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Abstract

Using the large deviation principle (LDP) for a re-scaled fractional Brownian motion BH
t where the

rate function is defined via the reproducing kernel Hilbert space, we compute small-time asymptotics for
a correlated fractional stochastic volatility model of the form dSt = Stσ(Yt)(ρ̄dWt + ρdBt), dYt = dBH

t

where σ is α-Hölder continuous for some α ∈ (0, 1] but need not be bounded; In particular, we show

that logSt/t
1
2
−H satisfies the LDP as t → 0 and the model has a well-defined implied volatility smile

as t → 0, when the log-moneyness k(t) = xt
1
2
−H . Thus the smile steepens to infinity or flattens to zero

depending on whether H ∈ (0, 1
2
) or H ∈ ( 1

2
, 1).1

Keywords: fractional stochastic volatility; fractional Brownian motion; large deviations; implied volatil-
ity asymptotics; rough paths.

1 Introduction

The last few years has seen renewed interest in stochastic volatility models driven by fractional Brownian
motion or other self-similar Gaussian processes (see [6, 20, 24, 25, 26]). Recall that fractional Brownian
motion BH (fBM) is a centered self-similar Gaussian process with stationary increments, which depends on
a parameter H ∈ (0, 1) called the Hurst index, and BH is persistent (i.e. more likely to keep a trend than
to break it) when H > 1

2 and anti-persistent when H < 1
2 (i.e. if BH was increasing in the past, BH is

more likely to decrease in the future, and vice versa). An earlier application of fractional Brownian motion
in finance can be seen in Comte&Renault[11], who introduced a long-memory mean reverting extension of
the Hull-White stochastic volatility model, where the log volatility is an Ornstein-Uhlenbeck process but
driven by a fractionally integrated Brownian motion process, to capture the (much-documented) effect of
volatility persistence. Comte et al.[9] also introduced a long-memory extension of the Heston model, via
fractional integration of the usual square root volatility process, which has the desirable feature that the
autocovariance function of the volatility process has power decay in the large-time limit (as opposed to the
usual exponential decay for the standard CIR process, which has short-memory).

Gatheral et al.[24] provide strong empirical justification for such models; in particular they argue that
log-volatility in practice behaves essentially as fBM with Hurst exponent H ≈ 0.1, at any reasonable time
scale (see also Gatheral[22, 23]). In particular, Gatheral et al.[24] advocate a model where the volatility is the
exponential of a fractional Ornstein-Uhlenbeck process with small mean-reversion parameter. Alós et al.[4]
examine the short-time behaviour of the derivative of the implied volatility with respect to the current log
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stock price, for a mean reverting fractional stochatic volatility model driven by a Riemann-Liouville process
using Malliavin calculus techniques and an extention of the well known Hull-White decomposition formula
to the non-correlated case. They show that this derivative is O(tH−

1
2 ) as t → 0 when H < 1

2 and tends
to zero for H > 1

2 (if the model has no jumps). Their result follows from a novel anticipative Ito formula

applied to the process 1
T−t

∫ T
t
σ2
sds which is clearly not Ft-measurable (see also Alós et al.[3]). Alós&León[2,

Theorems 11 and 12] give expressions for the first and second derivative of the implied volatility with respect
to the log strike, in terms of a quantity D+

t σt defined in their hypothesis H2, which can be seen to depend
on the the Malliavin derivative DW

r σ
2
u, which is easily computed as 2σ(BHu )σ′(BHu )KH(r, u) for our model

in (10) where KH(s, t) is defined in (3). In Alós&León[2, Section 5], they compute this quantity explicitly
for a conventional diffusion stochastic volatility model.

Fukusawa[19] derives a small-noise expansion for a general correlated stochastic volatility model driven by
fBM, using Yoshida’s martingale expansion theory and Edgeworth expansions. More recently, Fukusawa[20]
computes a small-time asymptotic expansion for implied volatility for a local-stochastic volatility model
driven by fractional Brownian motion, using the (lesser known) Muravlev representation of fractional Brow-
nian motion to capture the effect of correlation, which is non-trivial issue for fractional models as we shall
see in this article. In another recent article, Bayer et al.[6] analyze the rough Bergomi variance curve model,
which is shown to fit SPX option prices significantly better than conventional Markovian stochastic volatility
models, and with less parameters.

Mijatović&Tankov[32] introduce a new parametrization for close-to-the-money options where the log-

moneyness k(t) = θ
√
t log( 1

t ) as t → 0, and for exponential Lévy models in this regime, they prove the

surprising result that the implied volatility smile converges to a non-degenerate limiting shape. For jumps of
infinite variation, the asymptotic smile is a piecewise linear function with three pieces, which depends on three
numbers - the constant diffusion coefficient σ and the positive and negative jump activities as measured by
the Blumenthal-Getoor index. For jumps of finite variation, the asymptotic smile is constant and equal to σ.
These ideas are developed further in Figueroa-López&Olafsson[16], who derive a second-order approximation
for at-the-money option prices for a large class of exponential Lévy models, and also when the continuous
Brownian component is replaced by an independent stochastic volatility process with leverage. We also
mention Baudoin&Ouyang[5] who consider small-time asymptotics for the density of the solution of a rough
differential equation driven by enhanced fBM, using Rough paths theory and Malliavin calculus. fBM for
H > 1

4 admits a (step-3) lift as a geometric rough path of order p for any p > 1
H and one can prove an LDP

for the lifted fBM with small noise (see e.g. Friz&Victoir[18, Theorem 15.59] and Millet&Sanz-Sol[33]), and
then in turn for an RDE driven by fBM, using the continuity of the Itô map established in Lyon’s celebrated
universal limit theorem (see Friz&Victoir[18, Proposition 19.14]). Baudoin&Ouyang[5] also make use of a
joint LDP for the terminal level of the small-noise diffusion and the Malliavian covariance matrix associated
with the diffusion.

More recently, Gulisashvili et al.[25] compute a sharp small-time density estimate for a model with
volatility equal to the absolute value of general self-similar Gaussian process, which includes fBM as a
special case. For out-of-the-money strikes, they express the asymptotics explicitly using the self-similarity
parameter H of the volatility process, and its first Karhunen-Loéve eigenvalue at time 1, and the multiplicity
of this eigenvalue. The Karhunen-Loéve decompsition is essentially an eigenfunction expansion for the path:
Xt =

∑∞
n=1

√
λnen(t)Zn, where Zn is an i.i.d. sequence of standard normal variates, and λn, en are the

respective eigenvalues and eigenfunctions of the covariance operator Kf =
∫ T

0
f(s)Q(s, t)ds of the Gaussian

process with covariance function Q(s, t), which is a compact self-adjoint linear operator on L2[0, T ]. When X

is cenrted, the integrated variance
∫ T

0
X2
sds can then be written simply as

∑∞
n=1 λnZ

2
n. Unfortunately, fBM

and OU processes driven by fBM do not fall in the class of Gaussian processes for which the Karhunen-Loéve
expansion is known explicitly, but efficient numerical techniques exist to compute the eigenfunctions and
eigenvalues in these cases.

