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Abstract

We augment the well known rough Heston model with an additional independent CGMY-
type jump process with a Brownian component, and we show that one can simultaneously
use the rough Heston parameters to fit the at-the-money VIX level and skew as T → 0, and
the CGMY parameters to fit the observed level, at-the-money correction and at-the-money
skew of SPX options as T → 0 (using the main Theorem in [FSV21] adapted for our rough
Heston V process), and the drift of the V process can be made to be fully consistent with
the initial observed variance curve structure. In this sense, the additional CGMY compo-
nent allows the SPX and VIX smiles to decouple as T → 0 in some sense (which is not
possible for a rough model without jumps), and the model can generate power-law skew for
both smiles with different effective H-values. We also formally compute small-time Edge-
worth asymptotics for implied volatility for the quadratic rough Heston model of Gatheral
et al.[GJR20] and we find that the short-time skew is positive if Z0 > b which also means
the short-time skew can flip sign as time evolves (since the history will not be relevant in
the small-time limit) and we discuss some additional properties/drawbacks of this model.
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1 Introduction

The Rough Heston stochastic volatility model was introduced in Jaisson&Rosenbaum[JR16],
and (using C-tightness arguments from Jacod&Shiryaev[JS13]) they show that the model arises
naturally as a weak large-time limit of a high-frequency market microstructure model driven by
two nearly unstable Hawkes process. [ER19] show that the characteristic function of the log stock
price for the Rough Heston model admits a quasi-closed form solution via the solution to a non-
linear Volterra integral equation (VIE) (see also [EFR18] and [ER18]), and the variance curve

for the model evolves as dξu(t) = κ(u−t)
√
VtdWt, where κ(t) is the usual fractional kernel tH−

1
2

for the V process multiplied by a Mittag-Leffler function. The instantaneous variance process
V for the model is (H−ε)-Hölder continuous like fractional Brownian motion (see e.g. Theorem
3.2 in [JR16]) and the model exhibits power law skew in the small-time limit (see Theorem 3.1
in [FGS21] and Corollary 3.4 in [FSV21]). [DJR19] introduce an extension of this model known
as the super Rough Heston model which incorporates the empirically observed strong Zumbach
effect as a weak limit of a market microstructure model driven by a quadratic Hawkes process
(also using C-tightness arguments) but this model is no longer affine and thus not directly
amenable to VIE techniques or Edgeworth and large deviation asymptotics, so it is difficult to
prove anything about the qualitative behaviour or dynamics of the smile (and the Zumbach
term is a drift term and hence very unlikely to affect leading order large deviation asymptotics).
A variant of this model is used in [GJR20], which apparentely attains a better fit to SPX and
VIX options in practice than conventional rough volatility models, but Guyon[Guy20b] remarks
if we calibrate this model to the VIX smile, the short-maturity at-the-money SPX skew is still
too small compared to what is observed in practice (this issue will be partially addressed in
Section 3 of this article).

The theoretical value of the VIX index at time t is VIXt =
√
− 2

∆E(log St+∆

St
|Ft), where St

is the S&P 500 index value at time t, ∆ = 30 days and Ft is the market filtration, so VIXt

is effectively a rolling 30-day Variance swap rate. A VIX option is a European call or put
option on VIXT for some maturity T , and if we replace the spot value S0 in the Black-Scholes
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formula with the VIX future price E(VIXT ), we can define the implied volatility of a VIX call
or put in the usual way by inverting the Black-Scholes formula. VIX options are very liquid
in practice (although their bid/offer spreads are still comparatively high), and empirical and
model-generated VIX implied volatility smiles have always exhibited a marked positive skew
(see plots in [GJR20],[Guy20],[DeM18],[HJT20] et al.).

In [FGS21b], we consider a generalized Rough Heston model with non-zero initial variance

curve ξ0(t), and we show that (module a scaling factor) (VIX2
T − VIX2

0)/T
1
2−H satisfies the

same small-time LDP as as the re-scaled log stock price (XT −X0)/T
1
2−H in the main Theorem

3.3 in [FGS21] if we set ρ = 1. We later translate this LDP into VIX call option and implied
volatility asymptotics, and we compute a small log-moneyness expansion for the asymptotic
VIX smile using expansions previously derived in [FGS21] which yields tractable expressions for
the overall level, skew and convexity of the short-end VIX smile.

Unfortunately, since the limiting VIX smile only depends on the factor ν/
√
V0 and not on

ρ, we cannot simultaneously fit the overall level and skew of observed limiting VIX smile using
the standard rough Heston model. To circumvent this issue, we enrich the model in this article
with an additional independent CGMY (a.k.a. KoBoL)-type Lévy process L as in [FSV21] with
Y ∈ (1, 2) (which implies L has infinite variation), and using a simple modification of the main
result in [FSV21] for the Edgeworth regime where log-moneyness scales like x

√
T , we show that

the SPX and VIX smiles decouple in some sense as T → 0 if 1− Y/2 < H.

More specifically, we can use the rough Heston parameters H, V0, ν and the initial value
VIX0 of the VIX to fit the overall level and the at-the-money skew of VIX options as T → 0.
We can then use the Brownian component σ and the CGMY jump parameters Y , C+ and
C− to fit the observed at-the-money implied volatility as T → 0, the first order at-the-money
correction and the at-the-money skew of SPX options as T → 0. Finally we choose the CGMY
parameters G and/or M and ξ0(t) = E(Vt) in the definition of the V process to be consistent
with the observed variance term structure and the value that we have just calibrated for V0.
The upshot of this is that our CGMY-rough Heston model can generate different power-law
skew for the SPX and VIX smiles in the T → 0 limit. [Guy20b] provides a list of references
on earlier papers which have also attempted to decouple the SPX and VIX smiles using jumps
(e.g. Cont&Kokhom[CK13] which uses a (non-rough) Bergomi-type model driven by a Brownian
motion plus a Lévy component), but all were written in the pre-rough stoc vol era, and no exact
results were found to the best of our knowledge.

