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Abstract

We show how to calibrate a general Markovian stochastic volatility model with stochastic correlation to the
VIX implied volatility smile and the overall level, slope and curvature of the SPX smile in the T → 0 limit.
Explicit formulae are obtained for the asymptotic VIX smile for Heston and SABR-type models with mean
reversion, and the Lewis CEV-p-model. We also discuss how the Bass martingale can be used to give an exact
fit to a single VIX smile for T > 0. In the second half of the article, we derive a more involved integral equation
for the correlation function ρ(y) to be perfectly consistent with the short-maturity SPX and VIX smiles at all
strikes (or all strikes in an interval) as T → 0, and discuss consistency conditions between the wings of the two
asymptotic smiles and how to avoid |ρ(y)| > 1 for the calibrated ρ(y) in practice.

1 Stochastic volatility with stochastic correlation

1.1 Introduction

The theoretical value of the VIX index at time t is VIXt =
√
− 2

∆EQ(log St+∆

St
|Ft) where St is the S&P 500 index

value at time t, ∆ = 30 days, (Ft)t≥0 is the market/model filtration and Q is the pricing measure, so VIX2
t is

effectively a rolling 30-day Variance swap rate. A VIX option is a European call or put option on VIXT for some
maturity T , and if we replace the spot value S0 in the Black-Scholes formula with the VIX future price EQ(VIXT )
where Q is the pricing measure, we can define the implied volatility of a VIX call or put in the usual way by
inverting the Black-Scholes formula. VIX options are very liquid in practice (although their bid/offer spreads are
still comparatively high).

In this article, we first show how to calibrate a general Markovian stochastic volatility model to the VIX
implied volatility smile as T → 0 and the level, slope and curvature of the SPX asymptotic smile at-the-money.
The instantaneous correlation between the Brownians for the model is a deterministic function of the instantaneous
variance process Y (and hence stochastic), and our methodology requires that the observed SPX and VIX asymptotic
smiles exhibit H = 1

2 -type behaviour as T → 0, which is consistent with some recent empirical findings ([GL22],
[Rom22b], [AIL22],[AIL22b]). We also give explicit formulae for the asymptotic VIX smile for Heston, Hull-White
and CEV-p-type models, and we find that the SABR model produces a more realistic (i.e. increasing) asymptotic
VIX smile when the mean reversion κ > 0 (as opposed to flat when κ = 0). The calibration is obtained via a power
series expansion (in log-moneyness) to the eikonal equation for the geodesic distance for the model, and one can
also go to higher order in the calibration. Hence the novel stochastic correlation feature of the model allows for
decoupling between the SPX and VIX smiles in some sense, since ρ′(y0) provides an extra degree of freedom.

In the second part of the article, we derive a more involved integral equation for the correlation function ρ(y)
to be perfectly consistent with the short-maturity SPX and VIX smiles at all strikes (or all strikes in an interval),
and discuss consistency conditions between the wings of the two asymptotic smiles and ways to avoid |ρ(y)| > 1 for
the calibrated ρ(y) in practice. These results should not be blindly applied for T away from zero in practice (nor
indeed should any small-time large deviations result) since ideally one also has to account for the higher order heat
kernel asymptotics in [AFLZ17] for the SPX smile and modify the main result in [GHLOW12] for the VIX smile.
Rather the two main results are intended to show that having stochastic correlation is essentially the only way
to decouple the SPX and VIX smiles as T → 0 for an otherwise conventional two-dimensional Markov continuous
stochastic volatility model where the drift and volatility of the volatility process have no S dependence, and to show
that an exact theoretical solution to the joint calibration problem exists when T → 0 limit (modulo having the
calibrated |ρ(y)| ≤ 1). For T > 0, in principle we can use the martingale optimal transport approaches in [GLOW22]
and [Guy22] for the SPX-VIX calibration problem, but it is not a priori clear when a given set of SPX and VIX
smiles are arbitrage-free (see below for more on this approach). As a by-product of our analysis, we also report the
surprising behaviour that the point-to-line geodesic for this problem bends back on itself in the x-direction when
the log-moneyness x1 > 0 is sufficiently large, or equivalently when the correlation is sufficiently negative (for x1
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greater than some critical value), and we also discuss small-time VIX option pricing under local-stochastic volatility
which requires a new VIX transversality condition.

[FGS21] show that the VIX implied volatility smile exhibits power-law skew under the rough Heston model in
the small-maturity limit, and (up to a scaling factor) the asymptotic smile is essentially the same as for the spot
smile but with the correlation ρ set to 1. [FS21] augment the rough Heston model with an additional CGMY jump
process, and show that in principle one can simultaneously use the rough Heston parameters to fit the at-the-money
VIX level and skew as T → 0, and the CGMY parameters to fit the observed level, at-the-money correction and
at-the-money skew of SPX options as T → 0, and the drift of the V process can be made to be fully consistent with
the initial observed variance curve structure; in this sense, infinite-activity jumps allows the SPX and VIX smiles
to decouple as T → 0, although in our experience (using an Adams scheme) the CGMY-Heston model does not
calibrate well to two SPX smiles with maturity T1, T2 and a single VIX smile with maturity T1 compared to the
quadratic rough Heston model in [GR20] (see below for more on the latter), and adding jumps means we do not get

a well defined smile as T → 0 in the usual [FZ17] large deviations regime when the log-moneyness scales as xT
1
2−H .

[BPS22] consider an extended rough Heston model with jumps in the V process, for which one can still use a VIE
for pricing but the VIE now has an additional term which is essentially of the same form as the Lévy-Khintchine
formula.

H = 1
2 models have staged something of a resurgence this decade, in part because some empirical evidence (cf.

[GL22],[GL22b], [Rom22b], [AIL22], [AIL22b], [CGS22]) suggests that the SPX at-the-money skew does not always
follow a power-law as T → 0, and [Rom22b] suggests that SPX and VIX smiles may be better fit with a mixed
(non-rough) Bergomi-type model with two stochastic factors (or extension thereof), one of which has large mean
reversion. Markov models can also exhibit “fake roughness” when using non-parametric estimators for H based on
realized p-variation or maximum likelihood methods, due to the fact that volatility cannot actually be observed but
rather has to be approximated using sums of squares of realized log returns, so there is an additional microstructure
noise effect at work where the (re-scaled) difference between realized and actual volatility tends to a sequence of
i.i.d. Normals which are independent of everything else as the step size tends to zero (see Theorem 2.1 in [FTW22]
and e.g. Cont&Das[CD22] for more on this, and related work on estimating Hurst exponents in [CHLRS22b] using
wavelets, and [BFN22],[FTW22] using the Whittle asymptotic approximation for the (Toeplitz) covariance matrix
of the (stationary) increments process Yj = BHj+1 −BHj of fractional Brownian motion BH (see section 5.5 on page

109 in [1] for details)1 which is maximized to approximate the true maximum likelihood estimator for H. However,
in our experience the Whittle approximation to the true covariance matrix of Y does not work well below around
H = 0.25 (Yj is the usual canonical process used for these type of problems, since we need the process to be
stationary). Also, in our experience, GMM-type estimators of the type in [BCPV22] are of limited use in practice
because in reality we do not have access to tens of millions of historical data points for a single stock/index which
is typically required for decent ergodic convergence of estimators of e.g. E(IVtIVt+`) (where IVt is daily integrated
variance here), e.g. in [BCPV22] they use 16yrs of data with 1 sec intervals which is 94 million time points.

Abi-Jaber et al.[AIL22] (pages 10-11) and [AIL22b] report strong fits to SPX and VIX options for a simple
Markov model where the volatility is a time-dependent function (chosen so as to match a given variance curve
term structure) multiplied by an increasing quintic polynomial of a fast mean-reverting Ornstein-Uhlenbeck process
(which is close to the Fouque et al.[FPS00] fast mean-reverting regime) and in [AIL22b] they provide an analytic
formula for pricing VIX options as a double integral with respect to a Gaussian density over R× [T, T + ∆] which
can be approximated with Gaussian quadrature. A quintic function is used to ensure the VIX smile is increasing
in strike, although their volatility function can be extremely non-homogenous over small time periods when using
a flat variance curve term structure.

Another Markov (and essentially fast mean-reverting) model is proposed on pages 18-19 of Guyon[GL22] (see
in the calibrated parameter values in Table 7 there); this model is time-homogenous and the volatility cannot go
negative, and the correlation ρ for this model is −1 (so the model is complete) and has an additional state variable
R2 to incorporate additional stylized features (volatility clustering/spikes, positive-sloping VIX smiles Zumbach
effect etc.), but this model does not allow for exact sampling of the VIX (unlike the model in [AIL22b] and the
quadratic rough Heston model, see e.g. section 6.2 in [Rom22]), so nested Monte Carlo is required to price VIX
options which is computationally expensive/error prone. From Eq 4.2 in [GL22], we see this model behaves likes
just like the SABR model with β = 1 and ρ = −1 in the small-time fixed-strike limit (since drift terms do not affect
small-time Freidlin-Wentzell asymptotics), hence the model does not have three free parameters to fit the at-the-
money level, slope and curvature in the small-maturity limit because ρ is hard-wired to −1 (same also applies to the
quadratic rough Heston model when the c parameter for the model is zero; for c > 0 the volatility has a non-zero
lower bound, which is the price we pay for setting ρ = −1), but a more general model is considered in section 4.2
of [GL22]. Moreover, due to the massive calibrated vol-of-vol for the models in [AIL22],[AIL22b],[GL22] and large
strikes considered, standard Monte Carlo methods (Euler, Cholesky etc) for lower strike options considered (i.e. the
left wing of the smile) at small maturities (e.g. 1 month) lead to huge sample variance and bias for MC estimates
unless a colossal number of time steps and sample paths are used (e.g. by running on a GPU) and if ρ = −1
or close to −1, even very slightly out-of-the-money calls have close to zero probability of expiring in-the-money
which also causes problems for Monte Carlo, and importance sampling with a Girsanov change-of-measure typically

1i.e. fractional Brownian noise, see e.g. [ST02])
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doesn’t work in practice to resolve this for calibrated parameter values. One could argue their models are in the
fast mean-reverting large deviations regime of Fouque at al. [FFK12],[FFF10], for which the rate function for the
log stock price in the asymptotic regime is the same as the rate function in [FK16] for the large-time regime, but
with the contribution from the drift of the log stock price removed. ρ-values close or equal to −1 also mean we gain
little or no benefit from the classic Renault-Touzi[RT96] conditioning trick for Monte Carlo which leads to very
high sample variance for Monte Carlo.

To give a concrete example, using a standard antithetic Cholesky (or basic Euler) MC scheme with the usual
Renault-Touzi conditioning trick and 1024 time steps, we estimate the standard deviation of the proportional pricing

error for the put option with log K
S0

= −0.2 in Figure 1 (for T = 1 month) in [AIL22] to be ≈ 6.64%×
√

106

N where

N is the number of paths, and this number is slightly larger for the T = 1 month smile on page 19 in [GL22] for
the leftermost strike there of K = 0.75 (see also code provided by the authors in [AIL22b]). We can obviously
multiply this number by e.g. Φ−1(.975) ≈ 1.96 to estimate a 95% confidence interval, but this analysis also ignores
the bias which we see when we run the code with a fixed seed for different TimeStep values. For these reasons,
we strongly advocate using e.g. an explicit or implicit ADI/Douglas finite difference scheme as opposed to Monte
Carlo for the [AIL22b] model. The p-value and MLE method discussed in [F23] also show that neither of these
models (or any other “in vogue” models - e.g. rough Bergomi-type models, and (discretized) rough and quadratic
rough Heston models) are consistent with historical SPX time series (i.e. under the P-measure). The p-value method
extracts the underlying Brownian increments (residuals) implied by the data (either SPX time series and/or realized
variance using e.g. 1 minute bins for a 6.5 trading day) and tests whether they are in fact i.i.d Normals using e.g.
the well known Kolmogorov-Smirnov and Shapiro-Wilks normality tests. In particular the [GL22] model leads to
volatility paths which are abnormally large and not consistent with SPX realized variance); rough Bergomi-type
models (for which log Vt is of course Gaussian) do at least fit the data much better than discretized rHeston and
qrHeston models, but there are still inconsistencies between H-values obtained from the p-value method and the
MLE approach and right tail of log Vt is not Gaussian in practice. The p-value method applied to the continuous-
time Markovian two-factor PDV model in [GL22], leads to V paths which are way too smooth to the naked eye,
because the volatility is overly dominated by the unusual drift term.