In Sections 2 and 3 of this article, we give a brief overview of Gaussian processes and in particular fBM,
and we recall the classical LDP for a re-scaled Gaussian process and the meaning and construction of the
associated reproducing kernel Hilbert space (RKHS). In Section 4, we introduce the fractional stochastic
volatility model dSt = Stσ(Yt)(ρ̄dWt + ρdBt), dYt = dBHt , and using the LDP for a re-scaled fBM, we
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show that tH−
1
2Xt satisfies the LDP as t → 0 with speed 1

t2H
. As a corollary, we show that there is a

non-trivial small-maturity implied volatility smile when the log-moneyness of the call option k(t) = xt
1
2−H

as t → 0; hence the short-maturity smile steepens to infinity or flattens to zero depending on the sign
of H − 1

2 . The Hurst exponent H affords us greater flexibility in fitting small-maturity smiles than the
Mijatović&Tankov[32] parametrization which only gives a small-time smile for one particular k(t) function,
and their asymptotic smile has to be piecewise linear with at most three pieces).

2 Background on Gaussian processes

A zero-mean real-valued Gaussian process (Zt)t≥0 is a stochastic process such that on any finite subset
{t1, . . . , tn} ⊂ R, (Zt1 , . . . , Ztn) has a multivariate normal distribution with mean zero. The law of a
Gaussian process is entirely determined by the covariance function K(s, t) = E(ZtZs) and Z induces a
Gaussian probability measure µ on (E,B(E)), where E denotes the Banach space C0[0, 1] with the usual
sup norm topology (see e.g. Carmona&Tehranchi[7, Section 3.1.1] for details). Let Z denote the restriction
of (Zt)t≥0 to t ∈ [0, 1] and let M(θ) be the moment generating function of Z:

M(θ) = E(e〈θ,Z〉) = e
1
2Q(θ),

defined for θ ∈ E∗, where Q(θ) =
∫
〈θ, x〉2µ(dx) = 〈θ, ρθ〉 and the covariance functional ρ : E∗ → E is a

bounded linear operator given by ρθ =
∫
E
〈θ, x〉xµ(dx). Using Fubini’s theorem, we can re-write ρθ as 2 (see

Carmona&Tehranchi[7, p.86]).

ρθ(t) =

∫
E

〈θ, x〉x(t)µ(dx) =

∫
E

∫
[0,1]

x(u)θ(du)x(t)µ(dx) =

∫
[0,1]

[

∫
E

x(u)x(t)µ(dx)] θ(du)

=

∫ 1

0

K(u, t)θ(du).

2.1 The reproducing kernel Hilbert space for a Gaussian measure

The reproducing kernel Hilbert space (RKHS) associated with the Gaussian measure µ is defined as the
completion of the image ρ(E∗) ⊂ E, using the inner product

〈ρx∗, ρy∗〉 =

∫
E

x∗(x)y∗(x)µ(dx) ,

(see Carmona&Tehranchi[7] for further details, and Subsection 3.3 below for the structure of the RKHS for
the specific case of fBM).

3 Fractional Brownian motion

Fractional Brownian motion (fBM) is a natural generalization of standard Brownian motion which preserves
the properties of stationary increments, self-similarity and Gaussian finite-dimensional distributions, but
it has a more complex dependence structure which exhibits long-range dependence when H > 1

2 . In this
subsection, we recall the definition and summarize the basic properties of fBM.

A zero-mean Gaussian process BHt is called standard fractional Brownian motion (fBM) with Hurst
parameter H ∈ (0, 1) if it has covariance function

RH(s, t) = E(BHt B
H
s ) − E(BHt )E(BHs ) =

1

2
(|t|2H + |s|2H − |t− s|2H) . (1)

2Recall that 〈θ, f〉 =
∫
[0,1] f(u)θ(du) for some signed measure θ(du), by the Riesz representation theorem.
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In order to specify the distribution of a Gaussian process, it is enough to specify its mean and covariance
function; therefore, for each H, the law of of BH is uniquely determined by RH(s, t). However, this definition
by itself does not guarantee the existence of fBM; to show that fBM exists, one needs to verify that the
covariance function is non-negative definite.

We now recall some fundamental properties of fBM:

• fBM is continuous a.s. and H-self-similar (H-ss), i.e. for a > 0, (Bat)t≥0
(d)
= aH(Bt)t≥0 where

(d)
=

means both processes have the same finite-dimensional distributions. For H 6= 1
2 , BH does not have

independent increments; for H = 1
2 , BHt is the standard Brownian motion.

• From (1), we see that

E((BHt −BHs )2) = E((BH)2
t ) + E((BH)2

s) − 2E(BHs B
H
t )

= t2H + s2H − (t2H + s2H − |t− s|2H) = |t− s|2H ,

so BHt −BHs ∼ N(0, |t− s|2H); thus BH has stationary increments.

• If we set Xn = BHn −BHn−1; then Xn is a discrete-time Gaussian process with covariance function

ρn = E(Xk+nXn) = E((BHk+n −BHk+n−1)(BHk −BHk−1))

= RH(k + n, k) +RH(k + n− 1, k − 1)−RH(k + n, k − 1)−RH(k + n− 1, k)

=
1

2
[(n+ 1)2H + (n− 1)2H − 2n2H ] ∼ H(2H − 1)n2H−2, (n→∞),

and thus (by convexity of the function g(n) = n2H), we see that two increments off the form Bk−Bk−1

and Bk+n−Bk+n−1 are positively correlated if H ∈ ( 1
2 , 1) and negatively correlated if H ∈ (0, 1

2 ). Thus
BH is persistent (i.e. it is more likely to keep a trend than to break it) when H > 1

2 and anti-persistent
when H < 1

2 (i.e. if BH was increasing in the past, it is more likely to decrease in the future, and vice
versa).

• If H ∈ ( 1
2 , 1), we can show that

∑∞
n=1 ρn = ∞ which means that the process exhibits long-range

dependence, but if H ∈ (0, 1
2 ) then

∑∞
n=1 ρn <∞.

• Using that E((BHt −BHs )2) = (t−s)2H we can show that sample paths of BH are α-Hölder-continuous,
for all α ∈ (0, H).

• fBM is the only self-similar Gaussian process with stationary increments (see e.g. Marquardt[31]), and
for H 6= 1

2 , BHt is neither a Markov process nor a semimartingale (see e.g. Nualart[34]).

3.1 Construction of fractional Brownian motion

Various integral/moving average representations of fBM in terms of a standard Brownian motion have been
devised over the years, which we now briefly review:

• Mandelbrot&VanNess[30] give the following moving-average stochastic integral representation of fBM
for t ≥ 0:

BHt = cH [

∫ t

−∞
(t− s)−γdBs −

∫ 0

−∞
(−s)−γdBs],

where B is standard Brownian motion, γ = 1
2 −H and cH = (

∫∞
0

[(1 + s)γ − sγ ]2ds+ 1
2H )

1
2 ,3 and note

that BH0 = 0.

3See Mandelbrot&VanNess[30, Corollary 3.4] for the choice of the normalizing factor cH .
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Figure 1: Here we have plotted a Monte Carlo simulation of fBM for H = 0.9 (left) and H = 0.3 (right),
using the command: “data = RandomFunction[FractionalBrownianMotionProcess[H], {0, 1, 0.0001}] ; List-
LinePlot[data]” in Mathematica.

• We also have the following Volterra-type representation of fBM on the interval [0, t]:

BHt =

∫ t

0

KH(s, t)dBs, (2)

where

KH(s, t)

=

{
c+ s

1
2−H

∫ t
s
(u− s)H− 3

2uH−
1
2 du , if H ∈ ( 1

2 , 1),

c− [( ts )H−
1
2 (t− s)H− 1

2 − (H − 1
2 )s

1
2−H

∫ t
s
uH−

3
2 (u− s)H− 1

2 du], if H ∈ (0, 1
2 ),

(3)

and c+ = [ H(2H−1)

β(2−2H,H− 1
2 )

]
1
2 , c− = [ 2H

(1−2H)β(1−2H,H+ 1
2 )

]
1
2 and β(·, ·) denotes the beta function (see

Nualart[34, Eq. (5.8) and Proposition 5.1.3]).