In the final section, we formally compute small-time asymptotics for implied volatility for
the quadratic rough Heston model of Gatheral et al.[GJR20] in the usual Edgeworth regime
where the log-moneyness scales like z

√
T for z fixed as T → 0, and we find that the short-time

skew is positive if Z0 > b.

Given admissible marginals (µ1, µV , µ2) for (S1, V, S2) := (ST1
,VIXT1

, ST2
), Guyon[Guy21]

(see also [Guy20]) describes how to construct an admissible trivariate law for these three quan-
tities (i.e. in the convex set P(µ1, µV , µ2) using their notation) using a dual formulation of
infµ∈P(µ1,µV ,µ2)H(µ|µ̄) where H denotes the relative entropy function (i.e. the Kullback-Leibler
divergence) and µ̄ is a reference probability measure not in P(µ1, µV , µ2). The proof of the
main Theorem 16 in [Guy21] uses the Sion minimax theorem, which is justified since their
Π(µ1, µV , µ2) set is weakly compact (cf. Lemma 4.4 in Villani[Vil09]) and H(µ|µ̄) is weakly
lower semicontinuous in µ (because this is the rate function for Sanov’s theorem in large devi-
ations theory), and some other semicontinuity properties of the quantities which appear in the
dual formulation, see the end of pg 27 in [Guy21] for details. The argmin for the inner inf in
the minmax problem is computed explicitly and the optimal “model” is given by a Gibbs-type
trivariate probability measure for (S1, V, S2), and this dual problem is solved numerically us-
ing the Sinkhorn (exponentially fast) fixed point scheme by deriving the associated extremal
equations for the optimal u1, uV , u2 and ∆S

S ,∆
L
L (by setting the Gateaux derivatives to zero in

the usual way, see Eqs 6.1 and 6.2), see also [EGLO21] for further discussion on the Sinkhorn
method. This approach only yields an admisible joint trivariate law for (S1, V, S2) (essentially
a discrete-time model with two time-steps), so although it can be used for consistent pricing
of forward-start options at time zero, it cannot directly be used to price other path-dependent
contracts, and does not give us a dynamic continuous-time model with stylized features such as
power-law skew, Hölder continuous sample paths for the volatility with H < 1

2 , Zumbach effect
etc. Theorem 12 part iii) in [Guy21] gives an if and only convex ordering condition for the S1, S2

and V marginals to be arbitrage-free (this condition also implicitly assumes the centering con-
ditions E(S1) = E(S2) and E(L(S2)) = E(L(S1)) +E(V 2) are satisfied, where L(x) = − 2

τ log x),
but unfortunately this convex ordering condition is impossible to check in practice since no
simple class of test functions exists in dimension more than 1 (see comment at the end of page
11 in [GMN17]), unless the trivariate law comes from a known model, in which case the [Guy21]
calibration methodology is not required.

2



The related article [GMN17] prove the absence of a duality gap for the robust superhedging
problem for a VIX future given tradeable SPX options at two maturities and forward-starting
log contracts, and using a simple conditional Jensen argument show that the extremal price is
attained by a model where the VIX at T1 is just a deterministic function of ST1

. [GMN17] also
investigate so-called functionally generated portfolios for this problem which are tractable and
optimal in certain cases and improve on the classical bounds, and they also approximate the
true solution numerically via a linear programming problem using the Mosek software package.

Guo et al.[GLOW19] derive a novel method for constructing a local-stochastic volatility
model consistent with a finite number of European options by optimizing a certain cost function
and re-casting the problem as a convex optimisation problem, and numerically solving the dual
problem, which involves a non-linear HJB equation, but although very interesting this approach
has essentially the same type of issue as [Guy21], namely that there is no easy way to know if
such a model exists to begin with.

Gatheral et al.[Gath21] introduce the diamond tree formalism and forest expansions which in
particular yields a new exponential-affine formula for the triple mgf E(eaXT+b〈X〉T+cξT (T )) under
the rough Heston model, which is a variation of Theorem 7.1 in [ALP19]. Lemma 2.6 in [ALP19]
also contains an inversion formula for a general stochastic convolution equation. [Guy20] and
[DeM18] consider a mixed one-factor rough Bergomi model with two different vol-of-vol parame-
ters but driven by the same Brownian motion so ξT (u) is now the sum of two lognormal random
variables (and hence no longer lognormal), which allows for more right skew in fitting VIX smiles
at non-zero maturities (the distribution of VIXT under the standard rBergomi model is close to
lognormal since ∆ is small, so rBergomi is somewhat limited in producing skew for VIX smiles).
[Bour20] computes small-∆ expansions for VIX call/put options, where for rough Bergomi the
leading order term is lognormal since ξT (u) is lognormal and the correction terms are expressed
in terms of Black-Scholes Greeks of a call/put on the aforementioned lognormal random vari-
able. We also mention [HJT20] who consider so-called “Modulated Volterra” models which are
essentially rough Bergomi-type models but with an additional independent stochastic factor in
the Volterra integral (similar to Brownian semi-stationary processes but without the stationar-
ity). They focus on the specific case when the additional factor is a time-homogeneous positive
conservative process independent of the other driving Brownian motions (which includes the
CIR process a special case), and they also report greater flexibility in fitting VIX smiles using
this class of models.