Severe Monte Carlo problems also arise for rough models (rough Heston, mixed rough Bergomi, quadratic rough
Heston etc.) for small H-values (e.g. .05 and below) using the usual hybrid/moment-matching schemes for realistic
calibrated parameters, which is easily exposed by comparing the closed-form expressions for the third moment of
the driftless log stock price against a Monte Carlo estimate for the third moment (see section 5.2 in [FGS21] for
the rough Heston model, and section 4 in [FFGS22] for the rough Bergomi model). In our experience the quadratic
rough Heston model provides a much better fit to e.g. a two SPX smiles and a single VIX smile (e.g. with kernel
K(t) = e−λttα−1 and θ = 0 we found that α = 0.5342, λ = 4.363, a = 0.2006, b−Z0 = 0.09197, c = 0.001921 when
calibrated to the T = 21/365 and T = 51/365 1st Aug 2018 SPX smiles and the T = 21/365−VIX smile given in
Guyon[Guy21] using 7.5 million sample paths and 4096 time steps (ran on a GPU), and note that η can be set to
1 and Z0 = 0 W.L.O.G. so the model is very parsimonious, but unfortunately we do not have an expression for the
third moment of the driftless log stock price for this model so we can never say for sure how accurate Monte Carlo
results are, and the asymptotic short-maturity implied volatility skew can flip sign (see [FS21]).

The recent article of Friz et al.[FSW22] makes some positive theoretical progress in addressing Monte Carlo
problems for rough models, showing that the weak error rate for Monte Carlo is 1

2 for H < 1
6 and 1 for H = 1

2 ,
although based on practical experience we suspect the pre-factor in front of this error estimate blows up as H → 0
for the aforementioned well known rough models, and is likely to grow at least linearly in the vol-of-vol parameter
when H = 1

2 . One can obtain very good results for the rough Heston model for SPX and VIX options using a basic
Adams scheme and Gaussian quadrature for the Fourier inversion (consistent with the exact theoretical value for the
third moment of the driftless log stock price), but the rough Heston model can often produce unrealistic downward-
sloping or humped-shaped VIX smiles away from T = 0 (mixed rough Bergomi models are better at avoiding this
issue). One should also never use H-values as low as .01 for the quadratic rough Heston model particularly if one
is using also using the finite-dimensional Markov approximation and neural network approximations on top of this
as some authors have done with as little as 50,000 time steps (see e.g. footnote 2 on page 5 in [RZ22]), since the
answers will typically be wildly inaccurate.

Guo et al. [GLW22],[GLOW22] (see also [HL19] and [Guy22]) show how to construct a generalized local/stochastic
volatility model consistent with a finite number of European tradeable options at multiple maturities by minimizing
a cost function over calibrated models which penalizes deviations from a standard reference model (e.g. Black-
Scholes or Heston), and then re-casting the problem via dualization as an (unconstrained) minmax problem in
terms of a non-linear HJB equation (so the cost function effectively regularizes the problem). If options at multiple
maturities are used in the calibration set, the HJB equation unfortunately also includes Dirac source terms (but
this can be avoided using a nested PDE, see [F23]), and this method is extended to include VIX options in section

3.3 in [GLOW22], by re-expressing Vt for the reference model in terms of E(
∫ T
t
σ2
sds|Ft) (this analysis in simplified

in [F23] using that VIX2
t is just an affine function of Vt when the drift of V under the reference model has a

Heston-type drift). This approach is mathematically rich and exciting albeit numerically intensive since it requires
numerically solving a non-linear HJB equation using very fiddly implicit policy-iteration finite difference schemes
and then maximizing over the option weights vector. If path-dependent options are included in the calibration
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set we have the issue that we do not know whether such a consistent model exists to begin with (which is partly
what motivated the current paper to address such consistency issues more explicitly as T → 0). We also refer the
reader to related results in [Guy21] for a two-period model, and formal results in [Guy22] for the continuous-time
setting, using a similar approach but where the penalty function is now the relative entropy of the model from
a reference stochastic volatility model. The Guyon approach allows one to compute the inner inf in the minmax

duality problem explicitly but this trick only works if E(e
∑n
i=0 wi(ST−K

+
i )) < ∞ where K0 = 0 and the wi’s are

the optimal call option weights for the case when we only have finite tradeable call options, but this expression
is infinite if

∑n
i=0 wi > 0 for most models of interest (e.g. Black-Scholes, Markov and rough stochastic volatility

models), because exponential moments of the stock price do not exist. One can circumvent this by using e.g. a
Bachelier-type reference model, or just not using the trick and computing the inner inf by numerically solving the
associated HJB equation as discussed above. The [GLOW22] methodology can in principle be generalized to rough
reference model using a variational approach, but one ends up with an intractable non-standard FBSDE.

[Lew16] computes the asymptotic smile for the CEV(p)-vol class of stochastic volatility models with non-zero
correlation, using a scaling solution to reduce the associated eikonal PDE to a non-linear ODE (see also [FJ11] for
similar computations for a general uncorrelated local-stochastic volatily model but using geodesic as opposed to
working directly with the eikonal equation), see also [GL14] and [Gul17] for geodesic computations for the Heston
model, where the geodesics are shown to be shifts or translations of the standard cycloid x = s− sin s, y = 1−cos s.
Higher-order asymptotic estimates for implied volatility under local/stochastic voatility models are computed in
[AFLZ17] (and formally in the earlier works [HL09], [Pau10]) using the heat kernel expansion, and in [BBF04]
using viscosity solutions. See also [FG21] and [Fuk22] for another recent and interesting development on asymptotic
expansions for SABR and rough Bergomi models, and [JMP21] who provide explicit small-time formulae for the
at-the-money implied volatility, skew and curvature for SPX and VIX options for a two-factor rough Bergomi model
(this model typically fits a single VIX option smile well but doesn’t jointly fit SPX and VIX options well in our
experience, see similar findings in [Guy21b] where the two-factor model is refereed to as a “skewed” rough Bergomi
model).

1.2 The model

We work on a filtered probability space (Ω,F ,P, (Ft)t≥0) throughout where the filtration (Ft) satisfies the usual
conditions.

Consider a Markovian stochastic volatility model for a stock price process St = eXt , where{
dXt = − 1

2Ytdt +
√
Yt(ρ̄(Yt)dW

1
t + ρ(Yt)dW

2
t ) ,

dYt = κ(θ − Yt)dt + α(Yt)dW
2
t ,

(1)

where W 1,W 2 are two independent standard Brownian motions with respect to Ft, Y0 = y0 > 0, ρ̄(y) :=
√

1− ρ(y)2

and −1 ≤ ρ(y) ≤ 0 for all y, and we set Vt = Yt throughout. We further assume ρ is continuous, and that α
differentiable and strictly increasing with

α(y) ∼ ν∞y
p (2)

as y → ∞ with p ∈ (0, 1] and κ ≥ 0, and we assume κ and α are such that Y = 0 is unattainable, see e.g. usual
Feller conditions discussed in e.g. [KS91] and [KT81]. We further assume that X0 = 0 without loss of generality
since the law of Xt −X0 is independent of X0.

Remark 1.1 Our localization arguments in the next subsection deal with the issue that α(y) may not be bounded
or globally Lipshitz (which is somewhat restrictive in practice), and in particular we will not actually require a full
LDP for (X,Y ).

Remark 1.2 By a well known Girsanov argument (see e.g. Lemma 2.3 and related results in [AP07] and [LM07]),
E(St) = P∗(τ∞ > t) where under P∗, Y has drift κ(θ−Yt)+α(Yt)

√
Ytρ(Yt) and τ∞ is the explosion time for Y . But

from our assumption that ρ ≤ 0, Y cannot explode under P∗ either. Thus E(St) = 1, and (given that the model is
Markov in the pair (S, Y )) this implies that S is a martingale.

1.3 Localization arguments

The localization arguments in the proof of the following lemma allow us to deal with the unbounded drift for Y
and the unbounded diffusion coefficient for the pair (X,Y ).

Lemma 1.1 Let g = gij denote the Riemmanian metric on R× (0,∞) equal to the inverse (aij)−1 of the diffusion

coefficient for (X,Y ) which has line element ds2 = 1
ρ̄(y)2 ( 1

ydx
2 − 2ρ(y)√

yα(y)dxdy + 1
α(y)2 dy

2). Then

lim
T→0

T logP(XT > x1) = −I(x1) ,
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where

I(x1) =
1

2
( inf
f∈C(0,y0)([0,1]):f1(1)=x1

∫ 1

0

2∑
i,j=1

√
gij
df i

dt

df j

dt
dt)2 =

1

2
d(x1)2

and d(x1) is the shortest distance from (0, y0) to the vertical line {x = x1} under the metric g.

The proof of this lemma is deferred to Appendix F.

Remark 1.3 Note that we have not proved (nor do we need) an LDP for the pair of processes (X,Y ) here.

1.4 The eikonal equation

From the argument on page 209 in [doC92], we know that the distance-minimizing geodesic γ from (x0, y0) to the
line {x = x1}, satisfies the transversality condition

∂L

∂ẏ (x1,y∗1 )

= g(
dγ

dt
, (0, 1))|(x1,y∗1 ) = 0 (3)

i.e. the shortest geodesic comes in perpendicular to the vertical line under the metric gij (see page 14 in [FJ11] for
more details on this point). If ρ = 0, the shortest geodesic is also perpendicular in the usual Euclidean sense.

Using (27), we now give a self-contained geometric (as opposed to probabilistic) proof of two well know results
which have been proved in [BBF04] using PDE methods with viscosity solutions2

Lemma 1.2 Let y∗1(x1) denote the y-value of the shortest geodesic at x = x1 > 0 from (0, y0) to the vertical line
{x = x1} (see discussion above about uniqueness). Then d(x1) is differentiable and d′(x1) = 1√

y∗1 (x1)
(see also

[BBF04]), and the geodesic distance d(x, y) = d(x, y;x1) from any point (x, y) (with x < x1) to the vertical line
with abscissa-value x1 under the metric gij satisfies the eikonal PDE:

yd2
x + 2ρ(y)

√
yα(y)dxdy + α(y)2d2

y = 1 (4)

with d(0, y) = 0, for x 6= x1 (see e.g. section 6 in [BBF04]). (4) holds for all x if we replace d with the signed
geodesic distance (i.e. flip the sign of d when x > x1, see also section 6 in [BBF04]).

The proof is deferred to Appendix B.

Remark 1.4 d(−x1) also satisfies (4) with the same boundary condition but with the sign of ρ reversed.

Remark 1.5 y∗1(x1) = limt→0 E(Yt|Xt = x1) is the effective local volatility (also known as the Markovian pro-
jection) as t → 0 (see [BBF04]); we do not require this result in this article. For a general model of the form
dSt = StY

p
t dWt, dYt = νY pt dBt with dWtdBt = −1dt and p ∈ (0, 1) (which includes Heston and Hull-White models

as special cases) in the small-time limit we essentially have that

Xt ≈ ν(Yt − Y0) ,

so in particular

y∗1(x1) = y0 − νx1 (5)

for x1 ∈ (−∞, y0

ν ], see e.g.[Gath06], and St = eXt is approximately either the exponential of a square root process
or a GBM for p = 1

2 and p = 1 respectively, and the p = 1 case also applies to the toy Markovian path-dependent
volatility model introduced on page 18 in Guyon[GL22], since the diffusion term in Eq 4.3 there just corresponds
to a SABR model with p = 1 and ρ = −1 in the small-time limit.