• In 1953, Lévy introduced the following variant of fBM with a simpler kernel, also known as the Riemann-
Liouville process (see Mandelbrot&VanNess[30] for related discussion)

B̂Ht =
1

Γ(H + 1
2 )

∫ t

0

(t− s)H− 1
2 dBs,

for H ∈ (0, 1), which preserves the self-similarity feature of fBM (but not the stationarity of increments,
see e.g. paragraph below Definition 1 in Comte&Renault[10] and Chen et al.[8]). This process is
used in the fractional stochastic volatility model introduced in Comte&Renault[10, 11] and a similar
representation is used for the fractional Heston model in Comte et al.[9].

3.2 The reproducing kernel Hilbert space for fBM

We first re-prove a well known result, which we later adapt for the proof of the main theorem below.

Lemma 3.1 (see also [12, 33]). The reproducing kernel Hilbert space of fBM is HH = KHL
2[0, 1] with

scalar product given by

〈f, g〉HH = 〈ḣ1, ḣ2〉L2[0,1] ,
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for f = KH ḣ1, g = KH ḣ2, where the operator KH is defined by (KHf)(t) =
∫ t

0
KH(s, t)f(s)ds for t ∈ [0, 1].

Proof. See Appendix A.

3.3 The small-noise large deviation principle for Gaussian processes

A classical result for any centered Rn-valued Gaussian process Z states that
√
εZ satisfies the LDP on

C0([0, 1],Rn) in the uniform topology as ε→ 0 with speed 1
ε and good rate function given by

Λ(f) =

{
1
2‖f‖

2
H, f ∈ H,

∞, otherwise,
(4)

where H is the RKHS associated with the process (see e.g. Millet&Sanz-Sol[33, p.3] or Deuschel&Stroock[14,
Theorem 3.4.12] for an elegant proof). fBM is a particular type of centered Gaussian process so

√
εBH

satisfies the LDP with good rate function Λ(f), and in this case we know the structure of the RKHS from
the Lemma in the previous subsection. From here on, we will use ΛH in place Λ to signify that we are only
working with fBM.

4 Small-time asymptotics for a fractional stochastic volatility model

We work on a probability space (Ω,F ,P) with a filtration (Ft)t≥0 throughout, supporting two independent
standard Brownian motions and satisfying the usual conditions.

4.1 The fBM model - the uncorrelated case

We first consider the following stochastic volatility model for a stock price process St driven by fBM:{
dSt = Stσ(Yt)dWt ,
dYt = dBHt ,

(5)

where σ is is continuous and W and BHt denote an independent Brownian and fractional Brownian motion
respectively. We set Xt = logSt and X0 = Y0 = 0 without loss of generality4, and it will be convenient to
introduce the corresponding small-noise process{

dXε
t = − 1

2εσ(Y εt )2dt+
√
εσ(Y εt )dWt,

dY εt = εHdBHt ,
(6)

with Xε
0 = 0, Y ε0 = 0.

Theorem 4.1 Xt/t
1
2−H satisfies the LDP as t→ 0 with speed 1

t2H
and good rate function given by

I(x) = inf
f∈C0[0,1]

[
x2

2F (f)
+ ΛH(f)] (7)

where F (f) =
∫ 1

0
σ(f(s))2ds, and I(·) attains its minimum value of zero at x = 0.

4Because the law of Xt −X0 is independent of X0, and if we want Y0 6= 0 we can just adjust σ accordingly.
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Proof. From Itô’s formula, we know that Xt = logSt satisfies dXt = − 1
2σ(Yt)

2dt+ σ(Yt)dWt. Now let

dX̃ε
t =

√
εσ(Y εt )dWt ,

with X̃ε
0 = 0, i.e. the same SDE as in (6) with the same volatility process but without the drift term. Then

we have

X̃ε
1

(law)
= X̃1

ε

(law)
= W∫ ε

0
σ(BHs )2ds = Wε

∫ 1
0
σ(BHεu)2du

(law)
= Wε

∫ 1
0
σ(εHBHu )2du (8)

(law)
=

√
εWF (Y ε)

(law)
= F (Y ε)

1
2
√
εW1.

From Subsection 3.3, we know that εHBH satisfies the LDP on C0[0, 1] with speed 1
ε2H

and good rate
function ΛH . By the Gärtner-Ellis theorem, we also know that εHW1 satisfies the LDP as ε→ 0 with speed

1
ε2H

and good rate function 1
2x

2; thus (by independence) (εHW1, ε
HBH) satisfies a joint LDP on R×C0[0, 1]

with speed 1
ε2H

and good rate function 1
2x

2 + ΛH(f). From (8) we see that

X̃ε
1

(law)
= ε

1
2−HF (Y ε)

1
2 εHW1 = ε

1
2−Hϕ(εHW1, Y

ε),

where ϕ : R× C0[0, 1]→ R is given by ϕ(x, f) = xF (f)
1
2 .

F is continuous in the sup norm topology, so (from the contraction principle) F (Y ε) satisfies the LDP
with speed ε−2H and good rate function IF (y) = inff :F (f)=y ΛH(f) as ε → 0, and hence (from Remark a)
on page 8 in [13]) we know that F is also exponentially tight, so

P(| X
ε
1

ε
1
2−H

− X̃ε
1

ε
1
2−H
| > δ) = P(

1

2

1

ε
1
2−H

εF (Y ε) > δ) ≤ P(F (Y ε) >
2δ

ε
1
2 +H

) ≤ P(F (Y ε) > R)

for any R > 0 and ε sufficiently small. Hence (by exponential tightness) we see that

lim sup
ε→0

ε2H logP(| X
ε
1

ε
1
2−H

− X̃ε
1

ε
1
2−H
| > δ) ≤ −IF (R) .

Then (by exponential tightness), limR→∞ IF (R) =∞, so we can lettingR→∞ we see that limε→0 ε
2H logP(| Xε1

ε
1
2
−H−

X̃ε1

ε
1
2
−H | > δ) = −∞. HenceXε

1/ε
1
2−H and X̃ε

1/ε
1
2−H are exponentially equivalent in the sense of Dembo&Zeitouni[13,

Definition 4.2.10]. Thus (by Dembo&Zeitouni[13, Theorem 4.2.13]), Xε
1/ε

1
2−H also satisfies the LDP with

speed 1
ε2H

and rate function I(x). But Xε
1

(law)
= Xε and thus Xε/ε

1
2−H also satisfies the LDP with rate I(x),

and I(x) simplifies to the expression given in the statement of the theorem (where we now also replace ε
with t). The fact that I(x) = 0 follows from setting x = 0 and f = 0 and using that ΛH(0) = 0.

Remark 4.1 Note that the proof does not use the stationarity of fBM anywhere, so we can actually replace
Y with any Gaussian H-self-similar process, as in Gulisashvili et al.[25, 26], e.g. the Riemann-Liouville

process Yt =
√

2H
∫ t

0
(t− s)H− 1

2 dWs.

