
Optimal trade execution with unknown drift

Martin Forde
31st Oct 2023

Abstract

We show how existing results for optimal trading strategies under temporary/resilient price impact or pro-
portional transaction costs can be easily adapted for the more realistic situation when the drift of the asset is
unknown, so we have to project to the observable filtration generated by the asset price process, using results
from non-linear filtering theory. In particular, we observe that a semimartingale with unknown (constant) drift
is the continuation of a generalized bridge process when the true drift is replaced with its unbiased estimate over
a fixed time window1.

1 Model setup

Many price impact articles (and textbooks on the continuous-time Kalman filter) consider a semimartingale price
process with a drift process which is an OU process, but since the drift process is not directly observable, we cannot
easily estimate its paramaters, and even if the drift were observable, we can still e.g. only compute MLE or GMM
estimates for its parameters which will typically have non-small sample variance unless the time window under
consideration is large (i.e. years in practice) and the model is well specified over this large time window (which will
seldom be the case in practice). One can use the Kalman filter combined with the E-M algorithm to do this2 (for
which there in-built functions in Python for example), but from practical experience, we do not recommend since
the sample variance of the estimate for the mean reversion speed of the OU process will be too large.

The alternate approach to this kind of problem (which we do not pursue here) is to use limit order book
imbalance to predict mid-price moves (see e.g. [CDJ18], [CDO23], [PRS23] and references therein).

In this note, we consider a financial market living on a stochastic basis (Ω,F ,Ft,P), where the filtration F =
{Ft}t0≤t≤T satisfies the usual conditions. P is the objective probability measure, and we assume the basis carries
a one-dimensional P-Brownian motion W . We consider a financial market with a single asset with P-dynamics

Pt = P0 + µt + σWt (1)

and FP will denote the filtration generated by P (augmented by P-null sets). We assume that σ is known and µ is
unknown to a financial agent and that P has been observed continuously since t0 < 0. The assumption that σ is
known is natural since it can be computed from the observed quadratic variation of P over any subset of [t0, 0] which
can be estimated from the realized variance of P (see e.g. Ait-Sahalia&Jacod[AJ14] for details and convergence
results in this vein).

We specify an initial distribution f(µ) for µ at t = 0, and assume that W is independent of µ. The natu-

ral/canonical choice here (which we will henceforth assume unless stated otherwise) is that µ ∼ N(
P0−Pt0
0−t0 , σ

2

|t0| ),

since this is what we obtain when applying the usual confidence interval approach to estimate µ using that
P0 − Pt0 ∼ N(µt, σ2|t0|), or from a Bayesian standpoint, f(µ) is the posterior f(µ|P0) for µ using Bayes’ the-
orem if the initial (prior) distribution for µ at t0 is U([−n, n]), and we then let n→∞ (i.e. we have a flat prior for
µ at t0, see Appendix A for details).

1We thank Faycal Drissi and Leandro Sanchez Betancourt for many interesting discussions
2We thank Leandro Sanchez Betancourt for pointing this out
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From the final part of the Appendix, we know that E(µ|FPt ) =
Pt−Pt0
t−t0 . Hence the process W̄t defined by

Pt = P0 +

∫ t

0

Pu − Pt0
u− t0

du + σW̄t (2)

is an FPt -Brownian motion, see e.g. Eq 4.5 in Björk et al.[BDL10] or Theorem 6.1 in [Chi] (or Eq 28 in Liptser&Shiryaev[LS04]
with ht = Pt and At = µ so xt = Wt and Dt = d〈xt,Wt〉 = 1 in their notation). From Ito’s formula, we see that

dPt =
Pt − Pt0
t− t0

dt + σdW̄t = µ̂tdt + σdW̄t (3)

where µ̂t =
Pt−Pt0
t−t0 .

1.1 Basic properties of P under FP

The SDE for P in (2) does not depend on µ at all, and under FP , P satisfies the same (linear) SDE as the
continuation of a Brownian bridge process constrained to be at Pt0 at t = t0, but here t ≥ 0 and t0 < 0, and has
the explicit solution:

Pt = P0(1− t

t0
) + Pt0

t

t0
+ (t0 − t)σ

∫ t

0

dW̄s

t0 − s
(4)

(see discussion below Eq 5.6.23 in [KS91]). From (1) we of course know that E(P 2
t ) <∞ hence Pt is finite a.s., so

P cannot explode in finite time, despite the apparent mean-fleeing behaviour of P around Pt0 under FP in (3).

In particular, P is a Markov process with respect to FP , and we see that

d

dt
E(Pt|Ps) =

E(Pt|Ps)− Pt0
t− t0

.