2This can also be proved by making an exponential transformation to the original backward Kolmogorov equation and then considering
the small-noise limit to obtain a HJB equation for 1

2
d(x1)2, see e.g. Fleming&Soner[FS93]
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1.5 Using α(.) and ρ(.) to fit the asymptotic VIX and SPX smiles

If we now assume that

ρ(y) = ρ0 + ρ1(y − y0) + O((y − y0)2) ,

then by equating coefficients in (4), we can easily compute a power series solution of the form d(x, y) = x√
y +

g2(y)x2 + g3(y)x3 +O(x4), and we find that the asymptotic implied volatility σ̂(x1) for European options behaves
like

σ̂(x1) =
−x1

d(−x1, y0)
=
√
y0 +

ρ0α(y0)

4y0
x1 +

α(y0)

48y
5
2
0

((2− 7ρ2 + 4y0ρ0ρ1)α(y0) + 4y0ρ
2
0α
′(y0))x2

1 + O(x3
1), (6)

where x1 = log K
S0

= logK is the log-moneyness of the call/put option under consideration and K is the strike,
where we have used the well known formula from [BBF02] for σ̂(x), and

y∗1(x1)
1
2 =

√
y0 +

ρ0α(y0)

2y0
x1 + O(x2

1) , (7)

and we note that the O(x1) term is twice the O(x1) term in (6), which is the familiar “ 1
2 skew” rule of thumb. We

can also derive a recurrence relation for higher order terms gn(y), but the expressions are very fiddly so we omit
the details.

If α is known, we can use (6) to choose y0, ρ0 and ρ1 to fit a given/observed overall level, slope and convexity for
I at x1 = 0, i.e. fit behaviour of the form σ̂(x1) = σ0 + σ1x1 + σ2x

2
1; of course we need the value of the calibrated

ρ0 parameter:

ρ0 =
4σ1y0

α(y0)
=

4σ1σ
2
0

α(σ2
0)

(8)

to lie in [−1, 1], or else the model is mis-specified, we are also assuming that the limiting implied volatility
limT→0 σ̂(x1, T ) exists and is finite and non-constant, which is not true for e.g. rough volatility or Lévy mod-
els for x1 fixed in general, see e.g. [FG21]. The formula for ρ1 is given by

ρ1 =
56y2

0σ
2
1α(y0)− α(y0)3 − 32y3

0σ
2
1α
′(y0)

8y2
0σ1α(y0)2

+
3
√
y0σ2

σ1α(y0)
(9)

(recall that σ0 =
√
y0) and we can go to higher order with this procedure as well, i.e. fit the coefficients of ρ(y) =∑n−1

k=0 ρky
k to fit an observed asymptotic smile of the form σ̂(x1) =

∑n
k=0 σkx

k
1 ; ρk depends on (σ1, ..., σk, σk+1),

and we find that ρk is uniquely determined and finite for all k so long as the skew term σ1 6= 0, and ρk is affine in
σk+1.

Remark 1.6 (8) and (9) can also be used to make smart initial guesses for a calibrating a model of the form in
(1) to multiple non-zero maturities.

1.6 Calibrating θ to the VIX future price

We first note that

VIX2
t =

1

∆
E(

∫ t+∆

t

Yudu|Ft) =
1

∆

∫ t+∆

t

E(Yu|Ft)du , =
1

∆

∫ t+∆

t

E(Yu|Yt)du , (10)

E(Yt) = Y0 + E(

∫ t

0

κ(θ − Yu)du +

∫ t

0

α(Yu)dWu) = Y0 +

∫ t

0

κ(θ − E(Yu))du .

Setting g(t) := E(Yt) we see that g′(t) = κ(θ − g(t)) with initial condition g(0) = y0, which has solution g(t) =
θ + e−κt(Y0 − θ). For (10), we need to be able to compute E(Yu|Yt). But since E(Yu|Yt = y) = E(Yu−t|Y0 = y), we
see that E(Yu|Yt) = θ + e−κ(u−t)(Yt − θ) for u ≥ t, so setting t = T in (10) we see that

VIX2
T =

1

∆

∫ T+∆

T

(θ + e−κ(u−T )(YT − θ))du .

We can compute the integral here explicitly since YT does not depend on u, and we obtain

VIX2
T = F (YT )2 = aYT + b

for κ > 0, where

a =
1− e−κ∆

κ∆
, b =

θ

κ∆
(e−κ∆ + κ∆− 1) > 0 (11)
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and F (y) =
√
ay + b, so in particular

VIX2
0 = aY0 + b . (12)

If κ = 0 then VIX2
T = YT since Y is a martingale in this case, i.e. a = 1 and b = 0.

For κ > 0, since VT ≥ b > 0, we see that

VIXT = (
1

T

∫ T+∆

T

ET (Vu)du)
1
2 ≥

√
b ,

which implies that the VIX implied volatility is zero for strikes k ≤
√
b at all strikes, since in this case E((VIXT −

k)+) = E(VIXT )− k, i.e. there is no time-value to the option.

Lemma 1.3 E(VIXT −VIX0) = E(VIXT −
√
aY0 + b) = o(

√
T ) as T → 0.

The proof is deferred to Appendix C

Remark 1.7 Formally at least, we can sharpen this statement to the following:

E(VIXT ) = (PTF )(y) = (I + TA +
1

2!
T 2A2 + ...)F (y)|y=y0

=
√
ay0 + b + T (

a(θ − y)κ

2
√
ay0 + b

− a2α(y0)2

8(ay0 + b)
3
2

) + O(T 2) , (13)

where A = κ(θ − y) ∂∂y + 1
2α(y)2 ∂2

∂y2 is the infinitesimal generator of Y and Pt is the associated semigroup.

Using this lemma, and noting that b is a linear function of θ, we can then calibrate θ to the observed asymptotic
VIX future price as T → 0 by equating said price with

√
ay0 + b =

√
ay0 + b(θ) (for κ given), and solving for θ.

1.7 Calibrating α to the short-maturity VIX smile

With κ chosen exogenously and θ calibrated as above, we will now show how α can be calibrated exactly to the
observed small-time asymptotic behaviour of VIX options. We first note that for k >

√
b

1

2
dVIX(k)2 := − lim

T→0
T logP(VIXT > k) = − lim

T→0
T logP(YT >

k2 − b
a

) =
1

2
dY (

k2 − b
a

)2 (14)

where a and b are defined as in (11) (note that k is not log-moneyness here) where

dY (y) :=

∫ y

y0

du

α(u)
,

so d′Y (y) = 1
α(y) , and dY (k) = dVIX(

√
ak + b).

Corollary 1.4 For VIX0e
x >
√
b, we see that

lim
T→0

T logE((VIXT −VIX0e
x)+) = −1

2
dVIX(VIX0e

x)2 .

Proof. See Appendix D.

Corollary 1.5 If σ̂VIX(k, T ) denotes the implied volatility of a VIX call option with strike k >
√
b, then σ̂VIX(x)

is given by the following [BBF02]-type formula:

σ̂VIX(x) := lim
T→0

σ̂VIX(VIX0e
x, T ) =

x

dVIX(VIX0ex)
(15)

for x ∈ R, and recall that (12) has to be satisfied.

The proof is deferred to Appendix E.

From (15) and (14), we can then back out α(.) from the observed σ̂VIX(x).
In practice, to avoid |ρ(y)| > 1, we can consider a ρ(y) of the form

ρ(y) = c1 tanh(a1(y − y0) + b1) + η1 (16)

and match the parameters to the calibrated values for ρ0 = ρ(y0) and ρ1 = ρ′(y0), and exogenously choose ρ(0) and
limy→∞ ρ(y) (see Figure 2 for a numerical example). The values of y0, ρ0 and ρ1 here will themselves be obtained
by matching the observed level, slope and convexity of the asymptotic implied volatility using the expansion in (6)
(see Figure 2 below for a numerical calibration example).
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1.8 Examples

1.8.1 Hull-White/SABR-type model

For a Hull-White type model with α(y) = νy, dY (y) = 1
ν log y

y0
, we find that

σ̂VIX(x) =


xν

log[
−θ+e2x(θ−y0)+e∆κθ(1−∆κ)+e2x+∆κ(y0+θ(∆κ−1))

(e∆κ−1)y00)
]

(κ > 0)

xν

log
e2x+∆κ∆κ+e∆κ(1−∆κ)−1

e∆κ−1

= ν−e−∆κν
2∆κ − (1−e−∆κ−∆κ) ν)x

2∆κ + O(x2) (κ > 0, θ = y0)

1
2ν (κ = 0) .

The O(x) term for the κ > 0, θ = y0 case is positive for κ sufficiently large, and σ̂VIX(x) ↗ 1
2ν as x → ∞, and

σ̂VIX(x) is concave in x, so this behaviour is more realistic than the Heston case discussed below (see plot of σ̂VIX(x)
in Figure 8).

1.8.2 The Heston model

For the standard Heston model α(y) = ν
√
y, dY (y) = 2

ν (y−√y0) and setting θ = y0 for simplicity, the rate function
for VIXT is Gaussian, and from (15) we find that

σ̂VIX(x) =


xν

2(

√
y0(e2x+∆κ∆κ+e∆κ(1−∆κ)−1)

e∆κ−1
−√y0)

= 1−e−∆κν
2
√
y0∆κ + e−∆κ(2+e−∆κ(−2+∆κ)) ν

4
√
y0∆κ x + O(x2) (κ > 0)

1
2νx√

y0 (ex−1) = ν√
y0

( 1
2 −

1
4x + 1

24x
2 + O(x3)) (κ = 0) .

(17)

For κ = 0, σ̂VIX(x) here is convex and monotonically decreasing, i.e. a pronounced negative skew and no smile
much like the spot implied volatility for a Bachelier model (see Figure 6), and note that this is not the kind of
behaviour observed in practice where VIX smile are increasing in the strike. One can circumvent this issue by
instead assuming that α(y) ∼ νyp for p > 1 as y → y0 (like the so-called 3

2 model), but also impose that α(y) ∼ νyq
for some q ∈ [0, 1] as y →∞ to ensure the martingale property for Y is preserved and hence that VIX2

T = y0 when
κ = 0 (see Figure 2 for a numerical example like this).

For κ > 0, σ̂VIX(x) is monotonically increasing for x < x∗ for some x∗ and decreasing for x > x∗, and in
particular the at-the-money VIX skew is positive for κ sufficiently large.

1.8.3 Lewis CEV-p-type model

If α(y) = νyp for p ∈ (0, 1) and κ = 0, then

σ̂VIX(x) =
(1− p)xν

(ex
√
y0)2p−2 − y1−p

0

(p ∈ (0, 1)) (18)

and this formula holds asymptotically as x→∞ if α(y) ∼ νyp as y →∞.

Remark 1.8 We can also compute σ̂VIX(x) explicitly for a mixed model where α(y) = νyp + ξyq for p, q > 0 in
terms of the confluent hypergeometric function (we omit details for the sake of brevity), which is useful for fitting
VIX smiles in practice for T � 1.

1.9 The Bass martingale - an exact fit to a single VIX smile

Let Yt = Vt = E(g(WT )|Wt) = f(Wt, t), where W is a standard Brownian, and g is chosen so VT has a given law,
and since V is a martingale, we know that VT = VIX2

T and

dYt = fx(Wt, t)dWt = α(Yt, t)dWt

where α(y, t) = fx(f−1(v, t), t), i.e. V is a time-inhomogenous diffusion. Thus if the prescribed law for
√
VT agrees

with the law for VIXT implied by VIX option prices at maturity T , then this model is consistent with that single-
maturity VIX smile. One is then “locked in” to the spot price dynamics dSt = St

√
VtdBt, where dBtdWt = ρdt, so

the only additional freedom one has to fit Europeans is to make the correlation stochastic. V here is the well known
Bass martingale (see e.g. [BBHK20]) and it should be possible to extend this to multiple maturities, as [CH21]
have done for standard European options).
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2 An integral equation for ρ(y) for an exact fit to the SPX/VIX smiles

From here on, we make the following assumption:

Assumption 2.1
(i) −1 < ρ(y) ≤ 0
(ii) ρ(y0) < 0
(iii) ρ̄(y0)2y0 > ρ̄(y)2y for all y ∈ [ρ̄(y0)2y0, y0), and ρ̄(y)2y is non-decreasing in y for y ∈ [y0, ymax] for some
ymax > y0

(iv) ρ(y)→ ρ∞ ∈ [−1, 0) as y →∞.