4.2 The correlated case

We now add correlation to the fractional stochastic volatility model in (5) and assume that St = eXt evolves
as {

dSt = Stσ(Yt)(ρ̄dWt + ρdBt) ,
dYt = dBHt ,

(9)

for ρ ∈ (−1, 1) with ρ̄ =
√

1− ρ2, and σ is α-Hölder continuous. Again it will be convenient to introduce
the small-noise process {

dXε
t = − 1

2εσ(Y εt )2dt+
√
ε σ(Y εt )[ρ̄dWt + ρdBt],

dY εt = εHdBHt ,
(10)

with Xε
0 = 0, Y ε0 = 0.
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Theorem 4.2 tH−
1
2Xt satisfies the LDP as t→ 0 with speed 1

t2H
and good rate function given by

I(x) = inf
f∈H1

[ (x− ρG(f))2

2ρ̄2F (KHf ′)
+

1

2
‖f‖2H1

]
≤ x2

2ρ̄2σ(0)2
(11)

where F (f) =
∫ 1

0
σ((KHf

′)(s))2ds, G(f) =
∫ 1

0
σ((KHf

′)(s))f ′(s)ds and H1 = {
∫ .

0
ḣ(s)ds, ḣ ∈ L2[0, 1]} is the

usual Cameron-Martin space for Brownian motion with the Hilbert structure 〈f, g〉H1
= 〈f ′(s)g′(s)〉L2[0,1].

I(x) attains its minimum value of zero at x = ρG(0) = 0.

Proof. See Appendix B.

Remark 4.2 Note that all the Theorems above (and we suspect most or all of the other published/unpublished
results on fractional stochastic volalility models) are no longer true if we condition on the history of BH

at finite or infinitely many points in [−τ, 0] for some τ > 0 fixed (for us the problem is that a conditioned
fBM is no longer self-similar, which is what is needed in the proof of Theorem 4.1 to translate small noise
asymptotics into small-time asymptotics). This is a non-trivial and important issue, which will hopefully be
addressed in future work. On this theme, we also recall the prediction formula for fBM of Nuzman&Poor[35]:

E(BHt+∆|Ft) = 1
π cos(Hπ)∆H+ 1

2

∫ t
−∞

BHs

(t−s+∆)(t−s)H+1
2
ds, but what we really want is the conditional covari-

ance structure of fBM.

Corollary 4.3 The rate function I(x) in (11) is continuous.

Proof. Let I(x, f) = (x−ρG(f))2

2ρ̄2F (KHf ′)
+ 1

2‖f‖
2
H1

. Then I(·, f) is continuous (and hence USC), and I(x) =

inff I(x, f). The pointwise supremum of a family of LSC functions is LSC (see e.g. Aliprantis&Border[1,
Lemma 2.41]), hence the pointwise infimum of a family of USC functions is USC, so I(x) is USC. But I(x)
is also a rate function, hence I is also LSC.

Corollary 4.4 Let γ = 1
2−H as before. Then using the continuity of I(x), we have the following small-time

behaviour for digital put/call options

lim
t→0

t2H logP(Xt > xtγ) = −Λ∗(x) , (x > 0) ,

lim
t→0

t2H logP(Xt < xtγ) = −Λ∗(x) , (x < 0) ,

where Λ∗(x) = infy>x I(y) if x ≥ 0 and Λ∗(x) = infy<x I(y) if x ≤ 0.

4.3 The martingale property and asymptotics for call options and implied
volatility

Lemma 4.5 Assume that σ : R 7→ (0,∞) is α-Hölder continuous for some α ∈ (0, 1], then there exists some
A1 > 0, such that

σ(y)2 ≤ A1(1 + |y|2), ∀y ∈ R. (12)

Proof. Let L > 0 be the Hölder constant of σ, we have

|σ(y)− σ(0)| ≤ L|y|α ⇒ 0 < σ(y) < σ(0) + L|y|α ≤ σ(0) + L1|y|<1 + L|y|1|y|≥1 ≤ σ(0) + L+ L|y|.

Hence, σ(y)2 ≤ (σ(0) + L + L|y|)2 ≤ (2[(σ(0) + L) ∨ L|y|])2 ≤ 4(σ(0) + L)2 + 4L2|y|2. It follows that (12)
holds for A1 = 4(σ(0) + L)2.

We now prove that the stock price process in (9) is a martingale:
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Proposition 4.6 If σ satisfies (12), then St is a martingale.

Proof. For any s > 0, (BHs )2/s2H follows a chi-squared distribution with degree of freedom 1, so

E(eC(BHs )2) =
1√

1− 2s2HC
, ∀C <

1

2s2H
. (13)

Hence, if ε, C > 0 and s ≥ 0 satisfy

εC(s+ ε)2H ≤ 1

4
, (14)

then by Jensen’s inequality and Fubini’s theorem, we have that

E(e
∫ s+ε
s

C|BHu |
2du) = E(e

1
ε

∫ s+ε
s

εC|BHu |
2du) ≤ 1

ε

∫ s+ε

s

E(eεC|B
H
u |

2

)du =
1

ε

∫ s+ε

s

du√
1− 2u2HεC

.

Since for all u ∈ (s, s+ ε], 1− 2u2HεC ≥ 1− 2(s+ ε)2HεC ≥ 1− 1
2 = 1

2 , we know that

E(e
∫ s+ε
s

C|BHu |
2du) ≤ 1

ε

∫ s+ε

s

√
2du =

√
2. (15)

We use the above estimate to prove that St = S0 exp(
∫ t

0
σ(BHs )(ρ̄dWs + ρdBs) − 1

2

∫ t
0
σ(BHs )2ds) is a mar-

tingale for all t > 0. To this end, we define s0 = 0 and ε0 be such that ε2H+1
0 A1 = 1

4 , and for n ≥ 1,
define sn = sn−1 + εn−1 and εn > 0 be such that εn(sn + εn)2HA1 = εns

2H
n+1A1 = 1

4 . We claim that sn
increases to ∞ as n tends to ∞; indeed, if we assume to the contrary that limn→∞ sn = M < ∞, then
εn ≥ 1/(4A1(supn≥1 sn)2H) = 1/(4A1M

2H) > 0, which is a contradiction.

From (15) and (12), we know that for all n ≥ 1,

E(e
1
2

∫ sn
sn−1

σ(BHs )2ds
) ≤ E(e

1
2

∫ sn
sn−1

A1(1+|BHs |
2)ds

) = e
1
2A1εn−1E(e

1
2At

∫ sn
sn−1

|BHs |
2ds

)

≤
√

2e
1
2A1εn−1 <∞.

Hence by Karatzas&Shreve[27, Corollary 5.5.14], St is a true martingale.

4.4 Asymptotics for call options and implied volatility

Corollary 4.7 Consider the model in (9) and assume σ satisfies (12). Then we have the following small-
time behaviour for out-of-the-money put/call options on St = eXt with S0 = 1:

− lim
t→0

t2H logE(St − ext
γ

)+ = Λ∗(x) , (x ≥ 0) , (16)

− lim
t→0

t2H logE(ext
γ

− St)+ = Λ∗(x) , (x ≤ 0) , (17)

where x = logK is the log-moneyness.

Proof. See Appendix C.

Remark 4.3 Note that this is a small-time, small log-moneyness parametrization if H ∈ (0, 1
2 ), and a small-

time, large log-moneyness parametrization for H ∈ ( 1
2 , 1). Put differently, we expect the implied volatility

smile to steepen to an infinite V -shape as the maturity t→ 0 if H ∈ (0, 1
2 ) (similar to jump models) and to

flatten when H ∈ ( 1
2 , 1). The empirical findings in Gatheral et al.[24] report that H = 0.1 is realistic, but

historically H is usually found or chosen to be greater than 1
2 to capture long-memory dependence. Recall

that γ = 1
2 − H, hence the limit H → 0 here is consistent with the parameterization used in FX option

markets where the log moneyness scales as x
√
t as t→ 0.
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Corollary 4.8 Let σ̂(x, t) denote the implied volatility at log-moneyness x and maturity t. Then for the
model in (9), we have

σ̂0(x) = lim
t→0

σ̂(xtγ , t) =
|x|√

2Λ∗(x)
(18)

where γ = 1
2 −H as before.