2 The model

Consider a generalized Rough Heston model for a log stock price process Xt = logSt:{
dXt = − 1

2Vtdt+
√
Vt(ρdWt + ρ̄dBt) ,

Vt = ξ0(t) + cα
∫ t

0
(t− s)α−1ν

√
VsdWs

(1)

for H ∈ (0, 1
2 ), α = H+ 1

2 , cα = 1
Γ(α) and ν > 0, with some initial variance curve ξ0(t) with ξ0(.)

continuous, where W , B are two independent Brownian motions, ρ̄ =
√

1− ρ2 with |ρ| ≤ 1, and
we assume X0 = 0 and zero interest rate without loss of generality. It is not known whether we
have pathwise uniqueness for (1) even when ξ0(t) is constant because

√
v is not Lipschitz at zero

(see section 4.2.3 in [JP20] for more on this), but we do have weak uniqueness (see Theorem
3.4 in [ALP19]) and uniqueness in law for V on C([0, T ]), since we can explicitly compute an
exponential-affine formula for the Fourier transform of V on pathspace in terms of a Volterra
integral equation with a unique solution, see Appendix B (which is based on Theorem 7.1 in
[ALP19]) (see also Theorem 6.1 in [ALP19]).

2.1 Adding jumps - decoupling the SPX and VIX short-maturity
skews

We now augment our rough Heston model to include jumps of infinite variation. Specifically
(following [FSV21]), we now assume that the log stock price process X evolves as

dXt = −1

2
Vtdt+

√
Vt(ρdWt + ρ̄dBt)− dLt (2)

where L is a Lévy process independent of W and B with E(e−uLt) = etV (u) for u in some interval
(u−, u+) which includes 0 and 1 with E(e−Lt) = 1 (i.e. V (1) = 0) which ensures that L is a
martingale with respect to its own filtration, and we assume that X0 = 0 and V is not equal to
the zero function W.L.O.G.
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Then

− 2

∆
E(XT+∆ −XT |FT ) =

1

∆
E(

∫ T+∆

T

Vu|FT ) − 2

∆
E(−(LT+∆ − LT )|FT )

=
1

∆

∫ T+∆

T

ξT (u)du + a1

where ξt(u) := E(Vu|Ft) as before, and

a1 := −2V ′(0) ≥ −2 logE(e−(LT+∆−LT )|FT ) = −2 log 1 = 0 (3)

and we have used Jensen and the martingale condition to obtain the inequality here. Moreover,
since V (0) = V (1) = 0, V ′(0) < 0 (since we are assuming that V is not identically zero), so we
see that a1 is strictly positive.

Then we see that VIX2
T = 1

∆

∫ T+∆

T
ξT (u)du + a1, so the effect of the jumps is to increase

the value of VIX2
T by a shift factor2 equal to a1. Thus (VIX2

T − a1 − 1
∆

∫∆

0
ξ0(u)du)/T

1
2−H =

(VIX2
T −VIX2

0)/T
1
2−H now satisfies the LDP as T → 0 with speed T−2H and rate function J(x)

as before, and we have the following:

Corollary 2.1

lim
T→0

T 2H logE((VIXT − (a1 +
1

∆

∫ ∆

0

ξT (u)du)
1
2 exT

1
2
−H

)+) = lim
T→0

T 2H logE((VIXT −VIX0 e
xT

1
2
−H

)+)

= −J(2(a1 +
1

∆

∫ ∆

0

ξT (u)du)x)

= −J(2VIX2
0x)

where J(.) is the same as in the main Theorem 2.1 in [FGS21b].

Proof. See Appendix A.

Corollary 2.2

σ̂VIX(x) := lim
T→0

σ̂VIX(VIX0e
xTH−

1
2 , T ) =

|x|√
2J(2VIX2

0x)
. (4)

Expanding the final expression in Corollary 2.1, we find that

σ̂VIX(x) =
ν
√
V0

1
∆

∫∆

0
ξ0(u)du+ a1

∆α−1

2αΓ(α)
+

ν

2
√
V0Γ(2 + α)

x + O(x2)

=
ν
√
V0

VIX2
0

∆α−1

2αΓ(α)
+

ν

2
√
V0Γ(2 + α)

x + O(x2) . (5)

Remark 2.1 Since a1 ≥ 0, we see that if the leading order term is fixed, adding jumps can
only increase the skew term relative to the leading order term.

2.2 CGMY jumps and asymptotics for the SPX skew as T → 0 in the
Edgeworth regime

From here on we consider the special case when L is a generalized tempered stable (i.e. CGMY-

type) process with L0 = 0 and Lévy triple (b, σ2, ν(x) = C+e
−Mx

x1+Y 1x>0 + C−e
−G|x|

|x|1+Y 1x<0) with

Y ∈ (1, 2) for all t > 0 which implies that

φLt (u) := E(e−iu(Lt−L0)) = etψ(u) = e−iubt−
1
2σ

2u2t+C+Γ(−Y )t[(M+iu)Y −MY ] +C−Γ(−Y )t[(G−iu)Y −GY ] (6)

and E(e−pLt) = eV (p)t for p ∈ (−M,G), where V (p) = ψ(−iu). Note that b is fixed by the
martingale condition V (1) = 0.

2Note this is conceptually similar to a simple displaced-diffusion model dSt = (βSt + 1 − β)dWt for S with
β ∈ (0, 1) where S can go negative, but here we do not have this negativity problem since a1 ≥ 0. This also
means that a VIX put option with K ≤ a1 is worthless.
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Remark 2.2 Corollary 2.10 and Remark 2.7 in [FSV21] describe a method for simulating Lt
by changing to a measure under which L is a pure α-stable process, which allows for long-
time stepping using the classical Chambers,Mallows&Stuck[CMS76] formula for sampling stable
random variables.