Remark 2.1 A necessary condition for the first part of Assumption iii) is that d
dy (ρ̄(y0)2y0 − ρ̄(y)2y)|y=y0 =

d
dy (−ρ̄(y)2y)|y=y0

≤ 0, which is equivalent to

ρ2
0 + 2y0ρ0ρ1 ≤ 1 , (19)

or (if ρ0 < 0) ρ1 ≥ − 1−ρ2
0

2y0|ρ0| , which in turn puts an upper bound on the at-the-money convexity σ2 in (9), assuming

that σ1 < 0 as well. See Remark 2.3 below for a discussion on the extent to which we can relax this condition.

For convenience, we now define

x∗1 =

∫ y0

ρ̄(y0)2y0

(
ρ̄(y)2y

α(y)
√
ρ̄(y0)2y0 − ρ̄(y)2y

−
ρ(y)
√
y

α(y)
)dy .

Proposition 2.2 (From Assumption 2.1ii) and iii)) x∗1 > 0, and for x1 ≤ x∗1, x1 and y∗1(x1) are related via

x1 =

∫ y0

y∗1 (x1)

(
ρ̄(y)2y

α(y)
√
y∗1(x1)− ρ̄(y)2y

−
ρ(y)
√
y

α(y)
)dy . (20)

For x > x1, we define yc(.) via y∗1(x1) = yc(x1)ρ̄(yc(x1))2 (note yc is uniquely defined by the second part of
Assumption 2.1 iii)); then x1 and y∗1(x1) are related via

x1 = (

∫ yc(x1)

y0

+

∫ yc(x1)

y∗1 (x1)

)
ρ̄(y)2y

α(y)
√
y∗1(x1)− ρ̄(y)2y

dy +

∫ y∗1 (x1)

y0

ρ(y)
√
y

α(y)
dy (x1 > x∗1) (21)

if yc(x1) ≤ ymax. y∗1(x1) is continuous in x1, and y∗1(x1) is minimized at x1 = x∗1 where y∗1(x∗1) := ρ̄(y0)2y0. The

Riemmanian distance from (0, y0) to (x1, y
∗
1(x1)) for all x1 ∈ R under the metric gij defined above is then given by

d(x1) =


√
y∗1(x1) |

∫ y∗1
y0

dy

α(y)
√
y∗1 (x1)−ρ̄(y)2y

| (x1 ≤ x∗1)√
y∗1(x1)(

∫ yc(x1)

y0
+
∫ ρ̄(yc(x1))2yc(x1)

yc(x1)
) dy

α(y)
√
ρ̄(yc(x1))2yc(x1)−ρ̄(y)2y

(x1 > x∗1)
(22)

(assuming yc(x1) ≤ ymax for the second formula), and if

y∗1 ≥ y0ρ̄(y0)2

ρ(y0)2

and x1 > 0 and yc(x1) ≤ ymax, the shortest geodesic from (0, y0) to {x = x1} bends back on itself in the x-direction.

Remark 2.2 (21) and (22) generalize the two main two equations Eq 26 and 27 in [FJ11] for the case when ρ = 0
(see also section 12.10 in [Lew16] for similar computations for the specific case when α(y) = ξyp by solving the
eikonal PDE rather than working with the underlying geodesics as we are here). Since ρ̄(y0)2y0 > 0 and y∗c (x1) <∞,
we do not have to worry about these shortest geodesics hitting y = 0 or ∞.

The proof of the Proposition is given below Corollary 2.3.

Remark 2.3 The first part of Assumption iii) implies that y∗1 − ρ̄(y)2y > 0 for all y∗1 ∈ [ρ̄(y0)2y0, y0) and all
y ∈ (ρ̄(y0)2y0, y0), for which we have seen that (19) is a necessary condition, but this condition can be restrictive in
practice. If ρ̄(y0)2y0− ρ̄(y)2y has a root in [ρ̄(y0)2y0, y0) i.e. the first part of Assumption 2.1iii) is violated, let ymin

denote the smallest y1-value such that y1 − ρ̄(y)2y ≥ 0 for all y ∈ [ρ̄(y0)2y0, y0). If ymin − ρ̄(y)2y has a minimum at
ŷ over [ρ̄(y0)2y0, y0] which is a stationary point (i.e. d

dy (ρ̄(y)2y)|y=ŷ = 0) then ymin − ρ̄(y)2y just touches zero at ŷ,

but does not go below zero on this range. Then if ymin ∈ [ρ̄(y0)2y0, y0), this is the lowest attainable value for y∗1 ,
and from the differentiability of ρ̄(y), we know that

ymin − ρ̄(y)2y = const.× (y − ŷ)2 + O((y − ŷ)3) , (23)
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so the pole in (34) at y = ŷ is not integrable, so

lim
y∗1↘ymin

x(y∗1) = +∞ (24)

and hence there is a shortest geodesic from (0, y0) to {x = x1} for any x1 > 0 all of which have y′(0) < 0 and no
turning point along the geodesic, and in this case y∗1(x1) = 1

d′(x1)2 ↘ ymin as x1 → ∞. so the asymptotic implied

volatility smile σ̂(x1) = x1

d(x1) tends to a finite constant as x1 → +∞ since d(x1) ∼ x1d
′(∞) as x1 → ∞, and the

Assumption (19) does not have to hold in this case.

Remark 2.4 If we let ρ(y) → −1 in Proposition 2.2, then ρ̄(y) → 0 and x∗1 → x∗,ρ→−1
1 :=

∫ y0

0

√
y

α(y)dy and in the

limit ρ→ −1, y∗1(x1) satisfies

x1 =

∫ y0

y∗1 (x1)

√
y

α(y)
dy

and d(x1) →
∫ y∗1
y0

dy
α(y) for x1 ≤ x∗1, and d(x1) = ∞ for x1 ≥ x∗1, since such x1 values are essentially unattainable.

The geodesic equations in this case are

x′(t) = −
√
y

α(y)
y′(t) , y′(t) = ±α(y)

√
y∗1 ,

so dy
dx = −

√
y

α(y) , which is a straight line with slope ν for the Heston case (see also the second figure in the top row

of Figure 4). Note we have let ρ(y)→ −1 here, not just set ρ(y) = −1. We cannot directly do the latter using our
gij metric since the line element ds2 becomes singular in this case, but we can circumvent this issue by performing

a simple one-dimensional Freidlin-Wenztell/geodesic analysis, i.e. we know that Xt = −
∫ t

0

√
YsdW

2
s = −F (Yt) +

(drift term), for some F with F ′(y)α(y) =
√
y and Yt satisfies the LDP as t → 0 with rate J(y) =

∫ y
y0

du
α(u)du, so

Xt satisfies the LDP with rate J(F−1(y)), and note F is linear in the Heston case.

Corollary 2.3 From (2), if ymax =∞, then σ̂(x) has tail behaviour

σ̂(x1)2 ∼ c̃±ν∞,ρ∞,px
2

3−2p

1 (25)

as x1 → ±∞ for some constants c̃±ν∞,ρ∞,p which are given in the proof. Note the condition ymax = ∞ is only
required for x1 → +∞ limit.

The proof is given below the proof of Proposition 2.2.

Remark 2.5 (25) essentially gives a consistency condition for the wings of the SPX and VIX asymptotic smiles
to be consistent: we can either obtain p and ν∞ from the tail behaviour of the observed σVIX(x) function, so we
are only free to choose ρ∞, or we can exogenously choose p, ν∞ and ρ∞ to fit desired tail behaviour for σ̂(x1)
as x1 → ±∞ as in (25), which then imposes (2) and fixes the behaviour of σ̂VIX(x) for |x| → ∞ via (18) (this
is appropriate if e.g. we only have an observed σVIX(x) function over a finite interval so we need to extrapolate
σVIX(x) to x = ±∞.

We now have the following corollary for the calibration problem of solving for ρ(.) for a given/observed d(x1) =
x1

σ̂(x1) function:

Remark 2.6 We can re-write (22) as

f(y1) :=
d((y∗1)−1(y1)
√
y1

=

∫ y1

y0

dy

α(y)
√
y1 − yρ̄(y)2)

(26)

where (y∗1)−1(y1) is the smallest non-negative root of y∗1(x1) = y1, and for x > x∗1 as

f(y1) = (

∫ yc((y
∗
1 )−1(y1))

y0

+

∫ y1

y0

)
dy

α(y)
√
y1 − yρ̄(y)2)

, (27)

where in the second equation, the function yc(x1) is defined implicitly in (38) in terms of y∗1(x1) and (y∗1)−1(y1) is
the largest non-negative root of y∗1(x1) = y1. If d(x1) = x

σ̂(x) is given or observed for all x1 in some interval [a, b]

(and hence also y∗1(x1), using that d′(x1) = 1√
y∗1 (x1)

), then (26) and (27) are non-standard Abel-type integral

equations for the unknown function ρ(y) on [y∗1(a), y∗1(b)], assuming α(y) has already been calibrated to the
asymptotic VIX smile σ̂VIX or is given. Even if we can solve the integral equation, it does not give us ρ(y) for
y ∈ (0, ρ̄(y0)2y0 = minx2∈Ry

∗
1(x1)), since the behaviour of α and ρ in this range does not affect y∗1(x1) and d(x1).
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Remark 2.7 The calibrated ρ(y) must of course satisfy |ρ(y)| ≤ 1 (if not then the model is mis-specified, and may
suggest that the diffusion coefficient for the model should have x-dependence as well, e.g. let ρ also depend on x).

Proof. (of Proposition 2.2). We break the proof into multiple parts:

1. Deriving the geodesic equations. The Lagrangian is conserved along geodesics, i.e.

L =
1

2ρ̄(y)2
(
1

y
(
dx

dt
)2 − 2ρ(y)

√
yα(y)

dx

dt

dy

dt
+

1

α(y)2
(
dy

dt
)2) = E

for some constant E (see Appendix A for proof), and the x-component of the Euler-Lagrange equation is

d

dt
(

1

2ρ̄(y)2
(
2

y
(
dx

dt
) − 2ρ(y)

√
yα(y)

dy

dt
)) = 0 ⇒ 1

y
(
dx

dt
) − ρ(y)

√
yα(y)

dy

dt
= ρ̄(y)2K1 (28)

for some constant K1 (where we have used our assumption that ρ(y) ∈ (−1, 0]), i.e. the (momentum) quantity on
the left is a conserved quantity, so

dy

dt
= ±α(y)

√
2E −K2

1y +K2
1yρ(y)2 = ±α(y)

√
2E −K2

1yρ̄(y)2 . (29)

2. Transversality condition. From (F-1) we know we have to compute the shortest distance to the vertical line
{x = x1} for x1 ∈ R, and we first assume x1 > 0. The transversality condition (after multiplying by ρ̄(y)2) is given
by

0 =
[
0, 1
] [ 1

y − ρ(y)
α(y)
√
y

− ρ(y)
α(y)
√
y

1
α(y)2

] [
dx
dt
dy
dt

]
|(x∗1 ,y∗1 (x1)) = (− ρ(y)

α(y)
√
y

dx

dt
+

1

α(y)2

dy

dt
)|(x∗1 ,y∗1 (x1)) = 0 . (30)

(28) yields an expression for dx
dt , so the right hand side of (30) can be re-written as

− ρ(y)

α(y)
√
y
y[K1ρ̄(y)2 +

ρ(y)
√
yα(y)

dy

dt
)] +

1

α(y)2

dy

dt
= −

ρ(y)
√
y

α(y)
K1ρ̄(y)2 − ρ(y)2

α(y)2

dy

dt
+

1

α(y)2

dy

dt

= ρ̄(y)2(−
ρ(y)
√
y

α(y)
K1 +

1

α(y)2

dy

dt
) = 0

at (x1, y
∗
1(x1)), so

y′(t) = ρ(y)
√
yα(y)K1

at (x1, y
∗
1(x1)). But we also know that

y′(t) = ±α(y)
√

2E −K2
1y +K2

1yρ(y)2 .