Proof. Setting k = xtγ = xt
1
2−H , we know that the log absolute call price L = L(k) = | logE(St−ext

γ

)+| ∼
Λ∗(x)
t2H

as t→ 0. Then by in Gao&Lee[21, Corollary 7.1], we have the following small-time behaviour for the
dimensionless implied volatility squared V 2 = σ̂(x, t)2t:

V = G[k, L− 3

2
logL+ log(

k

4
√
π

)] + o(
k

L
3
2

)

=
√

2
[Λ∗(x)

t2H
+ t

1
2−Hx− 3

2
log(

Λ∗(x)

t2H
) + log

t
1
2−Hx

4
√
π

] 1
2

−
√

2
[Λ∗(x)

t2H
− 3

2
log(

Λ∗(x)

t2H
) + log

t
1
2−Hx

4
√
π

] 1
2 + o(

k

L
3
2

)

=

√
2Λ∗(x)

tH
[1
2

t2H

Λ∗(x)
t
1
2−Hx + o(

xt
1
2−H

(Λ∗(x)
t2H

)
3
2

) =
x
√
t√

2Λ∗(x)
[1 + o(1)],

where G(·, ·) is defined in Gao&Lee[21], and the result follows by dividing by
√
t.

4.5 Numerical implementation and computing the most likely path

We can use the Ritz method described in Gelfand&Fomin[17, Section 40] to provide an approximate numerical
solution to the rate function I(x) in Theorem 4.2. More specifically, using that (cos(2πns), sin(2πns))∞n=0 is

an orthogonal basis for L2[0, 1], we consider f functions such that f(0) = 0 and f ′(s) = a0+
∑N
n=1[an cos(2πns)+

bn sin(2πns)] for some finite N , and we then minimize (x−η1f(1))2

2
∫ t
0
σ(y(

∫ t
0
KH(s,t)f ′(s)ds))2dt

+ 1
2‖f‖

2
H1

over the N

Fourier coefficients. The optimal f then gives the “most likely path” for BH given that the log stock price
Xt = x.

In the following tables (see also Figure 2 and Figure 3) we calculate the rate function I(x) in (11)
and the asymptotic implied volatility σ̂0(x) for the uncorrelated model in (5) and the correlated model in
(9) respectively, using the Ritz method with the NMinimize command in Mathematica with N = 4 and
σ(y) = 0.1 + .05 tanh(y), H = 0.25 (Mathematica code available on request).

Table 1: Implied volatility in the uncorrelated model (5).

x σ̂0(x) Ritz method σ̂t(x) Monte Carlo t = .005
0.001 10.0000% 10.0179%
0.02 10.0183% 10.0364%
0.04 10.0716% 10.0832%
0.06 10.1551% 10.1594%
0.08 10.2625% 10.2589%
0.10 10.3866% 10.3778%
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Table 2: Implied volatility in the correlated model (9) with ρ = −0.1.

x σ̂0(x) Ritz method σ̂t(x) Monte Carlo t = .005
-0.06 10.3064% 10.3127%
-0.04 10.1769% 10.1674%
-0.02 10.0724% 10.0774%
0.001 9.99731% 10.0067%
0.02 9.96412% 9.97780%
0.04 9.96607% 9.97724%
0.06 10.0036% 10.0115%
0.08 10.0714% 10.0740%

+

+

+

+

+

+

0.2 0.4 0.6 0.8 1.0

0.101

0.102

0.103

Figure 2: Here we have plotted the right half of the (symmetric) small-maturity implied volatility smile for
the model in (9) for ρ = 0, σ(y) = 1 + .05 tanh(y), H = 0.25 and t = .005. verses the values obtained by
Monte Carlo using the well known Willard[37] conditioning method with 500,000 simulations and 100 time
steps in Mathematica. We use a discretization of the Volterra formula in (2) to generate the fBM.

+

+

+

+

+ +

+

+

-0.06 -0.04 -0.02 0.02 0.04 0.06 0.08

0.1005

0.1010

0.1015

0.1020

0.1025

0.1030

Figure 3: Here we have plotted the small-maturity implied volatility smile for the model in (9) for ρ = −0.1,
σ(y) = 1 + .05 tanh(y), H = 0.25 and t = .002. verses the values obtained by Monte Carlo using the
Willard[37] conditioning method with 500,000 simulations and 100 time steps in Mathematica.
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a Lévy jump model with stochastic volatility, Finance Stoch., 20 (2016), pp. 219–265.

[17] S.V. Fomin and I.M. Gelfand, Calculus of Variations, Dover Publication, 2000.

[18] P. Friz and N. Victoir, Multidimensional Dimensional Processes Seen as Rough Paths, Cambridge
University Press, 2010.

[19] M. Fukasawa, Asymptotic analysis for stochastic volatility: martingale expansion, Finance Stoch., 15
(2011), pp. 635–654.

[20] , Short-time at-the-money skew and rough fractional volatility. Forthcoming Quant. Finance. Avail-
able at http://arxiv.org/abs/1501.06980., 2016.

12



[21] K. Gao and R. Lee, Asymptotics of implied volatility to arbitrary order, Finance Stoch., 18 (2014),
pp. 349–392.

[22] J. Gatheral, Fractional volatility models. BBQ seminar, 2014.

[23] , Volatility is rough, part 2: Pricing. Workshop on Stochastic and Quant. Finance, Imperial College
London, 2014.

[24] J. Gatheral, T. Jaisson, and M. Rosenbaum, Volatility is rough. Available at
http://arxiv.org/abs/1410.3394, 2014.

[25] A. Gulisashvili, F. Viens, and X. Zhang, Small-time asymptotics for Gaussian self-similar stochas-
tic volatility models. Available at http://arxiv.org/abs/1505.05256, 2015.

[26] , Extreme-strike asymptotics for general Gaussian stochastic volatility models. Available at
http://arxiv.org/abs/1502.05442, 2015.

[27] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991.

[28] M.A. Lifshits, Gaussian Random Functions, Springer, 1995.

[29] K. Majewski, Large deviations for multi-dimensional reflected fractional Brownian motion, Stochastics
and Stochastic Reports, 75 (2003), pp. 233–257.

[30] B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applica-
tions, SIAM Rev., 10 (1968), pp. 422–437.
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Ann. Inst. Henri Poincaré Probab. Stat., 42 (2006), pp. 245–271.

[34] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 2006.

[35] C.J. Nuzman and H. Vincent Poor, Linear estimation of self-similar processes via Lamperti’s
transformation, J. Appl. Probab., 37 (2000), pp. 429–452.

[36] M. Veraar, The stochastic Fubini theorem revisited, Stochastics, 84 (2012), pp. 543–551.

[37] G. Willard, Calculating prices and sensitivities for path-independent derivatives securities in multi-
factor models, J. Derivatives, 5 (1997), pp. 45–61.