We can replace the Y process in the main Theorem 2.1 in [FSV21] with our rough Heston
V process (since the only special feature of the Y process required in [FSV21] is bivariate weak
convergence of ( 1√

t
X̂t, (Yt − E(Yt))/t

H) as t → 0 to a joint Gaussian under Eq 17 in [FSV21],

which is exact there even for t > 0 (but this is not required) but is also established in Appendix
B of this article for ( 1√

t
X̂t, (Vt − E(Vt))/t

H), and as in section 2.1 in [FSV21] we can extend

from the case of bounded volatility to the true driftless rough Heston model (see Appendix C
for details) and our S process is a martingale and the history term ζ in our context here (see
just below Eq 5 in [FSV21]) is given by ζ(t) = E(Vt) − V0 = ξ0(t) − V0 in our setup here, and
the contribution from this term is contained in the error term in (7) if ξ0(t) = O(tH) as t→ 0.
Thus Theorem 2.1 (and Lemma 2.7) in [FSV21] still apply for the model in (2), which we now
recall:

Proposition 2.3 Let σ̂(K,T ) denote the implied volatility of a European call option with strike
K and maturity T at time zero. For the model in (2), if H ∈ (1 − 1

2Y,
1
2 ), G > 1 and M > 1,

we have the following asymptotic behaviour for implied volatility at time zero in the Edgeworth
regime:

σ̂(ez
√
T , T ) =

√
V0 + σ2 +

1

φ( z√
V0+σ2 )

(C+A+(z) + C−A−(z))T 1− 1
2Y + o(T 1− 1

2Y ) (7)

for z ∈ R as T → 0 and

A±(z) =
1

π

∫ ∞
0

Re[e−iuze−
1
2 (V0+σ2)u2

Γ(−Y )(±iu)Y−2]du

where φ is the standard Normal density.

Remark 2.3 1
φ( z√

V0+σ2
) (C+A+(z) +C−A−(z)) is non-linear in z and does not vanish at z = 0

in general (see e.g. Figure 6 in [FSV21] for a plot), and C+ and M relate to negative jumps for
X and C− and G relate to positive jumps, since we are subtracting L in (2). Note that the log
stock price Xt does not satisfy a small-time LDP as t→ 0 (even if re-scaled).

Remark 2.4 Note that a1 depends on M and G as well, which do not show up in the leading
order Edgeworth asymptotics in (7).

Hence the addition of the CGMY-type jump process L allows the asymptotic SPX and VIX short
time smiles to have power-law skews with different H-values since the effective H as T → 0 for
the former is now 1 − Y/2 (due to jumps alone, see (7)) and the latter is H = α − 1

2 (due to
V alone), so (aside from (7) depending on V0), we have effectively de-coupled the short-time
behaviour of the SPX and VIX skews.

2.3 Exact calibration to the at-the-money skew for SPX and VIX as
T → 0

We let σ̂mkt
VIX(K,T ) denote the market implied volatility of a VIX call option with strike K

and maturity T . If there exists an α = H + 1
2 such that limT→0 σ̂

mkt
VIX(VIX0e

xTH−
1
2 , T ) has a

non-trivial limit which is differentiable in x, then we can choose V0 and ν so that the market
observed behaviour of VIX options as T → 0 is consistent with (5). We can then choose

parameters so that (7) is consistent with the observed behaviour of SPX options in the market.
Specifically choose σ to fit the observed behaviour of the limiting at-the-money implied vol
limT→0 σ̂

mkt(1, T ), and then solve for C+, C− and Y to match the observed behaviour of the

at-the-money correction for European options: limT→0
σ̂mkt(1,T )−σ̂mkt(1,0)

T 1−Y/2 and the skew term:

limz→0 limT→0
σ̂mkt(ez

√
T ,T )−σ̂mkt(1,T )
zT 1−Y/2 , assuming we can find a Y ∈ (1, 2) such that both these

limits are finite (and at least one is non-zero). This leads to the following two equations for C±:

√
2π(C+A+(0) + C−A−(0)) = lim

T→0

σ̂mkt(1, T )− σ̂mkt(1, 0)

T 1−Y/2 (8)

√
2π(C+A′+(0) + C−A′−(0)) = lim

z→0
lim
T→0

σ̂mkt(ez
√
T , T )− σ̂mkt(1, T )

zT 1−Y/2 (9)
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obtained by computing 1
φ( z√

V0+σ2
) (C+A+(z) + C−A−(z)) and its derivative at z = 0. The last

two equations are linear in C+ and C− and hence can be solved explicitly if the Wronskian of
A+(z) and A−(z) is non-zero at z = 0, and we can verify that this is indeed the case since

A±(z) =
1

π

∫ ∞
0

Re[e−iuze−
1
2 (V0+σ2)u2

Γ(−Y )(±iu)Y−2]du

=
1

π

∫ ∞
0

Re[e−iuze−
1
2 (V0+σ2)u2

Γ(−Y )e±iπ(Y−2)uY−2]du

=
1

π

∫ ∞
0

cos(−uz ± π(Y − 2))e−
1
2 (V0+σ2)u2

Γ(−Y )uY−2du

which implies that

A′±(z) =
1

π

∫ ∞
0

Re[u sin(−uz ± π(Y − 2))e−
1
2 (V0+σ2)u2

Γ(−Y )uY−2]du

A±(0) =
1

π

∫ ∞
0

Re[cos(π(Y − 2))e−
1
2 (V0+σ2)u2

Γ(−Y )uY−2]du

A′±(0) = ± 1

π

∫ ∞
0

Re[u sin(π(Y − 2))e−
1
2 (V0+σ2)u2

Γ(−Y )uY−2]du

i.e. A+(0) = A−(0) and A′+(0) = −A′−(0).