Solving this ODE we find that

E(Pt|Ps) = Pt0 +
Ps − Pt0
s− t0

(t− t0) = Pt0 + µ̂s(t− t0) (5)

for t0 ≤ 0 ≤ s ≤ t. We also note that µ̂t can be re-written as

µ̂t =
Pt − Pt0
t− t0

=
µ(t− t0) + σ(Wt −Wt0)

t− t0
= µ +

σ(Wt −Wt0)

t− t0
∼ N(µ,

σ2

t− t0
)

so we can view µ̂t as a noisy (but unbiased) estimate for µ at time t. Moreover

dµ̂t =
dPt
t− t0

− Pt − Pt0
(t− t0)2

dt =
µdt+ σdWt

t− t0
− Pt − Pt0

(t− t0)2
dt

so µ̂t is not an Ft-martingale, but using (3) we can also re-write the middle expression as

dµ̂t =
µ̂tdt + σdW̄t

t− t0
− Pt − Pt0

(t− t0)2
dt =

σ

t− t0
dW̄t

so µ̂t is an FPt -martingale, as we would expect.

Remark 1.1 µ̂t changes sign infinitely many times over (0, ε] if t0 = 0.

2 Application to price impact problems

2.1 Unconstrained problem

We can now apply many well known price impact methods/results to P but working under FP - e.g., for an agent
subject to.linear temporary price impact with no liquidation penalty where the price paid per share at time t is
St = Pt+kvt and vt is the trading speed, using the same pointwise optimization argument with optional projection
as in section 4.1 of [FSS22], we know that the optimal buying speed with no liquidation penalty is

v∗t =
ξt
2k

where

ξt = E(PT − Pt|FPt ) = µ̂t(T − t)

and with a non-zero transaction cost of size ε

v∗t =
1

2k
(ξt − ε sgn(ξt)) 1|ξt|≥ε .
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Figure 1: Here we have simulated the optimal stock holding Xt (left) for a round trip (i.e. X0 = 0) and the
corresponding buying speed vt = −ut (middle) for the problem in [NV22] but with µ unknown for parameters
µ = 0.05, σ = .2, κ = 1, ρ = 1, λ = 1, φ = 0, % = 1000, Y0 = 0, P0 = 1 and t0 = −1 with Pt0 = P0 − µ|t0| = .95.
Since the stock went up over [t0, 0] by assumption, µ̂t is initially positive at t = 0, so the agent is initially buying
at t = 0 before the non-liquidation penalty really kicks in. On the right we have plotted the true Pt process (blue)
and µ̂t (in grey).

2.2 Temporary price impact and exponential resilience with liquidation and running
inventory penalties

If an agent is subject to temporary price impact plus transient price impact under the propagator model with
exponential resilience as in [NV22] with a running inventory penalty and finite liquidation penalty, then the standard
variational and optional projection argument used to derive the main Theorem 3.2 in [NV22] still works under the
filtration FP , so we just need to compute

1

ds
E(dAs|FPt ) = E(µ̂s|FPt ) = E(

Ps − Pt0
s− t0

|Pt) =
Pt0 + µ̂t(s− t0)− Pt0

s− t0
= µ̂t =

Pt − Pt0
t− t0

for s ≥ t (where the third equality follows from (5) with s and t swapped round), and this expression is needed
for Eq 3.6 in [NV22]. A similar (but simpler) formula (also just requiring E(dAs|FPt )) appears in Theorem 3.1 in
[BMO20] for the case when there is no resilience, and the aforementioned formulae in [BMO20] and [NV22] both
require computing a matrix exponential.

Remark 2.1 For all the price impact problems considered, all that matters ultimately is E(µs|FPt ) so we can replace
the Brownian motion W above with any sufficiently well behaved martingale M , and the choice of martingale does
not affect the optimal trading strategy (unless we start using non-linear utility functions), and P will be a generalized
bridge process under FP . In this case, since

P0 − Pt0 = µ(0− t0) +M0 −Mt0

so the natural choice of initial distribution for µ now is the law of (P0 − Pt0 − (M0 −Mt0))/(0 − t0) with P0 and
Pt0 taking their observed values.