A Proof of Lemma 3.1

We first note that KH is a bijection from L2[0, 1] into HH .5 We now construct the adjoint of KH (see
also Deuschel&Stroock[14, Section 3.4] where S = KH in their notation), loosely following the arguments
in Decreusefond&Ustunel[12, Theorem 3.3] (which contains some minor errors). For f ∈ H := L2[0, 1],
KHf ∈ HH ⊂ E and for θ ∈ E∗ let Af = 〈θ,KHf〉. Then A : L2[0, 1]→ R is a continuous linear functional,

5The kernel is continuous and positive, so it induces an injection. Suppose this is not the case; then a nonzero cádlág
function f is mapped to 0 (because KH is linear). Then pick the first interval where the sign of f is either + or −, without
loss of generality, say f(t) > 0 for all t ∈ (0, u), then the image of f will also have positive value for argument in (0, u), due to
positivity of the kernel. This is a contradiction.
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i.e. an element of H∗ ' H, so we have a continuous linear map K∗H : E∗ → H. More explicitly, using
Fubini’s theorem, we have

〈θ,KHf〉 =

∫ 1

0

[

∫ t

0

KH(s, t)f(s)ds] θ(dt) =

∫ 1

0

[

∫ 1

s

KH(s, t)θ(dt)] f(s)ds,

so (K∗Hθ)(s) =
∫ 1

s
KH(s, t)θ(dt). In order to verify that HH is the RKHS, we have to verify that HH is

dense in E and that ∫
ei(θ,f)dµ = e−

1
2‖K

∗
Hθ‖

2

,

where µ is the law of BH on C0[0, 1]. We note that KHt
r = cr,H t

r+H− 1
2 for all r > − 1

2 for some cr,H 6= 0, so
HH contains all polynomials null at zero and this is dense in C0[0, 1] (by the Stone-Weierstrauss theorem).
Moreover, we also see that∫

〈θ, f〉2dµ = E(

∫ 1

0

BHs θ(ds)

∫ 1

0

BHt θ(dt)) = E(

∫ 1

0

∫ 1

0

BHt B
H
s θ(ds)θ(dt))

=

∫ 1

0

∫ 1

0

RH(s, t)θ(ds)θ(dt)

=

∫ 1

0

∫ 1

0

∫ s∧t

0

KH(r, s)KH(r, t)dr θ(ds)θ(dt)

(if we define KH(r, s) to be zero if r > s) =

∫ 1

0

∫ 1

0

∫ 1

0

KH(r, s)KH(r, t)dr θ(ds)θ(dt)

=

∫ 1

0

(

∫ 1

0

KH(r, s)θ(ds))(

∫ 1

0

KH(r, t)θ(dt))dr

=

∫ 1

0

(

∫ 1

r

KH(r, s)θ(ds))(

∫ 1

r

KH(r, t)θ(dt))dr

=

∫ 1

0

(K∗Hθ)(r)
2dr = ‖K∗Hθ‖2L2[0,1] = ‖RHθ‖2HH ,

where RH = KHK∗H , and we have used that RH(s, t) =
∫ s∧t

0
KH(r, s)KH(r, t)dr in the third line (see e.g.

Nualart[34, Eq. (5.9)]). This verifies that HH is the RKHS for fBM.

B Proof of Theorem 4.2

Given that (B,BH) is a Gaussian process, applying similar arguments to the proof of Lemma 3.1, we see

that the RKHS for (B,BH) is H2
H = {(f, g) ∈ C0([0, 1],R2) : f(t) =

∫ t
0
ḣ(s)ds, g(t) =

∫ t
0
KH(s, t)ḣ(s)ds, ḣ ∈

L2[0, 1]}. Using the general LDP for Gaussian processes in Subsection 3.3, we know that εH(BH , B) satisfies
a joint LDP on C0([0, 1],R2) as ε→ 0 with speed 1

ε2H
and rate function

IH(f, g) =

{
1
2

∫ 1

0
ḣ(s)2ds, if (f, g) ∈ H2

H ,
+∞, otherwise .

(B-1)

From Itô’s formula, we know that Xt = logSt satisfies dXt = − 1
2σ(Yt)

2dt + σ(Yt)(ρ̄dWt + ρdBt). Now let

dX̃ε
t =

√
εσ(Y εt )(ρ̄dWt + ρdBt), dY

ε
t = εHdBHt , i.e. the same SDE as in (10) but without the drift term.
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Then we have

X̃1
ε

(law)
= ρ̄W∫ ε

0
σ(BHs )2ds + ρ

∫ ε

0

σ(BHs )dBs = ρ̄Wε
∫ 1
0
σ(BHεu)2du + ρ

∫ 1

0

σ(BHεu)dBεu

(law)
= ρ̄Wε

∫ 1
0
σ(εHBHu )2du + ρ

∫ 1

0

σ(εHBHu )
√
εdBu

(law)
=

√
ε [ ρ̄WF (Y ε) + ρ

∫ 1

0

σ(Y εu )dBu]

(law)
=

√
ε [ ρ̄F (Y ε)

1
2 W1 + ρ

∫ 1

0

σ(Y εu )dBu]
(law)
= X̃ε

1 . (B-2)

εHW1 satisfies the LDP as ε→ 0 with speed 1
ε2H

and rate function 1
2x

2; thus by independence, (εHW1, ε
HB, εHBH)

satisfies a joint LDP on R × C0[0, 1] × C0[0, 1] with speed 1
ε2H

and rate function 1
2x

2 + IH(f, g). Loosely
following the arguments in Dembo&Zeitouni[13, Lemma 5.6.9] by “freezing” the coefficient σ(·) over small
time intervals, we now define

Zεt = εH
∫ t

0

σ(εHBHs )dBs = εH
∫ t

0

σ(εH
∫ s

0

KH(u, s)dBu)dBs ,

Zm,εt = εH
∫ t

0

σ(εHBH[ms]
m

)dBs = εH
∫ t

0

σ(εH
∫ [ms]

m

0

KH(u,
[ms]

m
)dBu)dBs ,

Lemma B.1 Zε,mt is an exponentially good approximation to Zεt for all t ∈ [0, 1]:

lim
m→∞

lim
ε→0

ε2H logP( sup
t∈[0,1]

|Zεt − Z
ε,m
t | > δ) = −∞ .

Proof. See Appendix B.1 below.

We can define the following mappings Φ,Φm from H2
H to C0[0, 1]:

(Φ(f, g))(t) =

∫ t

0

σ(g(s))f ′(s)ds

(Φm(f, g))(t) = (Φm(f, g))(t) =

∫ t

0

σ(g(
[ms]

m
))f ′(s)ds for t ∈ [0, 1], (B-3)

and recall that for (f, g) ∈ H2
H , f = K 1

2
ḣ and g = KH ḣ for some ḣ ∈ L2[0, 1]. Moreover, we can extend the

domain of Φ and Φm to C0[0, 1]× C0[0, 1] by setting Φ(f, g) = 0 for f, g /∈ H2
H and

Φm(f, g) =

[mt]−1∑
j=0

σ(g(
j

m
))(f(

j + 1

m
)− f(

j

m
)) + σ(g(

[mt]

m
))(f(t)− f(

[mt]

m
))

and we note that Φ is measurable on this extended domain, and Φm is continuous on this extended domain
and agrees with the original definition of Φm in (B-3) for (f, g) ∈ H2

H (where we are using the sup norm
topology for both arguments of Φm).

Lemma B.2

lim
m→∞

sup
(f,g)∈H2

H :IH(f,g)≤α
‖Φ((f, g))− Φm((f, g))‖∞ = 0. (B-4)

Proof. See Appendix B.2 below.

Returning now to (B-2), we see that

X̃ε
1

(law)
=

√
ε [ ρ̄F (Y ε)

1
2 W1 + ρ

∫ 1

0

σ(Y εu )dBu] = ε
1
2−H [ ρ̄F (εHBH)

1
2 εHW1 + εHρ

∫ 1

0

σ(εHBHu )dBu].