We also have to make the model consistent with the observed variance term structure (i.e.
prices of variance swaps at all maturities implied by European option prices) up to some maturity
T ∗ ∈ (0,∆), for which

−2E(log
St
S0

) =

∫ t

0

ξ0(u)du + a1t

⇒ − ∂

∂t
2E(log

St
S0

) = ξ0(t) + a1 (10)

⇒ − ∂

∂t
2E(log

St
S0

)t=0 = ξ0(0) + a1 = V0 + a1 .

a1 depends on G and M , which must be chosen so the calibrated value ξ0(0) = V0 here matches
our calibrated value of V0 from above; then (10) uniquely determines ξ0(t) for t > 0 as well
(and this includes being consistent with the market value of VIX0 which corresponds to t = ∆),
which we have implicitly used above for the VIX smile calibration).

We now discuss the range of admissible values for a1. Imposing the martingale condition
V (1) = 0 we find that

a1 = a1(G,M) = σ2 − 2C+(MY − (1 +M)Y +MY−1Y )Γ(−Y )

+ 2C−((G− 1)Y −GY −GY−1Y )Γ(−Y ) .

Then a1(1, 1) > 0 and a1(G,M) → σ2 as M,G → ∞, and we have the following monotonicity
result:

Lemma 2.4 a1(G,M) is continuous and strictly decreasing in M and G.

Proof.

∂a1

∂M
= − 2C+(YMY−1 − Y (1 +M)Y−1 + Y (Y − 1)MY−2)Γ(−Y ) (11)

Now consider the function gM (K) = (K +M)Y−1. This function is concave so

(K +M)Y−1 ≤ MY−1 + (Y − 1)MY−2K

Setting K = 1 we see that

(1 +M)Y−1 ≤ MY−1 + (Y − 1)MY−2

and the result follows by comparing this to (11). We use a similar argument for the term
involving G.

Since Proposition 2.3 requires that G,M > 1, we see that there is an interval (σ2, a∗1) of admissi-
ble a1-values, where a∗1 = a1(1, 1) = σ2 +2(C+(2Y −Y −1)+C−(Y −1))Γ(−Y ) for Y in the ad-
missible range Y ∈ (1, 2). If the calibrated V0-value is such that − ∂

∂t2E(log St
S0

)t=0−V0 /∈ (σ2, a∗1]
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(see (10)) then it means the model is mis-specified, and this ultimately puts an upper and lower
bound on the admissible ratio of the first to the zeroth order term in (5).

Of course in practice we cannot perfectly extract all the limiting quantities on the right hand
side of (8) and (9) from the market since only a finite number of options are traded, and there
are real-life issues with noisy data, bid-offer spreads, day count/weekend conventions etc., but
one can approximate the quantities on the right with finite differences to incorporate information
from options with small but non-zero maturity. These results can also be used to make smart
initial guesses for conventional and deep learning-based calibration schemes.

J.Guyon has remarked3 has remarked that fitting large SPX short-end skew and (compara-
tively) small VIX short-end implied volatility is the main challenge in joint fitting of SPX and
VIX smiles, so this gives a concrete result in this direction.

Remark 2.5 This method (and model) may avoid potential problems of overfitting using e.g.
Schrödinger bridge-type model (see [HL19] and Guyon[Guy20b]) which is a time-inhomogenous
diffusion model which is Markovian in St and Vt. Our model is entirely plausible as a natural
time-homogenous extension of the rough Heston model

3 Short-maturity skew and other properties of the quadratic
rough Heston model

In this section we discuss some peculiarities of the quadratic rough Heston model introduced in
[GJR20] for which they report some encouraging results for joint calibration to SPX and VIX
smiles for small and medium maturity options. For a log stock price process Xt, the model is
defined as {

dXt = − 1
2Vtdt +

√
VtdWt ,

Zt = 1
Γ(α)

∫ t
0
(t− s)α−1(λ(θ(s)− Zs)ds+ ν

√
VsdWs)

(12)

for H = α − 1
2 ∈ (0, 1

2 ), where Vt = a(Zt − b)2 + c, ν, λ, a, b, c > 0 and W is a one-dimensional
Brownian motion. We note that the model has the (potentially slightly unrealistic) feature that
Vt ≥ c > 0, so

VIXT = (
1

T

∫ T+∆

T

ET (Vu)du)
1
2 ≥

√
c

which implies that the VIX implied volatility is zero for strikes K ≤
√
c at all strikes, since in

this case E((VIXT −K)+) = E(VIXT )−K, i.e. there is no time-value to the option4, and the
same is true for our Rough Heston-CGMY model in (2), since the a1 constant in (3) is positive.

Formally expanding Vt around V0, we see that Vt ≈ const. + β(Zt − Z0) = α + βZt where
β = 2a(Z0 − b) and α = ab2 + c− aZ2

0 (note with mild abuse of notation we are not defining α
to be H + 1

2 in this subsection), so we expect the model to be locally approximated over small
time intervals by the following affine model:{

dXt = − 1
2 (α+ βZt)dt +

√
α+ βZtdWt ,

Zt = Z0 +
∫ t

0
(t− s)H− 1

2
ν

Γ(H+ 1
2 )

√
α+ βZsdWs

and setting Yt := βZt, we see that{
dXt = − 1

2 (α+ Yt)dt +
√
α+ YtdWt ,

Yt = Y0 +
∫ t

0
(t− s)H− 1

2
βν

Γ(H+ 1
2 )

√
α+ YsdWs

and further defining Ỹt := α+ Yt we see that{
dXt = − 1

2 Ỹtdt +
√
ỸtdWt ,

Ỹt = Ỹ0 +
∫ t

0
(t− s)H− 1

2
βν

Γ(H+ 1
2 )

√
ỸsdWs

which is now just a standard rough Heston model with ν replaced by βν, and note that we have
ignored the drift terms of V since they not affect the small-time asymptotics at the order we
consider here.