Combining these last two expressions, we find that

2E = ρ(y)2y∗1K
2
1 − (−K2

1y
∗
1 +K2

1y
∗
1ρ(y∗1)2) = K2

1y
∗
1 ,

so

y∗1 = 2E/K2
1 (31)

(as for the zero correlation case discussed in [FJ11]), and

y′(t) = ±α(y)K1

√
y∗1 − yρ̄(y)2 . (32)

From the transversality condition in (30), since ρ ≤ 0 by assumption, we see that

dy

dx
|(x∗1 ,y∗1 ) < 0 , (33)

irrespective of the sign of x1. We now have to distinguish between two cases: shortest geodesics from (0, y0) to
{x = x1} for which dy

dt < 0 at t = 0, or dy
dt > 0 at t = 0, plus the critical case where dy

dt = 0 at t = 0.

Recall also from (28) that 1
y (dxdt ) − ρ(y)√

yα(y)
dy
dt = 1

y (dxdt ) − ±ρ(y)√
y K1

√
y∗1 − yρ̄(y)2 = ρ̄(y)2K1, so (combined with

(32)) we see that dy
dt and dx

dt are both proportional to K1, so (with y∗1 fixed) we can set K1 = 1 W.L.O.G since the
specific choice of time parametrization is irrelevant and all we ultimately care about is y(x) (note t will be negative
when x1 < 0 using this convention, see final comment in bold face about the case x1 < 0 just before the case 3ii)
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below). Moreover, the ODE for y′(t) in (32) implies that if y(t) tends to some constant y∞ > 0 as t→∞ then y′(t)

converges to some negative constant as t→∞. If the derivative of a function converges to a non-zero constant as
t→∞ then the function blows up i.e. tends to ±∞, so we have a contradiction, i.e. we must have that y∞ = 0.

3i) Integral expression linking x1 and y∗1(x1) - the case x1 ≤ x∗1 where the geodesic has no turning
point.

Let t1 be such that x(t1) = x1 (and note that t1 depends on the choice of K1, see discussion above). We first
investigate whether there are shortest geodesics from (0, y0) to {x = x1} for which dy

dt ≤ 0 along this geodesic until
it hits x = x1. For this to be the case, for x1 > 0 we must have

x1 =

∫ t1

0

dx

dt
dt =

∫ y∗1

y0

y(K1ρ̄(y)2 +
ρ(y)
√
yα(y)

dy

dt
)
dt

dy
dy (from (28))

=

∫ y∗1

y0

− yρ̄(y)2

α(y)
√

2E − y + yρ(y)2
dy +

∫ y∗1

y0

ρ(y)
√
y

α(y)
dy

(setting K1 = 1 here W.L.O.G, see above)

=

∫ y∗1

y0

− ρ̄(y)2y

α(y)
√
y∗1 − ρ̄(y)2y

dy +

∫ y∗1

y0

ρ(y)
√
y

α(y)
dy

=

∫ y0

y∗1

(
ρ̄(y)2y

α(y)
√
y∗1 − ρ̄(y)2y

−
ρ(y)
√
y

α(y)
)dy (34)

and y∗1 = y∗1(x1) ≤ y0.
Since ρ(y0) 6= 0 by assumption, we also note that

dx1

dy∗1
= −(

ρ̄(y∗1)2y∗1
α(y∗1)

√
y∗1 − ρ̄(y∗1)2y∗1

−
ρ(y∗1)

√
y∗1

α(y∗1)
) − 1

2

∫ y0

y∗1

(
ρ̄(y)2y

α(y)(y∗1 − ρ̄(y)2y)
3
2

dy

= −
√
y∗1

α(y∗1)
(
ρ̄(y∗1)2

|ρ(y∗1)|
− ρ(y∗1)) − 1

2

∫ y0

y∗1

ρ̄(y)2y

α(y)(y∗1 − ρ̄(y)2y)
3
2

dy

= −
√
y∗1

α(y∗1)ρ(y∗1)
(−ρ̄(y∗1)2 − ρ(y∗1)2) − 1

2

∫ y0

y∗1

ρ̄(y)2y

α(y)(y∗1 − ρ̄(y)2y)
3
2

dy

=

√
y∗1

α(y∗1)ρ(y∗1)
− 1

2

∫ y0

y∗1

ρ̄(y)2y

α(y)(y∗1 − ρ̄(y)2y)
3
2

dy , (35)

where the penultimate line follows since we are assuming ρ ≤ 0.

If ρ̄(y0)2y0 > ρ̄(y)2y for all y ∈ [ρ̄(y0)2y0, y0) (i.e. the first part of Assumption 2.1iii) holds) then y∗1− ρ̄(y)2y > 0
for all y∗1 ∈ [ρ̄(y0)2y0, y0] and all y ∈ [ρ̄(y0)2y0, y0), and we see that (35) is real and negative for y∗1 ∈ (ρ̄(y0)2y0, y0]
(since ρ ≤ 0), so in particular y∗1(x1) is initially decreasing in x1 as x1 moves away from zero to the right, but at

y∗1 = y∗
1

:= ρ̄(y0)2y0 we see that dx1

dy∗1
= −∞ i.e.

dy∗1
dx1

= 0 (since the integrand in (35) has a non-integrable singularity

at y = y0 when y∗1 = ρ̄(y0)2y0), so y∗1(x1) has a stationary point at x1 = x∗1 > 0 defined by

x∗1 =

∫ y0

ρ̄(y0)2y0

(
ρ̄(y)2y

α(y)
√
ρ̄(y0)2y0 − ρ̄(y)2y

−
ρ(y)
√
y

α(y)
)dy , (36)

which is the minimizer of y∗1(x) over all x ∈ (−∞, x∗1], and from (32) we see that dy
dx = 0 at the point (0, y0). (34)

is not defined (i.e. is not real-valued) for y∗1 < y∗
1
.

Thus we have shown that the shortest geodesic from (0, y0) to {x = x1} has y′(0) < 0 if x ∈ [0, x∗1). Moreover,
y∗1(x1) is initially increasing in x1 as x1 moves away from zero to the left and continues to increase, so the shortest
geodesic from (0, y0) to {x = x1} will have dy

dt ≤ 0 for all x1 ≤ 0, but now y∗1 > y0, so the integral on the right

cannot diverge in this case, so by dy1

dx∗1
< 0.

By the same argument, (34) also holds for x1 < 0, but now y∗1(x1) > y0 and if we use the convention that
K1 = 1 as above then t1 < 0. There is not a turning point along the geodesic for all x1 < 0, since y′(0) < 0 and the
geodesic also hits x = x1 with negative slope.

3ii): The case x > x∗1 where the geodesic has a turning point. For x1 > x∗1 (and note x∗1 > 0), again using
Assumption 2.1iii), the shortest geodesic has a turning point at some y = yc > y0 before hitting the line {x = x1},
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so in this case

x1 =

∫ t1

0

dx

dt
dt = (

∫ yc

y0

+

∫ y∗1

yc

)y(ρ̄(y)2 +
ρ(y)
√
yα(y)

dy

dt
)
dt

dy
dy (from (28)) and setting K1 = 1 as above)

= (

∫ yc

y0

+

∫ yc

y∗1

y(ρ̄(y)2 +
ρ(y)
√
yα(y)

dy

dt
)| dt
dy
|dy

= (

∫ yc

y0

+

∫ yc

y∗1

)
yρ̄(y)2

α(y)
√

2E − y + yρ(y)2
dy + (

∫ yc

y0

−
∫ yc

y∗1

)
ρ(y)
√
y

α(y)
dy

= (

∫ yc

y0

+

∫ yc

y∗1

)
ρ̄(y)2y

α(y)
√
y∗1 − ρ̄(y)2y

dy +

∫ y∗1

y0

ρ(y)
√
y

α(y)
dy . (37)

y′(t) will vanish iff 2E − ρ̄(y)2y = 0 i.e. iff y∗1(x1)− ρ̄(y)2y = 0 at y = yc(x1). So we set

y∗1(x1) := yc(x1)ρ̄(yc(x1))2 , (38)

so we can re-write (37) as

x1 = (

∫ yc

y0

+

∫ yc

ρ̄(yc)2yc

)
ρ̄(y)2y

α(y)
√
ρ̄(yc)2yc − ρ̄(y)2y

dy +

∫ ρ̄(yc)
2yc

y0

ρ(y)
√
y

α(y)
dy (39)

and we solve for yc = yc(x1) for a given x1, and then we can compute y∗1(x1) using (38).

Since we are considering x > x∗1, dy
dt > 0|t=0 and we recall from (28) that 1

y (dxdt ) − ρ(y)√
yα(y)

dy
dt = 1

y (dxdt ) −
ρ(y)√
y

√
y∗1 − yρ̄(y)2 = ρ̄(y)2. Then we see that dx

dt |(0,y0) ≤ 0 if and only if

y∗1 ≥ y0ρ̄(y0)2

ρ(y0)2
(40)

(using that ρ(y0) ≤ 0). This means for x1 sufficiently large (or ρ sufficiently close to −1 and x1 > x∗,ρ→−1
1 =∫ y0

0

√
y

α(y)dy, see Remark 2.4), the shortest geodesic from (0, y0) to {x = x1} bends back on itself in the x-direction

(see first row of plots in Figure 4 for numerical examples of this phenomenon). Recall also however that as ρ→ −1,

the distance to the line {x = x1} is infinite for x1 ≥
∫ y0

0

√
y

α(y)dy (see Remark 2.4 above). To compute the y-value

above y0 where the geodesic returns to the y-axis, we have to solve (21) for this new “synthetic” y0 value, and the
choice of which formula applies in (21) depends on the particular parameters3. To compute the y-value where the

geodesic turns around in the x-direction i.e. where dx
dt = 0, we have to find the root of ρ(y)√

y

√
y∗1 − yρ̄(y)2 + ρ̄(y)2.

From Corollary 2.3 we know that y∗1(x1)→∞ as x1 →∞ there is a shortest geodesic from (0, y0) to {x = x1}
for any x1 > 0, since x1 is monotonically increasing in yc, and x1 →∞ as yc →∞.

4. Distance computations for x ≤ x∗1 and x ≥ x∗1. For x1 ≤ x∗1, the distance from (0, y0) to (x1, y
∗
1(x1)) is then

given by

d(x1) =

∫ t1

0

√
2Edt =

∫ y∗1

0

√
2E | dt

dy
|dy =

√
2E |

∫ y∗1

y0

dy

α(y)
√

2E − ρ̄(y)2y
|

=
√
y∗1(x1) |

∫ y∗1

y0

dy

α(y)
√
y∗1 − ρ̄(y)2y

| . (41)

Similarly, for x1 > x∗1, the distance from (0, y0) to (x1, y
∗
1(x1)) is then given by

d(x1) =

∫ t1

0

√
2Edt =

∫ y∗1

0

√
2E | dt

dy
|dy =

√
2E(

∫ yc

y0

+

∫ yc

y∗1

)
dy

α(y)
√

2E − ρ̄(y)2y

= (

∫ yc

y0

+

∫ yc

y∗1

)
dy

α(y)
√

1− ρ̄(y)2y/y∗1

=
√
y∗1(x1)(

∫ yc

y0

+

∫ yc

y∗1

)
dy

α(y)
√
y∗1 − ρ̄(y)2y

=
√
y∗1(x1)(

∫ yc

y0

+

∫ yc

ρ̄(yc)2yc

)
dy

α(y)
√
ρ̄(yc)2yc − ρ̄(y)2y

.