15



We now define the functional ϕm : R× C0[0, 1]× C0[0, 1] as

ϕm(x, f, g) = ρ̄F (g)
1
2x+ ρΦm(f, g)(1),

and the “(1)” just means the function evaluated at the point t = 1, and again ϕm is continuous if we use
the sup norm for the f and g arguments. Then we have (recall that ρ 6= 0)

P(| X̃
ε
1

ε
1
2−H

− ϕm(εHW1, ε
HB1, εHBH)| > δ) = P(ρ(Zε1 − Z

ε,m
1 )| > δ)

≤ P(|ρ||Zε1 − Z
ε,m
1 | > δ)

≤ P(|Zε1 − Z
ε,m
1 | > 1

2
δ/|ρ|) .

Combining this with Lemma B.1, we see that

lim
m→∞

lim
ε→0

ε2H logP(| X̃
ε
1

ε
1
2−H

− ϕm(εHW1, ε
HB1, εHBH)| > δ) = −∞ .

Thus ϕm(εHW1, ε
HB1, εHBH) is an exponentially good approximation to X̃ε

1/ε
1
2−H . Moreover, we see that

lim
m→∞

sup
(z,f,g)∈R×H2

H : 12 z
2+IH(f,g)≤α

|ρ(Φ((f, g))(1)− Φm((f, g))(1))|

≤ lim
m→∞

sup
(f,g)∈H2

H :IH(f,g)≤α
||ρ||Φ((f, g))(1)− Φm((f, g))(1)|

≤ lim
m→∞

sup
(f,g)∈H2

H :IH(f,g)≤α
|ρ||Φ((f, g))(1)− Φm((f, g))(1)| = 0,

where the final equality follows from Lemma B.2. Thus by the extended contraction principle in Dembo&Zeitouni[13,

Theorem 4.2.23], X̃ε
1/ε

1
2−H satisfies the LDP with speed 1

ε2H
and rate function

inf
w,f,g : ρ̄F (g)

1
2w+ρΦ(f)=x

[
1

2
w2 + IH(f, g)] = inf

(f,g)∈H2
H

[
(x− ρΦ(f))2

2ρ̄2F (g)
+ IH(f, g)]

= inf
f∈H1

[ (x− ρG(f))2

2ρ̄2F (KHf ′)
+

1

2
‖f‖2H1

]
,

as required. The rest of the proof just involves dealing with the drift term and proceeds as for Theorem 4.1.

B.1 Proof of Lemma B.1

We need to prove that for any given δ > 0

lim
m→∞

lim
ε→0

ε2H logP( sup
t∈[0,1]

|Zεt − Z
m,ε
t | > δ) = −∞ .

To this end, let σt = σ(εHBHt )− σ(εHBH[mt]
m

), for t ∈ [0, 1]. Fix a ρ > 0 and consider

τm1 = inf{t > 0 : εH |BHs −BH[ms]
m

| > ρ} ∧ 1,

then for all t ∈ [0, τm1 ], by the α-Hölder continuity of σ(·), we have

−Lρα < σt < Lρα , (B-5)

where L > 0 is the α-Hölder continuity coefficient for σ(·). For any λ > 0 fixed, we have

P(εH sup
t∈[0,τm1 ]

∫ t

0

σsdBs > δ) = P( sup
t∈[0,τm1 ]

exp(εHλ

∫ t

0

σsdBs) > eλδ) .
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Since exp(εHλ
∫ t

0
σsdBs) is a submartingale, by the maximum inequality (see e.g. Karatzas&Shreve[27,

Theorem 1.3.8]), we have

P( sup
t∈[0,τm1 ]

exp(εHλ

∫ t

0

σsdBs) > eλδ) ≤ e−λδ E[exp(εHλ

∫ τm1

0

σsdBs)] .

Introducing the supermartingale Mt = exp(εHλ
∫ t∧τm1

0
σsdBs − 1

2ε
2Hλ2

∫ t∧τm1
0

σ2
sds), then

E(exp(εHλ

∫ τm1

0

σsdBs)) = E(Mτm1
· exp(

1

2
ε2Hλ2

∫ τm1

0

σ2
sds)) ≤ exp(

1

2
ε2Hλ2L2ρ2α),

where the last inequality is due to (B-5). Hence,

P( sup
t∈[0,τm1 ]

exp(εHλ

∫ t

0

σsdBs) > eλδ) ≤ exp(
1

2
ε2Hλ2L2ρ2α − λδ).

Letting λ = δ
ε2HL2ρ2α

,

P( sup
t∈[0,τm1 ]

εH
∫ t

0

σsdBs > δ) ≤ exp(− δ2

2ε2HL2ρ2α
) .

That is,

ε2H logP( sup
t∈[0,τm1 ]

|Zεt − Z
m,ε
t | > δ) ≤ − δ2

2L2ρ2α
+ ε2H log 2 , (B-6)

where we have used that P(supt∈[0,τm1 ] |Zεt −Z
m,ε
t | > δ) ≤ P(supt∈[0,τm1 ](Z

ε
t −Z

m,ε
t ) > δ)+P(supt∈[0,τm1 ](Z

ε
t −

Zm,εt ) < −δ). Hence
lim
ρ→0

sup
m≥1

lim sup
ε→0

ε2H logP( sup
t∈[0,τm1 ]

|Zεt − Z
m,ε
t | > δ) = −∞ .

On the other hand,

P(τm1 < 1) = P( sup
t∈[0,1]

εH |BHt −BH[mt]
m

| > ρ) ≤ mP( sup
t∈[0, 1

m ]

εH |BHt | > ρ), (B-7)

because fBM has stationary increments. By the scaling property of fBM we have

P( sup
t∈[0, 1

m ]

εHBHt > ρ) = P( sup
t∈[0,1]

εHBHt
m
> ρ) = P( sup

t∈[0,1]

(
ε

m
)HBHt > ρ) (B-8)

= P( sup
t∈[0,1]

BHt > ρ(
m

ε
)H) .

By Theorem 1 of Lifshits[28, p.139], there exists a constant d such that

lim
r→∞

r−1[logP( sup
t∈[0,1]

BHt > r) + (r + d)2/2] = 0. (B-9)

Thus for all c > 0, there exists an r∗ = r∗(c) > 0 sufficiently large such that for all r > r∗ we have

P( sup
t∈[0,1]

BHt > r) ≤ exp(− (r + d)2

2
+ rc) .

Thus for the range of BHt we have for all r > 0 sufficiently large,

P( sup
t∈[0,1]

|BHt | > r) ≤ 2 exp(− (r + d)2

2
+ rc).
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Now setting r = ρ(mε )H and using (B-9) we have

lim
ε→0

ε2H logP( sup
t∈[0, 1

m ]

|εHBHt | > ρ) ≤ lim
ε→0

ε2H [− (ρ(m/ε)H + d)2

2
+ ρ(m/ε)Hc+ log 2] = −ρ

2m2

2
.

Thus from (B-7) we have

lim sup
m→∞

lim
ε→0

ε2HP(τm1 < 1) ≤ lim sup
m→∞

lim
ε→0

ε2H [logm+ logP( sup
t∈[0, 1

m ]

|εHBHt | > ρ)] = −∞, (B-10)

and the right hand side is −∞ so we can replace the lim sup’s in m with a genuine limit.

Finally, notice that

{ sup
t∈[0,1]

|Zεt − Z
m,ε
t | > δ} ⊂ {τm1 < 1} ∪ { sup

t∈[0,τm1 ]

|Zεt − Z
m,ε
t | > δ} .