3in private communication
4We thank Alan Lewis for pointing out this behaviour for Markovian models
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Then formally appealing to Corollary 3.4 in [FSV21] (see also page 16 there for the definition
of the b parameter) for the model in (12), we have the following asymptotic behaviour for the
implied volatility in the small-maturity limit:

1

TH
(σimpl(z

√
T , T )− σimpl(0

√
T , T )) =

b1βν

V
1
2

0

z + o(T ) =
2a(Z0 − b)ν

2Γ( 5
2 +H)V

1
2

0

z + o(T ) (13)

as T → 0 for z ∈ R where b1 = 1
2Γ(2+H+ 1

2 )
= 1

2Γ( 5
2 +H)

, so we see that the skew term is positive if

Z0 > b, and we have numerically corroborated (13) using Monte Carlo methods (see also Figure
2 below). We expect to get the same result even if we are conditioning on a previous history of
V , since from Eq 2 in [GJR20] this history is an a.s. bounded drift term which will not affect
the asymptotic behaviour at the order we are interested in (13), which means even if the model
is calibrated at time zero with negative skew, the short-maturity skew can flip to positive at
some future time.

To sample VIXT under the quadratic rough Heston model, one uses that ξt(u) = Et(Vu)
satisfies a linear VIE with (random) history terms which involve stochastic integrals whose
values are known at time t which can be solved explicitly in term of the resolvent of the second
kind of the kernel (see Theorem 6.1 in [Rom22] for details).

[GJR20] and [RZ21] report calibrated H-values of .01, but Monte Carlo is notoriously innacu-
rate for such low H-values particularly for extreme values of the correlation and large absolute
log-moneyness values (in e.g. the T = .033 SPX smile plot in [GJR20]), see e.g.[Gath21] and
[Rom22] for more on these issues), and it is unknown whether S is a true martingale (ρ is es-
sentially ±1 for the quadratic rough Heston model depending on the current value of Zt, and
it is known that for many Markovian models S is not a true martingale for positive ρ, see e.g.
[AP07],[LM07],[Jour04].

The finite-dimensional Markov approximation used in [RZ21] for the quadratic rough Heston
model (see also [BB21] and [MW21]) uses n exponentials to approximate the fractional kernel
(see Appendix A in [RZ21] to see how the exponentials are chosen), and one then has to solve an
n×n system of linear inhomogenous ODEs with random initial condition to sample VIX2

T under
the approximating model which is not mentioned in the article (see also [Rom22]), but even just
for the SPX smile, the Markov approximation also typically exhibits huge sample variance for
implied volatility using Monte Carlo when H = .01 even for 10million sample paths and 500-800
time steps. The approximating model is not rough, so in particular will not exhibit power-law
skew in the T → 0 limit, and obtaining power-law skew is one of the principal reasons for using
rough volatility models).
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Figure 1: On the left here we see a Monte Carlo sample path of Z using a Volterra Euler-type
scheme and the corresponding sample path for V (second plot) for t ∈ [0, 0.5] for parameters
α = .51, so H = α− .5 = .01, η = 1, λ = 1.2, Z0 = .1, θ = 0.0835; a = .384, b = .095, c = .0025.
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Figure 2: Here we have plotted the Monte Carlo values for
σimpl(z

√
T ,T )−σimpl(0,T )
TH

(grey crosses)

verses the theoretical value for the skew: b1βν

V
1
2

0

z, as a function of z for T = .00001 (left plot) and

T = .001 (right plot) and α = .75, Z0 = .12, θ = .1 and a, b, c the same as the previous plot
with 400 time steps and 250,000 sample paths
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A Asymptotics for VIX call options

From Jensen’s inequality, we know that for any q ≥ 1 we have

(VIX2
T )q = (a1 +

1

∆

∫ T+∆

T

ξT (u)du)q = (
1

∆

∫ T+∆

T

(a1 + ξT (u)du))q ≤ 1

∆

∫ T+∆

T

(a1 + ξT (u))qdu

and hence

E(VIX2q
T ) ≤ 1

∆

∫ T+∆

T

E((a1 + ξT (u))q)du =
1

∆

∫ T+∆

T

E(E(a1 + Vu|FT )q)du

≤ 1

∆

∫ T+∆

T

E((a1 + Vu)q)du (D-1)

which will be needed further down.

• Lower bound. We first note that for x fixed and any δ ∈ (0, x), exT
1
2
−H
≤ 1 + (x +

δ)T
1
2−H for T sufficiently small. Recall that VIX2

0 = a1 + 1
∆

∫ T+∆

T
ξT (u)du and we set
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kx,δ := VIX0(x + δ). We first note that for δ > 0 and T = T (δ) sufficiently small,

exT
1
2
−H
≤ 1 + (x+ δ)xT

1
2−H . Thus for T = T (δ) sufficiently small

E((VIXT −VIX0e
xT

1
2
−H

)+) ≥ E((VIXT −VIX0(1 + (x+ δ)T
1
2−H)+)

= T
1
2−HE((

VIXT −VIX0

T
1
2−H

− kx,δ)+)

≥ δT
1
2−HE(1 VIXT−VIX0

T
1
2
−H

>kx,δ+δ
)

= δT
1
2−HP(VIXT > VIX0 + T

1
2−H(kx,δ + δ))

= δT
1
2−H P(VIX2

T > VIX2
0 + 2VIX0 (kx,δ + δ)T

1
2−H + (kx,δ + δ)2T 1−2H) .

But for T = T (δ) sufficiently small, the right hand side here is greater than or equal to

δT
1
2−H P(VIX2

T −VIX2
0 > 2VIX0 (kx,δ + 2δ)T

1
2−H)

= δT
1
2−H P(

1

∆

∫ T+∆

T

ξT (u)du− 1

∆

∫ T+∆

T

ξ0(u)du > 2VIX0 (kx,δ + 2δ)T
1
2−H) .