3see left and right plots in the top of Figure 4 for numerical examples of both cases
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Remark 2.8 We also mention in passing that if −ρ̄(y)2y is minimized at y = ŷ = ρ̄2(y0)y0 but this is not a
stationary point and ymin is in the allowable range (ρ̄(y0)2y, y0), then we do not have the locally quadratic behaviour
in (23), so the pole in (35) at y = ŷ is integrable, and

lim
y∗1↘ymin

x(y∗1) < ∞ . (42)

Proof. (of Corollary 2.3). Using the assumed tail behaviour α(y) ∼ νyp as y → ∞ and ρ(y) → ρ∞ ∈ [−1, 0) and

(39), we see that

x1 ∼ ρ̄∞(

∫ yc

y0

+

∫ yc

ρ̄2
∞yc

)
y

νyp
√
yc − y

dy +
ρ∞ρ̄

2
∞y

3
2−p
c

( 3
2 − p)ν

=
2y1−p
c

ν
(ρ̄
√
yc − y0 2F1(

1

2
, p− 1,

3

2
, 1− y0

yc
) + |ρ|ρ̄√yc 2F1(

1

2
, p− 1,

3

2
, ρ2) +

ρ∞ρ̄
2
∞y

3
2−p
c

( 3
2 − p)ν

∼ 2y1−p
c

ν
[ρ̄∞
√
yc 2F1(

1

2
, p− 1,

3

2
, 1) + |ρ∞|ρ̄∞

√
yc 2F1(

1

2
, p− 1,

3

2
, ρ2
∞)] +

ρ∞ρ̄
2
∞y

3
2−p
c

( 3
2 − p)ν

= c+ν∞,ρ∞,py
3
2−p
c

as yc →∞, where c±ν∞,ρ∞,p = 2ρ̄∞
ν (2F1( 1

2 , p−1, 3
2 , 1) + 2F1( 1

2 , p−1, 3
2 , ρ

2
∞)|ρ∞|)± ρ∞ρ̄

2
∞

( 3
2−p)ν

and pFq is the generalized

hypergeometric function4, which implies that y∗1(x1) = ρ̄2
∞yc(x1) ∼ ρ̄2

∞( x1

c+ν∞,ρ∞,p
)

1
3
2
−p →∞ as x1 →∞. Performing

similar computations on (21) for x1 < 0, we find that

σ̂(x1)2 ∼ 4(p− 1)2

(3− 2p)2
(

x1

c±ν∞,ρ∞,p
)

2
3−2p ρ̄2

∞

as x1 → ±∞, and for the Heston case p = 1
2 this reduces to σ̂(x1)2 ∼

1
4νρ̄∞

arccos(±ρ∞) |x| as x1 → ±∞ (which is

consistent with the main result in Theorem 1.1 in [FJ09] for the Heston model).

4using Mathematica’s definition
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Figure 1: Here we have plotted the shortest geodesic (blue) to the vertical line {x = x1} for a (generalized)
Heston model with ρ(y) = 0 (left) and ρ(y) = −.4 + .4 tanh(25(y − y0)) (second from left), with α(y) = ν

√
y,

ν = 0.4, y0 = .04 and x1 = 0.2. For the second-from-right plot ρ(y) = −.4 and x1 = .05 with all other parameters
unchanged, and in this case we see there is no turning point. For the far right plot, the parameters are the same
as the second-from-right plot but now x1 is equal to the critical value x∗1 = 0.0777161. When ρ(y) is constant, the
numerical answers for y∗1(x1) can be checked against the solution for the asymptotic implied volatility obtained via
the Gärtner-Ellis theorem from the main Theorem 1.1 in [FJ09].
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Figure 2: Here we have plotted the asymptotic VIX smile σ̂VIX(x) (left) for α(y) = νy
3
2

1+ ν
ν∞ y with ν = ν∞ = .4

and κ = 0, and assuming the observed asymptotic SPX smile σ̂(x) = σ0 + σ1x + σ2x
2 with σ0 = .2, σ1 = −.01,

σ2 = .0012, we find that that ρ0 = −.52 and ρ1 = −3.11154 and we have constructed a ρ(y) function (second from
left plot) consistent with ρ0 and ρ1 of the form in (16) and we have exogenously chosen the parameters in (16) so
as to additionally impose that ρ(∞) = −.75 and ρ(0) = −.4. In the second-from-right panel, we have plotted the
induced SPX smile (in blue) obtained from the geodesic distance function d1(x1) in (41), verses σ0 + σ1x + σ2x

2

(grey dashed), and we see that both curves are in very close agreement as we would expect. In the final plot, we
have plotted ρ̄(y)2y to verify that it is non-decreasing (see Asssumption 2.1iii))
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Figure 3: Here we have plotted a fictitious asymptotic SPX smile σ̂(x) = σ0 + σ1x + σ2x
2 + σ3x

3 + σ4x
4 with

σ1 = −.01, σ2 = .002, σ3 = 0 and σ4 = −.02 (left) and assuming that α(y) = νy
3
2

1+ ν
ν∞ y with ν = ν∞ = .5, we solve for

ρ(y) = ρ0 +ρ1(y−y0)+ρ2(y−y0)2 +ρ3(y−y0)3 +ρ4(y−y0)4 (right) capped at −1 and 1, and (19) is satisfied. Note
this ρ(y) is only a Taylor series approximation to a true consistent ρ over a certain strict sub interval of (0,∞).
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Figure 4: Here we have plotted σ̂(x1) (grey) and
√
y∗1(x1) (blue) for the standard Heston model with y0 = .04,

ν = .4 and ρ = −.4 (left) and ρ = −0.9 (middle) (same parameters as the right plot in Figure 1), and y∗1(x1) is
minimized at x1 = x∗1 = 0.0777161 on the left. For the middle plot, y∗1(x) = y0 − νx1 which vanishes at x1 = y0/ν
(see (5)) and taking the limit as ρ → −1 in the main Theorem in [FJ11] we find that the rate function 1

2d(x1)2 is

the Legendre transform of V (p) defined by V (p) = y0p
2

2+νp for p > −2/ν, and V (p) = +∞ otherwise, and recall that

the 1
2 -rule in (7) satisfied. On the right we have plotted the shortest geodesic to x = y0/ν = .1 for the case ρ = −1.
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Figure 5: Here we have plotted the shortest geodesic (blue) to the vertical line {x = x1} for the Heston model with
with α(y) = ν

√
y, ν = 0.4, y0 = .04, and x1 = 0.2 (left) and x1 = .135 (second from left), and for the second from

right plot ρ(y) = −.5 and x1 = 7.5 and for the right plot ρ(y) = −.99995 and x1 = 0.2. In the first, third and
fourth panels we see the extreme behaviour where the geodesic initially starts heading in the wrong direction, and
the results are consistent with the rate function obtained via the Gärtner-Ellis theorem in the main Theorem 1.1
in [FJ09].
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Figure 6: On the left we have plotted the asymptotic VIX implied volatility smile σ̂(x) in the T → 0 limit for the
standard Heston model (with κ = 0) as a function of x where K =

√
y0e

x (blue) verses the VIX implied volatility
computed via numerical integration (grey dashed) over the known non-central χ-square density of VT given above
for T = .001, with κ = 0, ν = .4 and Y0 = .04, and we see that both curves are almost indistinguishable over
this range of x-values. In the second panel, we have re-plotted the σ̂(x) over a wider range of x-values. The final
panel again plots σ̂(x) (blue) verses the values obtained from Monte Carlo (grey) in Matlab with T = .004, 5million
simulations, 1000 time steps and antithetic variables.
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Figure 7: On the left here we have plotted
√
y∗1(x1) (blue) and σ̂(x1) (grey) for the non-standard case discussed

in (24), with ρ(y) = −0.575 + 0.175 tanh(0.3252937830705757 − 489.56591415830565(y − 0.04)) and the same y0

and α(.) but with ν = .4, and for this example ymin = .0311779 and ŷ = 0.0381605, and in the middle we have
plotted the shortest geodesic to {x = x1} for this non-standard case with x1 = 10. On the right we have plotted
ρ̄(y0)2y0 − ρ̄(y)2y for y ∈ [ρ̄(y0)2y0, y0], and we see that Assumption 2.1 is violated.
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Figure 8: Here we have plotted the asymptotic VIX smile σ̂VIX(x) in (17) for the mean-reverting Hull-White model
with κ = 1, ν = 0.5 and θ = y0 (blue) and y0 = .04, θ = .05 (grey).
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3 Small-time VIX smiles under local-stochastic volatility

We now consider a local-stochastic volatility model of the form:{
dSt = Stσ(St)

√
YtdW

1
t ,

dYt = µ(St, Yt)dt + α(Yt)dW
2
t ,

where W 1, W 2 are independent Brownian motions, σ is bounded, Lipschitz and strictly monotonically increasing.
We set a(s) := σ(s)2 and assume α satisfy the same conditions as before and take S0 = 1. Then

d(a(St)Yt) = (
1

2
a′′(St)S

2
t a(St)Yt + a(St)µ(St, Yt))dt + dMt ,

for some local martingale M with respect to the filtration generated by S and Y . Hence if µ satisfies

1

2
a′′(s)a(s)s2y + a(s)µ(s, y) = a(s)(

1

2
a′′(s)y + µ(s, y)) = 0 ,

and assuming M is a true martingale, then a(St)Yt is a martingale with respect to the aforementioned filtration
(this martingale feature will be needed in (44) below where we price VIX options). Note the unusual feature here
that S is feeding back into the drift of Y here in general. Now let Xt = g(St)) where g(s) =

∫ s
S0

du
uσ(u) , and set

a(St)Yt = a(g−1(Xt))Yt = b(Xt)
2Yt, where b(x) := σ(g−1(x)) and assume that b is decreasing, so

dXt =
√
YtdW

1
t + (drift term) (43)

with X0 = 0. The Lagrangian for (X,Y ) is given by

L =
1

2
(
1

y
(
dx

dt
)2 +

1

α(y)2
(
dy

dt
)2)

and the x-component of the Euler-Lagrange equation for the geodesics under the metric induced by the inversion
of the diffusion matrix for (X,Y ) (i.e. with gij = a−1

ij ) is d
dt (

1
y
dx
dt ) = 0 . The usual transversality condition for

European call options is dy
dt |K,y∗1 = 0, leads to 1

2K
2
1y|x1,y∗1

= E (see [FJ11], or just set ρ(y) = 0 in the previous
section). The price of a VIX call option with strike k under this model is then given by

E((E(
1

∆

∫ T+∆

T

a(Su)Yudu|FT )
1
2 − k)+) = E((σ(ST )

√
YT − k)+) = E((b(XT )

√
YT − k)+) (44)

since a(St)Yt is a martingale by construction, and formally applying the Freidlin-Wentzell LDP and the contraction
principle we have

lim
T→0

T logE((b(XT )
√
YT − k)+) = −J(k) ,

where J(k) = inf(x,y):b(x)
√
y=k I(x, y) = infx>0 I(x, k2

b(x)2 ), where I(x, y) = 1
2d(0, y0;x, y)2 and d(0, y0;x, y) is the

Riemmanian distance under gij from (0, y0) to (x, y). Then the asymptotic VIX implied volatility σ̂(x) at strike
k =
√
y0e

x satisfies

σ̂(x) =
x

J(
√
y0ex)

=
log k√

y0

J(k)
. (45)

So we now have to compute the shortest geodesic from (0, y0) to the curve ψk(x) := k2

b(x)2 , which is increasing since

we assume b is decreasing above. The tangent vector to this curve is (1,− 2k2b′(x)
b(x)3 ), so the VIX call transversality

condition is

0 =
[
1,− 2k2b′(x)

b(x)3

] [ 1
y 0

0 1
α(y)2

] [
dx
dt
dy
dt

]
=

[
1,− 2k2b′(x)

b(x)3

] [ 1
y
dx
dt

1
α(y)2

dy
dt

]
=

1

y

dx

dt
− 2k2b′(x)

b(x)3α(y)2

dy

dt
= 0 (46)

⇒ (
dx

dy
− 2k2b′(x)

b(x)3

y

α(y)2
)|(x∗,y∗) = 0 . (47)

The geodesic equations are the same as in [FJ11] (or section 2 above with ρ(y) ≡ 0):

1

2
(
1

y
(
dx

dt
)2 +

1

α(y)2
(
dy

dt
)2) = E ,

1

y

dx

dt
= K1 (48)
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so

1

2
(K2

1y +
1

α(y)2
(
dy

dt
)2) = E

or dy
dt = ±α(y)

√
2E −K2

1y. Plugging the last eq in (48) into the VIX call transversality condition (46) leads to
K1b(x)3α(y)2

2k2b′(x) = dy
dt and substituting this into the first equation in (48) we see that

1

2
(K2

1y + (
K1b(x)3α(y)

2k2b′(x)
)2)|(x∗1 ,y∗1 ) = E ,

so

(y + (
b(x)3α(y)

2k2b′(x)
)2)|(x∗1 ,y∗1 ) = (y + (

b(ψ−1
k (y1))3α(y)

2k2b′(ψ−1
k (y1))

)2)|(x∗1 ,y∗1 ) =: c1(y∗1) =
2E

K2
1

.

