) = sup
g1∈E1,g2∈E2

∫
(g1 + g2 − F ) dµ

if
∫
ψ1dµ = c1(ψ1),

∫
ψ2dµ = c2(ψ2) and

∫
ψ3dµ = c3(ψ3) for all ψ1, ψ2, ψ3 ∈ Cb((0,∞)) (which implies that µ is also

a probability measure), otherwise φ∗(µ) = +∞.

We now consider the supping over g1 ∈ E1. If there exists a a ∈ (0, x0) such that
∫
Ga(x, y)µ(dx, dy, dv, dw) > 0

then we can find a g1 ∈ E1 such that
∫
g1dµ > 0 and thus (by linearity) φ∗(µ) = +∞. Similarly if there exists a

b ∈ (0, 1) such that
∫
Gb(v, w)µ(dx, dy, dv, dw) > 0 then we can find a g2 ∈ E2 such that

∫
g2dµ > 0 and φ∗(µ) = +∞

; otherwise we have that
∫
g dµ ≤ 0 for all g ∈ E1 ∩ E2 and we see that

φ∗(µ) =

 −
∫
F dµ if

∫
Ga(x, y)µ(dx, dy, dv, dw) ≤ 0 ,

∫
Gb(v, w)µ(dx, dy, dv, dw) ≤ 0,∫

ψ1dµ = c1(ψ1) ,
∫
ψ2dµ = c2(ψ2) ,

∫
ψ3dµ = c3(ψ3) ∀ψ1, ψ2, ψ3 ∈ Cb((0,∞)),

+∞ otherwise

By the bi-conjugate theorem (cf. Theorem 5 in [Roc74]), we have that φ∗∗ = cl coφ, where cl denotes the closure
operator and co denotes the convex hull (see [Roc74] for definitions). We wish to show that cl coφ = φ.

Since φ is convex, coφ = φ and φ is continuous at the origin if and only if it is bounded from above on a
neighborhood of the origin (Theorem 8 in [Roc74]). If we now consider a neighborhood of u = 0 with ∥u∥ ≤ δ with
δ > 0, then by considering g1 = g2 = 0, ψ2 = ψ3 = 0 and ψ1 equal to a constant, we see that

φ(u) = inf
ψ1,ψ2,ψ3∈Cb((0,∞)),g1∈E1,g2∈E2

[c1(ψ1) + c2(ψ2) + c3(ψ3) | F + u ≤ ψ1 + ψ2 + ψ3 + g1 + g2]

≤ inf
α∈R

[α | F + u ≤ α] < ∞

because F is bounded by assumption and ∥u∥ ≤ δ. Thus φ is finite on a neighborhood of u = 0, so φ is continuous at
the origin. But a convex function that is continuous at a point is continuous throughout the interior of its domain (so
if the domain is the whole space, it is continuous everywhere). Thus clφ = φ, and in particular

φ(0) = φ∗∗(0)

= sup
µ∈P(X̃ )

[

∫
Fdµ |

∫
ψ1dµ = c1(ψ1) ,

∫
ψ2dµ = c2(ψ2) ,

∫
ψ3dµ = c3(ψ3)∫

g1(x, y)µ(dx, dy, dv, dw) ≤ 0,

∫
g2(x, y, v, w)µ(dx, dy, dv, dw) ≤ 0 ∀ψ1, ψ2, ψ3 ∈ Cb((0,∞)), g1 ∈ E1, g2 ∈ E2 ] .

But φ(0) = infψ1,ψ2,ψ3∈Cb((0,∞)),g1,g2∈E [ c1(ψ1) + c2(ψ2) + c3(ψ3) | F ≤ ψ1 + ψ2 + ψ3 + g1 + g2] as required.
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E Proof of Proposition 5.3

Necessity. The first and third conditions in (11) are clearly necessary from Proposition 2.2, and the fourth condition
in (11) just follows from the martingale property.

Now let P ∈ M+ (defined at the start of section 4), and recall the definition of Ga(., .) from Proposition 2.2. Then
we have

EP(Ga(XT1,T2
, YT1,T2)1A) = EP(EP(Ga(XT1,T2

, YT1,T2) | FT1) 1A) ≤ 0

for all A ∈ FT1 and all a ∈ (0, 1), where the inequality follows because the conditional law of (XT1,T2
, YT1,T2) given

(X1, Y1) must satisfy both Rogers conditions in (3). Setting b = a andA = {(XT1
, YT1) ∈ B} ∈ FT1 for any B ∈ B(Xx0),

we see that the second condition in Eq (11) is also a necessary condition.

Sufficiency. From the first condition and Proposition 2.2 we can clearly construct a càdlàg martingale X for which
(XT1

, XT1 −XT1
) has the same law as (X,Y ). Moreover, the second condition in (11) states that

0 ≥ EQ(Gb(V,W )1(X,Y )∈A) (D-1)

for all A ∈ B(X ), but we can re-write the right hand here side as

EQ(EQ(Gb(V,W ) |σ(X,Y )) 1(X,Y )∈A)

which implies that EQ(Gb(V,W ) |σ(X,Y )) ≤ 0 Q-a.s. (using e.g. the lemma at the top of page 51 in [Will91]), i.e.
the conditional law of (V,W ) given X,Y satisfies the first condition in (3) with x0 = 1 (and from the fourth condition
in (11), we know that E(V +W |X,Y ) = 1, so we can construct X so that (XT1,T2

, YT1,T2) given (XT1
, YT1) has the

same law as the conditional law of (V,W ) given X,Y , as required.
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