Then using the LDP and the continuity of J we see that

lim inf
T→0

T 2H logE((VIXT −VIX0 e
xT

1
2
−H

)+) ≥ −J(2VIX0(kx,δ + 2δ)) = −J(2VIX2
0 + 2δVIX0 + 4δVIX0)) .

We then let δ → 0 and again use the continuity of the rate function J(x) to obtain the
required lower bound.

• Upper bound. From Hölder’s inequality, we note that for q > 1

E((VIXT −VIX0 e
xT

1
2
−H

)+) ≤ E((VIXT −VIX0(1 + xT
1
2−H)))+

= E((VIXT −VIX0(1 + xT
1
2−H))+1

VIXT≥VIX0 (1+xT
1
2
−H)

)

≤ E[(VIXT −VIX0(1 + xT
1
2−H))q+]

1
q E(1

VIXT≥VIX0 +xT
1
2
−H )1− 1

q .

Thus

T 2H logE((VIXT −VIX0 (1 + xT
1
2−H))+)

≤ T 2H

q
logE[(VIXT −VIX0 (1 + xT

1
2−H))q+] + T 2H(1− 1

q
) logP(VIXT ≥ VIX0 (1 + xT

1
2−H))

≤ T 2H

q
logE(VIXq

T ) + T 2H(1− 1

q
) logP(VIXT ≥ VIX0 (1 + xT

1
2−H))

≤ T 2H

q
log(E(VIX2q

T )
1
2 ) + T 2H(1− 1

q
) logP(VIXT ≥ VIX0 (1 + xT

1
2−H))

≤ T 2H

q

1

2
log(

1

∆

∫ T+∆

T

E((a1 + Vu)q)du) + T 2H(1− 1

q
) logP(VIX2

T ≥ VIX2
0(1 + xT

1
2−H)2)

(by (D-1))

≤ T 2H

q

1

2
log(

1

∆

∫ T+∆

T

(a1 + E(V qu )
1
q )qdu + T 2H(1− 1

q
) logP(VIX2

T ≥ VIX2
0(1 + 2xT

1
2−H))

(using Minkowski applied to E((a1 + Vu)q))

≤ T 2H

q

1

2
log(a1 + c

1
q

q,T )q + T 2H(1− 1

q
) logP(VIX2

T ≥ VIX2
0(1 + 2xT

1
2−H)

for some finite constant cq,T depending on q and T , where we have used Lemma C.1 in
[FGS21] in the final line. Letting T → 0 in the final line and using the LDP and the
continuity of J , and then letting q →∞, we see that

lim sup
T→0

T 2H logE((VIXT −VIX0 (1 + xT
1
2−H))+) ≤ −J(2VIX2

0x) .

B Bivariate weak convergence

Proposition B.1 Let X̂t :=
√
V0(ρWt+ρ̄Bt). Then (Xt/

√
t, (Vt−ξ0(t))/tH) and (X̂t/

√
t, (Vt−

ξ0(t))/tH) both tend weakly to the same bivariate Gaussian as t→ 0.
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Proof.

E(epXt+u(Vt−ξ0(t))) = e
∫ t
0
ξ0(t−s)( 1

2p
2− 1

2p+ pρνψ(p,u,s)+ 1
2ν

2ψ(p,u,s)2)ds

for t ∈ [0, T ∗ψ(p, u)), where ψ(p, u, t) satisfies

ψ(p, u, t) = ucαt
α−1 +

∫ t

0

cα(t− s)α−1(
1

2
p2 − 1

2
p + pρνψ(p, u, s) +

1

2
ν2ψ(p, u, s)2)ds

and T ∗ψ(p, u) > 0 is the explosion time for ψ. Then

E(e
p√
ε
Xεt+

u

εH
(Vεt−ξ0(t))

) = e
∫ εt
0
ξ0(εt−s)( 1

2
p2

ε −
1
2
p√
ε

+ p√
ε
ρνψ( p√

ε
, u
εH

,s)+ 1
2ν

2ψ( p√
ε
, u
εH

,s)2)ds

and

ψ(p, u, εt) =
u

εH
cαt

α−1εα−1 +

∫ εt

0

cα(εt− s)α−1(
1

2

p2

ε
− 1

2

p√
ε

+
p√
ε
ρνψ(p, u, s) +

1

2
ν2ψ(p, u, s)2)ds

=
u

εH
cαt

α−1εα−1 + ε

∫ t

0

cα(εt− εu)α−1(
1

2

p2

ε
− 1

2

p√
ε

+
p√
ε
ρνψ(

p√
ε
,
u

εH
, εs) +

1

2
ν2ψ(

p√
ε
,
u

εH
, εs)2)ds .

for t ∈ [0, 1
εT
∗
ψ( p√

ε
, u
εH

)). Then ψε(p, u, t) =
√
εψ(p, u, εt) satisfies

ψε(p, u, t) = ucαt
α−1 +

∫ t

0

cα(t− s)α−1(
1

2
εHp2 − 1

2
pε

1
2 +H + pεHρνψε(p, u, s) +

1

2
ν2εHψε(p, u, s)2)ds

for t ∈ [0, 1
εT
∗
ψ( p√

ε
, u
εH

)), and

E(e
p√
ε
Xεt+

u

εH
(Vεt−ξ0(t))

) = e
∫ εt
0
ξ0(εt−s)( 1

2
p2

ε −
1
2
p√
ε

+ p√
ε
ρνψ(p,u,s)+ 1

2ν
2ψ(p,u,s)2)ds

= e
ε
∫ t
0
ξ0(εt−εs)( 1

2
p2

ε −
1
2
p√
ε

+ p√
ε
ρνψ(p,u,εs)+ 1

2ν
2ψ(p,u,εs)2)ds

= e
∫ t
0
ξ0(εt−εs)( 1

2p
2− 1

2p
√
ε+ pρνψε(p,u,s)+ 1

2ν
2ψε(p,u,εs)2)ds .