Then proceeding as in section 2, we find that y∗1 has to solve

x∗1 = ψ−1
k (y∗1) =

∫ y0

y∗1 (x1)

y

α(y)
√
c1(y∗1)− y

dy , (49)

and we solve for a different y∗1 for each VIX strike-value k.

b(.) is decreasing by assumption, so (from the transversality condition in (30)) the shortest geodesic from (0, y0)
to the curve ψk(.) hits ψk with negative slope. Moreover, ψk is increasing since b is decreasing, so if k >

√
y0 then

ψk lies above (0, y0) and the shortest geodesic heads upwards to meet ψk(.); conversely if k <
√
y0 then ψk sits below

(0, y0) and the shortest geodesic heads downwards to meet ψk (see Figure 9). When k2 = y0, then k2/b(0)2 = y0

as well (b(0) = 1 here from the definition of b() because S0 = 1 by assumption), then J(k) = 0 because in this case
(0, y0) is a point on the curve ψk.

We then have the corresponding formula for the shortest distance from (0, y0) to ψk(.) :

J(k) =

∣∣∣∣∣∣
∫ y∗1 (x1)

y0

1

α(y)
√

1− y
c1(y∗1 )

dy

∣∣∣∣∣∣ , (50)

and from this we can compute the asymptotic VIX implied volatility using (45).

3.1 The CEV and CEV-Heston cases

For the CEV case where σ(s) = δsβ−1 for β ∈ (0, 1) and δ = 1, b(x) = (1 + x − xβ)−1 is indeed decreasing and
µ(s, y) = − 1

2s
−2+2βy. If we also impose that α(y) = ν

√
y (which corresponds to an uncorrelated CEV-Heston type

model with a feedback drift term), then (after some Mathematica computations which exploit the fact that the
integrals in (49) and (50) can explicitly computed in terms of basic trigonometric functions for the Heston case, see
also discussion in the introduction about geodesics being transformations of the standard cycloid) we obtain the
small log-moneyness expansions:

J(k) =
2(k −√y0)√
4y2

0 β̄
2 + ν2

−
4(y

3
2
0 β̄

2(8y2
0 β̄

2 + 3ν2)(k −√y0)2

(4y2
0 β̄

2 + ν2)
5
2

+ O((k −√y0)3) , (51)

σ̂VIX(x) =
1

2
√
y0

√
4y2

0 β̄
2 + ν2 +

16y4
0 β̄

4 + 4y2
0 β̄

2ν2 − ν4

4y0(4y2
0 β̄

2 + ν2)
3
2

(k −√y0) + O((k −√y0)2) , (52)

when S0 = 1, where k =
√
y0e

x as above and β̄ = 1−β, and we find that the O((k−√y0)) at-the-money skew term

in the second equation is non-negative if and only if β ≤ β∗ := 1− ν
√

1
2 (
√

5−1)

2y0
, assuming β∗ > 0 (see Figure 8).

The assumptions that S0 = 1 and δ = 1 are made W.L.O.G here, since for the general case

d(St/S0) =
1

S0
δSβt

√
YtdWt = Sβ−1

0 δ(
St
S0

)β
√
YtdWt = (

St
S0

)β
√
VtdW

1
t ,

dVt = d(δ̃2Yt) + (drift term) = δ̃ν
√
VtdW

2
t + (drift term) ,

where Vt = δ̃2Yt and δ̃ = (Sβ−1
0 δ)2.

Note there is also a small log-moneyness expansion for European options in Theorem 4.1 in [FJ11] for a general
uncorrelated local-stochastic volatility model. One should be able to generalize said Theorem and (52) to include
non-zero ρ, and then choose y0, ν, β and ρ to fit the overall level and slope of the SPX and VIX smiles at-the-money,
but such computations will be messy since are not using a eikonal equation to compute (51), so we defer the details
for future research.
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Figure 9: Here we have plotted the shortest geodesic (blue) to the curve ψk(x) = k2

b(x)2 (grey) for a CEV-Heston

model with σ(s) = sβ−1, α(y) =
√
y for which b(x) = (1 + x − xβ)−1 with β = 1

2 , y0 = 1, S0 = 1 for k = 1.2 (left
plot) and k = .8 (right plot), and since the metric is ds2 = 1

y (dx2 + dy2) in this case, the shortest geodesic to ψk
is perpendicular (in the usual Euclidean sense) to ψk at the hitting point (x∗1, y

∗
1). Note that x∗1 < 0 for the first

case and the shortest geodesic goes up from (0, y0) to meet ψk, whereas in the second plot, x∗1 > 0 and the shortest
geodesic goes down to meet ψk .
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Figure 10: Here we have drawn the asymptotic VIX implied volatility smile using (15) as a function of the strike k
for the same parameters as above except now β = 0.1, β = β∗ = 0.606924 and β = 0.75 respectively, and note that
k = 1 is the at-the-money strike value.
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Figure 11: Here we have drawn the same three smiles again but now zoomed in around the at-the-money strike
k =
√
y0 = 1 (blue) verses the at-the-money approximation obtained plugging (51) into (45) (grey) and the at-the-

money skew flips from positive to negative as β goes above β∗.
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A The Lagrangian as a conserved quantity along geodesics

Take the total time derivative of L:

dL

dt
=

1

2

d

dt
[
∑
i,j

gi,j ẋiẋj ] =
∂L

∂ẋk
ẍk +

∂L

∂xk
ẋk =

∂L

∂ẋk
ẍk +

d

dt
(
∂L

∂ẋk
)ẋk =

d

dt
(
∂L

∂ẋk
ẋk) , (A-1)

where we have used the Euler-Lagrange eq to obtain the third equality. But L(x1, .., xn;λẋ1, .., λẋn) = λ2L(x1, .., xn; ẋ1, .., ẋn),
i.e. L is homogenous of degree 2 in (ẋ1, .., ẋn). Thus, by differentiating wrt λ, and setting λ = 1, we obtain

ẋk
∂L

∂ẋk
= 2L .

Then taking the time-derivative of both sides, and using (A-1), we see that dL
dt = 2dLdt , i.e. dL

dt = 0.
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Now consider the related problem of computing the shortest distance in (F-1) (note the square root now inside
the integral). Writing out the EL equations for this problem, we see that

d

dt
(
∂L

1
2

∂ẋ
) =

∂L
1
2

∂x
,

⇒ d

dt
(
1

2
L−

1
2
∂L

∂ẋ
) =

1

2
L−

1
2
d

dt

∂L

∂ẋ
+
∂L

∂ẋ

d

dt
(
1

2
L−

1
2 ) =

1

2
L−

1
2
∂L

∂x
.

But the second term in the middle expression is zero, so this simplifies to the same EL eq as above. Hence the

function that minimizes
∫ 1

0
Ldt also minimizes

∫ 1

0

√
Ldt.

B Proof of Lemma 1.1

Let γ(z, .) denote shortest geodesic from (0, y0) to the vertical line {x = z}. Consider the parametrized family of
curves f(s, t) = γ(x1+s; t) with f(s, 1) = (x1+s, y∗1(x1+s)) so clearly f(0, 0) = (0, y0). Then V (1) = (1, ∂

∂x1
y∗1(x1)).

Using Proposition 2.4, page 195 in [doC92]5and that D
dt
dγ
dt = 0 for any geodesic6, we have

1

2
E′(0) =

∂

∂x1
(
1

2
d(x1)2) = d(x1)d′(x1) = g((1,

∂

∂x1
y∗1(x1)), (

dx

dt
,
dy

dt
))|(x1,y∗1 ) . (B-1)

From the transversality condition − ρ(y)
α(y)
√
y
dx
dt + 1

α(y)2
dy
dt = 0 at (x1, y

∗
1), we see that

(
dx

dt
,
dy

dt
) = α(y)

√
2E −K2

1yρ̄(y)2 (

√
y

α(y)ρ(y)
, 1) = α(y∗1)d(x1)

√
1− ρ̄(y∗1)2y∗1/y

∗
1 (

√
y∗1

α(y∗1)ρ(y∗1)
, 1)

= α(y∗1)d(x1)|ρ(y∗1)| (

√
y∗1

α(y∗1)ρ(y∗1)
, 1)

(since
√

2E = d(x1) and ρ(y) ≤ 0 by assumption) at (x1, y
∗
1), so (B-1) can be evaluated as

[
1, ∂

∂x1
y∗1(x1)

] 1

ρ̄(y)2

[
1
y − 2ρ(y)

α(y)
√
y

− 2ρ(y)
α(y)
√
y

1
α(y)2

] [
dx
dt
dy
dt

]
|(x1,y∗1 ) =

d(x1)√
y∗1(x1)

and the result follows after dividing by d(x1) and using the third equality in (B-1).

To prove the eikonal equation, we consider the variation with respect to y0, and we obtain that

1

2
E′(0) =

∂

∂y0
(
1

2
d(x1)2) = d(x1)dy0

(x1) = g((0, 1), (x′(0), y′(0))) =
y′(0)− x′(0)α(y0)ρ(y0)√

y0

α(y0)2ρ̄(y0)2
. (B-2)

But

y′(0) = α(y)
√

2E −K2
1yρ̄(y0)2 = α(y0)d(x1)

√
1− y0ρ̄(y0)2/y∗1 (B-3)

using (31), and using that 1
ρ̄(y)2 ( 1

y
dx
dt −

ρ(y)√
yα(y)

dy
dt ) = K1 we know that

x′(0) = y0(
ρ(y0)
√
y0α(y0)

y′(0) + K1ρ̄(y0)2) . (B-4)

Substituting Eqs (B-3) and (B-4) into (B-2), and using that y∗1K
2
1 = 2E = d(x1)2 we obtain:

1

2
E′(0) =

1

α(y0)
[

1

ρ̄(y0)2
d(x1)

√
1− y0ρ̄(y0)2

y∗1
(1− y0(

ρ(y0)
√
y0α(y0)

α(y0)ρ(y0)
√
y0

)− 1

ρ̄(y0)2
y0K1ρ̄(y0)2α(y0)ρ(y0)

√
y0

]

=
1

α(y0)
[d(x1)

√
1− y0ρ̄(y0)2

y∗1
− ρ(y0)

√
y0

y∗1
d(x1)] . (B-5)

Completing the square on the left hand side of the Eikonal equation we see that

yd2
x + 2ρ(y)

√
yα(y)dxdy + α(y)2d2

y = yd2
xρ̄(y)2 + (α(y)dy + ρ(y)

√
ydx)2

= yd2
xρ̄(y)2 + (α(y)dyd+ ρ(y)

√
ydxd)2/d2

=
y

y∗1
ρ̄(y)2 + (α(y)dyd+ ρ(y)

√
ydxd)2/d2 ,

5Note that the Energy functional E as we define it here is one-half of the E that is used in [doC92]]
6where D

dt
denotes the covariant derivative, see Proposition 2.5 in [doC92]
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where d is shorthand for d(x1) here. Using that dx = 1/
√
y∗1 , we see that

α(y)dy0d+ ρ(y0)
√
y0dxd = d(x1)

√
1− y0ρ̄(y0)2

y∗1
− ρ(y0)

√
y0

y∗1
d(x1) + ρ(y)

√
y0d(x1)/

√
y∗1

= d(x1)

√
1− y0ρ̄(y0)2

y∗1
,

where we have used that 1
2E
′(0) = ddy (see above) and (B-5) in the first equality. Hence the left hand side of the

eikonal equation equals 1, as required.