3 The Merton problem with unknown drift

In this section, we remove the friction (i.e. the price impact) but we now allow the agent to be risk-averse by using
a non-linear utility function. Assuming

dSt = µdt + σdWt

for some unknown µ, we consider the classical Merton problem with r = 0, and let φt denote the agent’s stock
holding at time t, which we assume has to be FSt -adapted. Then the total wealth of the agent Xt evolves as

dXt = φtdSt

so the HJB equation for the value function V (S, x, t) = supφ∈A ES,X,t(U(XT )) is

Vt +
S − St0
t− t0

VS +
1

2
σ2VSS + supφ[φ

S − St0
t− t0

Vx +
1

2
σ2φ2Vxx + σ2φVSx] = 0

and we can then solve for φ∗ in feedback form, and then re-write as a non-linear PDE. For the case when U(x) =
−e−αx, using the ansatz V (S, x, t) = −e−α(x+w(S,t)), we find that

wt +
1

2
σ2wSS +

1

2

(S − St0)2

(t− t0)2ασ2
= 0
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for which the terminal condition is w(S, T ) = 0 if there is no liquidation penalty. This can be solved in closed-form
(using Feynman-Kac) to give

w(S, t) =

(T−t)(S2−2SSt0+S
2
t0

+(t0−t)σ2)

(t−t0)(T−t0)σ2 + log T−t0
t−t0

2α

and

φ∗(S, t) =
µ̂t
ασ2

=
St − St0

ασ2(t− t0)
. (6)

This is of the same form as the solution φ̄ = µ
ασ2 for the problem when µ is known, but now µ has been replaced

with µ̂t, and φ∗(S, t) → φ̄ as t → ∞. Even if the true µ = 0, we see that it is optimal for the agent to trade with
partial information about µ (see simulation in Figure 2).

Remark 3.1 For the case of log utility U(x) = log x when S is a general semimartingale dSt = St(µtdt+ σtdWt),

it is well known that φ∗t = µt
σ2
t
, so in this case φ∗ =

µ̂∗
t )

σ2
t

(this is known as the growth optimal portfolio).

Remark 3.2 In practice, one could argue that one should not start trading unless we have already rejected the
null hypothesis that µ = 0.

3.1 Adding small proportionate transaction costs

From (6) we see that

dφ∗(St, t) =
dSt

ασ2(t− t0)

so d〈φ∗〉t
d〈S〉t = 1

α2σ4(t−t0)2 , and (from the formal computations in section 2.1 in [KM17], or section 4.1 in [KL13]) the

leading order term for the optimal trading strategy with proportional transaction costs of size ε� 1 and fixed time
horizon T > 0 with exponential utility function as above is to engage in the minimal amount of trading to keep φt
within φ̄±∆φt, where

∆φ∗t = ±(
3

2α

d〈φ∗〉t
d〈S〉t

St)
1
3 ε

1
3

and we see that the no-trade region (NTR) shrinks when t goes large or when St goes small (see numerics below).
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Figure 2: On the left we see a Monte Carlo simulation of the optimal stock holding φ∗t with µ unknown (blue) and
µ known (grey), and the corresponding stock price process St (right plot) for the Merton problem with exp utility
and unknown drift with t0 = −1, St0 = .95, S0 = 1, T = 20, α = 1, σ = .2 and true µ = 0.05. Since S0 > St0 by
assumption, the agent initially held a long position but went short as the stock price went down.
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Figure 3: Here we have plotted the upper boundary for the No-Trade region (blue) with proportional transaction
costs of size ε, and the optimal stock holding φ∗t (in grey) when the true drift is unknown, for t0 = −1; µ = 0.05,
σ = .2, ε = .005; St0 = S0−µ|t0|, S0 = 1; T = 1, α = 1, and φ starting on the upper boundary. Note that a smaller
investor needs to choose a larger α value to ensure a smaller φ̄ since we are working with exp utility.
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A Computing E(µ|(Ps)s∈[t0,t])

If Mt = µt+ σWt, then for a flat prior for µ on R at t0 (which is clearly an improper prior), using Bayes’ formula
and Girsanov’s theorem, the posterior p(µ|(Ps)s∈[t0,t]) of µ at t > 0 (given (Ps)s∈[t0,t]) is

p(µ|(Ps)s∈[t0,t]) ∝ Likelihood function of (Ps)s∈[t0,t]

=
1

σ
e
∫ t
t0
γdPs− 1

2

∫ t
t0
γ2dsQ0(

d(P − P0)

σ
)

=
1

σ
e
µ
σ (

Pt−Pt0
σ )− 1

2 (
µ
σ )

2(t−t0)Q0(
d(P − P0)

σ
)

= const.× e−
(µ−µ̄)2

2σ2/(t−t0)Q0(
d(P − P0)

σ
)

where Q0 denotes the Wiener measure on (C([t0, t]),B(C([t0, t])),Q0), γ = µ/σ and µ̄ =
Pt−Pt0
t−t0 , so the posterior

for µ is N(
Pt−Pt0
t−t0 , σ2

t−t0 ) as one would expect, so (formally at least) E(µ|(Ps)s∈[t0,t]) = Pt−P0

t−t0 .

If we modify this analysis to instead use a prior at t = 0 which is N(
P0−Pt0
0−t0 , σ2/|t0|), then we also find that

E(µ|(Ps)s∈[0,t]) =
Pt−Pt0
t−t0 .
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