Hence

P( sup
t∈[0,1]

|Zεt − Z
m,ε
t | > δ) ≤ P(τm1 < 1) + P( sup

t∈[0,τm1 ]

|Zεt − Z
m,ε
t | > δ)

≤ 2 max{P(τm1 < 1) , P( sup
t∈[0,τm1 ]

|Zεt − Z
m,ε
t | > δ)} .

We can then proceed as

ε2H logP( sup
t∈[0,1]

|Zεt − Z
m,ε
t | > δ) (B-11)

≤ ε2H log 2 + max{ε2H logP(τm1 < 1), ε2H logP( sup
t∈[0,τm1 ]

|Zεt − Z
m,ε
t | > δ)}

≤ max{lim sup
ε→0

ε2H logP(τm1 < 1) , lim sup
ε→0

ε2H logP( sup
t∈[0,τm1 ]

|Zεt − Z
m,ε
t | > δ)},

as ε→ 0. For any N < 0, from (B-6) we can select a ρ > 0 sufficiently small such that

lim
m→∞

lim sup
ε→0

ε2H logP( sup
t∈[0,τm1 ]

|Zεt − Z
m,ε
t | > δ) ≤ sup

m≥1
lim sup
ε→0

ε2H logP( sup
t∈[0,τm1 ]

|Zεt − Z
m,ε
t | > δ) ≤ N.

On the other hand, for this ρ > 0, from (B-10) we have that

lim
m→∞

lim sup
ε→0

ε2H logP(τm1 < 1) = −∞ .

Thus, from (B-11), we have

lim
m→∞

lim sup
ε→∞

ε2H logP( sup
t∈[0,1]

|Zεt − Z
m,ε
t | > δ) ≤ N .

By the arbitrariness of N < 0 we know that

lim
m→∞

lim sup
ε→∞

ε2H logP( sup
t∈[0,1]

|Zεt − Z
m,ε
t | > δ) = −∞ .

B.2 Proof of Lemma B.2

For all ḣ ∈ L2[0, 1] such that ‖ḣ‖L2[0,1] ≤ β and assuming that s < t (without loss of generality), from the
Cauchy-Schwarz inequality we see that

|(KH ḣ)(t)− (KH ḣ)(s)| = |
∫ t

0

KH(u, t)ḣ(u)du−
∫ s

0

KH(u, s)ḣ(u)du| (B-12)

≤ [

∫ t

0

|KH(u, t)−KH(u, s)1{u<s}|2du]
1
2 · β := δ(t, s) · β .
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But we can re-write δ(t, s) as

δ2(t, s) =

∫ t

0

K2
H(u, t)du+

∫ s

0

K2
H(u, s)du− 2

∫ s

0

KH(u, t)KH(u, s)du

= Var(BHt ) + Var(BHs )− 2Cov(BHt B
H
s ) = |t− s|2H .

Thus δ(t− s) = |t− s|H . Moreover, by the α-Hölder continuity of σ and the Cauchy-Schwartz inequality, we
have

|(Φ((f, g)))(t)− (Φm((f, g)))(t)| = |
∫ t

0

[σ((KH ḣ)(s))− σ((KH ḣ)(
[ms]

m
))] ḣ(s)ds |

≤ L

∫ 1

0

|(KH ḣ)(s)− (KH ḣ)(
[ms]

m
)|α · |ḣ(s)|ds

≤ L (

∫ 1

0

|(KH ḣ)(s)− (KH ḣ)(
[ms]

m
)|2αds )

1
2 · β

≤ Lβ1+α sup
s∈[0,1]

δ(s,
[ms]

m
)α ≤ Lβ1+α sup

s∈[0,1]

|s− [ms]

m
|αH =

Lβ1+α

mαH
,

where L is the Hölder constant for σ, and we have used (B-13) in the final line. Letting m→∞ we obtain
the result.

C Proof of Corollary 4.7

• (i) Lower bound. Recall that γ = 1
2 −H; then for any δ > 0, we have

E(St − ext
γ

)+ ≥ (ex(1+δ)tγ − ext
γ

)P(St > ex(1+δ)tγ )

= ext
γ

(eδt
γ

− 1)P(St > ex(1+δ)tγ ) ≥ ext
γ

δtγ P(St > ex(1+δ)tγ ) .

By Theorem 4.2 and using that limt→0 t
2H log t = 0, we have that

lim inf
t→0

t2H logE(St − S0e
xtγ )+

≥ lim inf
t→0

[t2H(xtγ + log δ + γ log t) + t2H logP(St > ex(1+δ)tγ)]

= lim inf
t→0

t2H logP(St > ex(1+δ)tγ ) ≥ −Λ∗(x+ δ) .

Now take δ → 0+; then by continuity of Λ∗(·), we obtain the desired lower bound.

• Upper bound. We note that for q > 1, we have

E(St − ext
γ

)+ = E((St − ext
γ

)+1St≥extγ ) ≤ E[((St − ext
γ

)+)q]1/q E(1St≥extγ )1−1/q.

Thus

t2H logE(St − ext
γ

)+ ≤ t2H

q
log
[
E[((St − ext

γ

)+)q]
]

+ t2H(1− 1

q
) logP(St ≥ ext

γ

)

≤ t2H

q
logE(Sqt ) + t2H(1− 1

q
) logP(St ≥ ext

γ

). (C-1)

Now recall that for q > 1

E(Sqt ) = E(exp( 1
2 (q2ρ̄2 − q)

∫ t
0
σ(BHs )2ds+ qρ

∫ t
0
σ(BHs )dBs)) = E(R1 ·R2),
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where we define the nonnegative random variables R1, R2 as

R1 = exp(
1

2
(q2 − q + q2ρ2)

∫ t

0

σ(BHs )2ds),

R2 = exp(−q2ρ2

∫ t

0

σ(BHs )2ds+ qρ

∫ t

0

σ(BHs )dBs)) .

We now choose t > 0 small enough so that

max{(q2 − q + q2ρ2), 2q2ρ2} ·A1t
2H+1 ≤ 1

4
.

Then by the Cauchy-Schwarz inequality,

E(Sqt ) ≤
√
E(R2

1) · E(R2
2)

=

√
E(e(q2−q+q2ρ2)

∫ t
0
σ(BHs )2ds) · E(e−2q2ρ2

∫ t
0
σ(BHs )2ds+2qρ

∫ t
0
σ(BHs )dBs)

=

√
E(e(q2−q+q2ρ2)

∫ t
0
σ(BHs )2ds) · 1.

where the last step is due to the observation that R2
2 can be considered as the time-t value of a

martingale starting from 1. Moreover,

E(Sqt ) ≤
√
E(e(q2−q+q2ρ2)

∫ t
0
σ(BHs )2ds) ≤

√
E(e(q2−q+q2ρ2)

∫ t
0
A1(1+|BHs |2)ds)

≤
√
e(q2−q+q2ρ2)A1t

√
2 =

4
√

2e
1
2 (q2−q+q2ρ2)A1t,

where the last inequality follows from (15) with s = 0, ε = t and C = (q2 − q+ q2ρ2)A1 after verifying
that (14) is satisfied. As a consequence, we obtain

lim
q→∞

lim sup
t→0

t2H

q
logE(Sqt ) ≤ lim

q→∞
lim sup
t→0

t2H

q
(
1

2
(q2 − q + q2ρ2)A1t+

1

4
log 2) = 0.

Hence we see that

lim sup
t→0

t2H

q
logE(Sqt ) ≤ 0 .

If we then take limq→∞ lim supt→0 on both sides of (C-1), we have (by Theorem 4.1) the upper bound

lim sup
t→0

t2H logE(St − S0e
xtγ )+ ≤ −Λ∗(x) ,

as required.
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