C Proof of Lemma 1.3

From Ito’s lemma we know that dY 2
t = 2YtdYt + α(Yt)

2dt Then using the linear growth assumption on α and
Jensen, we see that so

∂

∂t
E(Y 2

t ) = 2E(Ytκ(θ − Yt)) + E(α(Yt)
2) ≤ 2κθE(Yt)− 2κE(Y 2

t ) + ν̄E(Y 2
t )ds

= 2κθ(θ + (y0 − θ)e−κt) − 2κE(Y 2
t ) + ν̄E(Y 2

t )

≤ c̄ + ν1E(Y 2
t )

for some constant c̄, where ν1 := ν̄ − 2κ. Then from Gronwell’s lemma we see that

E(Y 2
t ) ≤ 1

ν1
(eν1t(c̄ + y2

0ν1)− c̄)

(recall that Y0 = y0). Thus

E((Yt − Y0)2) = E(Y 2
t )− 2y0E(Yt) + y2

0 ≤ 1

ν1
(eνt(c̄ + y2

0ν1)− c̄)− 2y0(θ + (y0 − θ)e−κt) + y2
0 = O(t) ,

so 1√
t
E((Yt − Y0)2)

1
2 = O(1) for t sufficiently small; hence the family of random variables Υt := Yt−Y0√

t
is U.I. for

t ∈ [0, t∗] for some t∗ > 0. Moreover, if we let Zεt = ε−
1
2 (Yεt − Y0) then Yεt = Y0 +

√
εZεt and

dZεt = ε−
1
2 dYεt = ε−

1
2 (κ(θ − Yεt)εdt+ α(Yεt)dWεt) = κ(θ − Yεt)

√
εdt + α(Yεt)dB

ε
t ,

where Bεt := Wεt/
√
ε is another Brownian motion, and we can further write Zε as

Zεt =

∫ t

0

κ(θ − Yεu)
√
εdu + W̃∫ t

0
α(Yεu)2du

for some other Brownian motion W̃ , using the usual Dambis-Dubins-Schwarz time-change.

Since α is increasing, α(Yεt)
2 ≤ α(Ȳεt)

2 <∞ a.s., where Ȳt = max0≤s≤tYs Hence by the dominated convergence

theorem,
∫ 1

0
α(Yεt)

2dt → α(Y0)2 a.s. and hence also in probability. Then from a similar argument in the footnote

on page 4 of [EFGR19], Zε1
w→α(Y0)W̃1 = α(Y0)Z̄ as ε→ 0, where Z̄ ∼ N(0, 1), so Υt := (Yt− Y0)/

√
t
w→α(Y0)Z̄ as

t→ 0, where Z̄ ∼ N(0, 1) as t→ 0, as we would expect.

Now define Ỹt := 1√
Yt+
√
Y0

(note this is not the same Ỹ as appears in section 2). Then Ỹt is a continuous function

of Yt and Yt → Ỹ0 := 1
2
√
Y0

a.s. as t→ 0 so (by the continuous mapping theorem) Ỹt → Ỹ0 in probability, and clearly

Ỹt ≤ 1√
Y0

. Note that
√
Yt−
√
Y0√

t
= ΥtỸt (recall that Υt = (Yt−Y0)/

√
t), and from above we know that Υt

w→α(Y0)Z̄.

From the general standard result that if Xn
w→X and Yn → c (a constant) in probability, then (Xn, Yn)

w→ (X, c),
we see that (Υt, Ỹt) tends weakly to (α(Y0)Z̄, Ỹ0), and from the continuous mapping theorem ΥtỸt tends weakly
to α(Y0)Z̄Ỹ0. Moreover, Ỹt is uniformly bounded so ΥT Ỹt is also U.I. Then by Theorem 3.5 in Billingsley[Bil99],

E(ΥtỸt) = E(
√
Yt−
√
Y0√

t
)→ Ỹ0E(Z) = 0.

D Proof of Corollary 1.4

(i) Lower bound. For any δ > 0, we have

E(VIXT −VIX0e
x)+) ≥ δP(VIXT > VIX0e

x + δ) .
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Then from (14) we see that

lim inf
T→0

T logE(VIXT − ex)+ ≥ lim inf
T→0

T logP(VIXT > VIX0e
x + δ) = −1

2
dVIX(VIX0e

x + δ))2 .

Letting δ → 0 and using the continuity of dVIX, we obtain the desired lower bound.

(ii) Upper bound. We note that for q > 1, we have

E(VIXT − ex)+ = E((VIXT − ex)+1VIXT≥ex) ≤ E[((VIXT − ex)+)q]1/q E(1VIXT≥ex)1−1/q.

Thus

T logE(VIXT − ex)+ ≤ T

q
log
[
E[((VIXT − ex)+)q]

]
+ T (1− 1

q
) logP(VIXT ≥ ex)

≤ T

q
logE(VIXq

T ) + T (1− 1

q
) logP(VIXT ≥ ex). (C-1)

But using that VIXq
T ) = (aYT + b)

1
2 q and the same approach as (13), we find that

E(Y qT ) = yq0 + T
1

2
qyq−2(2yκ(θ − y) + (q − 1)y2pξ2) +O(T 2) ,

so T logE(Y qT )→ 0 as T → 0. If we then take limq→∞ lim supt→0 on both sides of (C-1), we see that

lim sup
t→0

t logE(VIXT − S0e
x)+ ≤ −dVIX(VIX0e

x)

as required. The case x < 0 follows by similar arguments.

E Proof of Corollary 1.5

For convenience, we let J(x) := 1
2 (dVIX(VIX0e

x)2. Let CBS(S,K, σ, T ) denote the usual Black-Scholes call option
formula with zero interest rate and dividend. Then can easily verify that for any b ∈ R

lim
T→0

T logCBS(VIX0 + b
√
T ,VIX0e

x, σ, T ) = − x2

2σ2

so from Lemma 1.3 (and using that CBS is monotonic in its first argument) we see that

lim
T→0

T logCBS(E(VIXT ),VIX0e
x, σ, T ) = − x2

2σ2
.

For any δ ∈ (0, J(x)), we can then choose σ so that −J(x) = − x2

2σ2 − δ. Then from Corollary 2.3

−J(x) = lim sup
T→0

T logE((VIXT −VIX0e
x)+)

= lim sup
T→0

T logCBS(E(VIXT ),VIX0e
x, σ̂VIX(x, T ), T ) (by definition of σ̂VIX(x, T ))

< lim
T→0

T logCBS(E(VIXT ),VIX0e
x, σ, T ) = − x2

2σ2
.

Since CBS(.) is monotonically increasing in the σ argument, we see that lim supT→0 σ̂VIX(x, T ) ≤ σ. Finally we let
δ → 0, and we proceed similarly for the lower bound.

F Proof of Lemma 1.1

Let fa(y) = (y0e
−a ∨ (y ∧ y0e

a)
1
2 and αa(y) = y0e

−a ∨ (α(y)∧ y0e
a) for a > y0, and consider the following re-scaled

variant of the model in (1): {
dX̂ε

t =
√
εfa(Ŷ εt )(ρ̄(Ŷ εt )dW 1

t + ρ(Ŷ εt )dW 2
t ) ,

dŶ εt =
√
εαa(Ŷ εt )dW 2

t

for ε > 0, and the corresponding version with drift:{
dX̃ε

t = − 1
2εfa(Ỹ εt )2dt+

√
εfa(Ỹ εt )(ρ̄(Ỹ εt )dW 1

t + ρ(Ỹ εt )dW 2
t ) ,

dỸ εt = εκ(θ − Ỹ εt )dt +
√
εαa(Ỹ εt )dW 2

t =
√
εαa(Ỹ εt )(

√
ε κ
αa(Ỹ εt )

(θ − Ỹ εt )dt+ dW 2
t )
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with X̂ε
0 = X̃ε

0 = 0 and Ŷ ε0 = Ỹ ε0 = Y0 = y0. Let X̄ and X denote the running maximum and minimum respectively

of a generic process X, and let Âε := {Ŷ
ε

1 > y0e
−a} ∩ { ¯̂

Y ε1 < y0e
a}. Then

P(Xε > x1) ≤ E(1Xε>x1
1{Y ε>y0e−a}∩{Ȳε<y0ea}) + P(({Y ε > y0e

−a} ∩ {Ȳε < y0e
a})c)

= E(1X̃ε>x1
1{Ỹ ε>y0e−a}∩{ ¯̃Yε<y0ea}

) + P(({Y ε > y0e
−a} ∩ {Ȳε < y0e

a})c)

= E(1X̃ε1>x1
1{Ỹ ε1>y0e−a}∩{ ¯̃Y ε1 <y0ea}

) + P(({Y ε1 > y0e
−a} ∩ {Ȳ ε1 < y0e

a})c) (since (Xε(.), Yε(.)) ∼ (X̃ε, Ỹε))

= E(e
∫ 1
0

√
εγ(Ŷ εt )dW 2

t − 1
2

√
ε
∫ 1
0
γ(Ŷ εt )2dt(1X̂ε1>x1

1Âε + 1Âcε
)) (by Girsanov)

= E(e
√
ε(Γ(Ŷ εt )− 1

2

∫ 1
0

Γ′′(Ŷ εt )α(Ŷ εt )2dt− 1
2

∫ 1
0
γ(Ŷ εt )2dt)(1X̂ε1>x1

1Âε + 1Âcε
)) (from Ito’s formula)

≤ e
√
ε sup

y∈[ 1
a
,a]

(Γ(y)+ 1
2 |Γ
′′(y)α(y)2|+ 1

2 |γ(y)2|dt)P(X̂ε
1 > x1) + P(Âcε) ,

where γ(y) = κ
αa(y) (θ − y) and Γ′(y)α(y) = γ(y). Similarly

P(Xε > x1) ≥ E(e(...)1X̂ε1>x1
1A) = E(e(...)1X̂ε1>x1

1A) ≥ e(...)P(X̂ε
1 > x1) − P(Âcε) ,

where the Girsanov factor inside the expectations here is the same as above, and the final e(...) term is now

e
√
ε inf

y∈[ 1
a
,a]

(Γ(y)− 1
2

∫ 1
0

Γ′′(y)dt− 1
2

∫ 1
0
γ(y)2dt)

.

The diffusion coefficient for X̂1 is bounded and Lipschitz on [y0e
−a, y0e

a] (since α is differentiable), so from
standard Freidlin-Wentzell theory (see e.g. Theorem 6.3 in [Var67]), we know that (X̂ε) satisfies the large deviation
principle (LDP) as ε→ 0 with lower semi-continuous rate function

J(f) =
1

2

∫ 1

0

2∑
i,j=1

gij
df i

dt

df j

dt
dt

for f ∈ C(0,y0)([0, 1];R× (0,∞)) where gaij is equal to the inverse of the diffusion coefficient for (X̂1, Ŷ 1) which (for

x, y fixed and a sufficiently large) also has line element ds2 = 1
ρ̄(y)2 ( 1

ydx
2 − 2ρ(y)√

yα(y)dxdy + 1
α(y)2 dy

2), i.e. the same

as for the original pair of processes (X,Y ). Then from the contraction principle X̂ε
1 satisfies the LDP with good

rate function

Ia(x1) = inf
f∈C(0,y0)([0,1]):f1(1)=x1

J(f) =
1

2
( inf
f∈C(0,y0)([0,1]):f1(1)=x1

∫ 1

0

2∑
i,j=1

√
gaij
df i

dt

df j

dt
dt)2 =

1

2
da(x2

1) ,

(F-1)

(see e.g. Appendix A to see why both expressions are equal) where da(x1) is the shortest distance from (0, y0) to
the vertical line {x = x1} under the metric gaij , and da(.) is continuous.

Moreover, the two-sided maximum max0≤t≤1| log Ŷt
y0
| is also a continuous functional of Ŷ under the sup norm

metric, so by the contraction principle max0≤t≤1| log
Ŷ εt
y0
| satisfies the LDP as ε → 0 with good rate function

Λ(a) := infφ∈Cy0 ([0,1]):φ(1)≤y0e−a or φ̄(1)≥y0ea J(φ) on R, so

lim
ε→0

ε logP(Âε) = −Λ(a) ,

and from the goodness of the rate function we know that Λ(a) > Ia(x) for a sufficiently large, so the P(Âε) term
decays faster than the P(Xε > x1) term above. Thus, putting everything together, we arrive at

lim
ε→0

ε logP(Xε > x1) = lim
ε→0

ε logP(X̂ε
1 > x1) = −Ia(x1)

(recall that X̂ depends on a). Our geodesic computations in section 2 show that Ia(x1) = I(x1) for a sufficiently
large because the shortest geodesic from (0, y0) to {x = x1} stays inside [y0e

−a, y0e
a] for a sufficiently large. Thus

we have effectively argued away the effect of the non-zero drift of (X,Y ) and the unbounded coefficients, which
may also be non-Lipschitz outside this interval.
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