From Theorem 13.1.1 i) in [GLS90] (see the paragraph above Eq 12 in [FGS21] for details on
the use of part i) of Theorem 13.1.1 in [GLS90]), we know that ψε(p, u, t) tends uniformly to
ucαt

α−1 as ε → 0 on any compact interval, and since ξ0(.) is continuous (and hence bounded
on any compact interval) we see that

E(e
p√
ε
X̃εt+ u

εH
(V εt −ξ0(t))

) → e
V0( 1

2p
2t+ ρνρu tα

Γ(α+1)
+ 1

2ν
2u2 t2α−1

Γ(α)2(2α−1)
)

by the bounded convergence theorem. Finally, since Theorem 13.1.1 in [GLS90] is multi-
dimensional, we can apply it to (Re(ψ), Im(ψ)) with p replaced by ik with k ∈ R as we do
in section 5 in [FGS21]. The result then follows from Lévy’s convergence theorem.

Similarly

E(e
p√
ε
X̂εt+ u

εH
(V εt −ξ0(t))

) = e
∫ t
0
ξ0(T−s)( 1

2p
2− 1

2p
√
ε+ εHpρνψε(p,u,s)+ 1

2 ε
2Hν2ψε(p,u,s)2)ds

where ψε(p, u, t) satisfies

ψε(p, u, t) =
u

εH
cαt

α−1 +
1

2
ν2ε2H

∫ t

0

cα(t− s)α−1ψε(p, u, s)2ds

with ψε(p, 0) = 0, and the rest of the proof follows using the same arguments as above.

C Extending to unbounded volatility

This appendix is a minor variation of Section 2.1 in [FSV21] adapted for our purposes here.
We first let V t := min0≤s≤tVs and V̄t := max0≤s≤tVs, and we consider the stochastic Volterra
system

dX̂t = −1

2
σ(V̂t)

2dt + σ(V̂t)(ρdWt + ρ̄dBt)

V̂t = ξ0(t) +

∫ t

0

(t− s)H− 1
2σ(V̂s)dWs

13



where σ ∈ C2
b as in [FSV21] and bounded away from zero with σ(y) = ν

√
y for y ∈ [a, b] for

some a ∈ (0, V0) and b > V0, so in particular σ is bounded and Lipshitz. Then Vt = V̂t for
t ∈ [0, τa ∧ τb) where τa = inf{t : Vt = a} (and similarly for τb) for any a ∈ (0, V0) since we have
pathwise uniqueness for V̂ (see section 4.2.3 in [JP20] and discussion in section 2 in [FGS21])
and from Proposition 4.3 in [JP20] (or Theorem 3.11 in [Zha08]), we know that V̂t(.) satisfies
the large deviation principle on C0[0, 1] as t→ 0 with speed 1/t2H and rate function

I(φ) =
1

2

∫ 1

0

(
Dα(φ(.)− φ(0))(t)

σ(φ(t))
)2dt

if φ ∈ IH+ 1
2

V0
(L1), otherwise I(φ) = ∞. Now let A := {V t > a} ∩ {V̄t < b} and set Ŝt = eX̂t ,

where

dX̂t = −1

2
V̂tdt +

√
V̂t(ρdWt + ρ̄dW⊥t ) − dLt

and X̂0 = 0 i.e. the same stock price process (defined on the same probability space) but with
Vt replaced with V̂t. Then for all ε > 0 we have

E((ez
√
t − St)+) = E((ez

√
t − Ŝt)+1A) + E((ez

√
t − St)+1Ac)

≤ E((ez
√
t − Ŝt)+) + ez

√
tP(Ac)

≤ E((ez
√
t − Ŝt)+) + ez

√
te−

1

t2H
(−ε+J(a,b))

for t sufficiently small, where J(a, b) = infφ∈CV0
([0,1]):φ(1)≤a or φ̄(1)≥b I(φ), and we have used the

upper bound implied by the aforementioned LDP in the final line. For this to be useful, we need
to check that J(a, b) > 0. To this end, let I : H1

0 → C0([0, 1]) be the Itô map which takes h to

the solution to φ(t) = V0 +
∫ t

0
1

Γ(α) (t− s)H− 1
2 ḣsσ(φ(s))ds (recall this solution is unique since σ

is bounded and Lipschitz). Then

|I(h)(t)− V0| = |φ(t)− V0| = |
∫ t

0

cα(t− s)H− 1
2σ(h(s))ḣsds| ≤ |

∫ t

0

cα(t− s)H− 1
2σ(b)ḣsds|

≤ const.× 1

2
(

∫ t

0

ḣ2
sds)

1
2

= const.× J(φ)

where we have used Cauchy-Schwarz in the final line. If J(a, b) = 0 then for all ε > 0 there
exists a φε ∈ CV0

([0, 1] with φ
ε
(1) ≤ a or φ̄ε(1) ≥ b and I(φε) ≤ ε for all ε > 0, which (from the

bound immediately above) implies that the sup norm of φε − V0 is less than (b− V0) ∧ (V0 − a)
for ε sufficiently small), which is a contradiction. Thus J(a, b) > 0.

Similarly

E((ez
√
t − St)+) ≥ E((ez

√
t − Ŝt)+1A)

= E((ez
√
t − Ŝt)+)− E((ez

√
t − Ŝt)+1Ac)

≥ E((ez
√
t − Ŝt)+) − ez

√
te−

1

t2H
(J(a,b)−ε) .

Thus

1√
t
E((ez

√
t − Ŝt)+) − ez

√
t

√
t
e−

1

t2H
(J(a,b)−ε) ≤ 1√

t
E((ez

√
t − St)+)

≤ 1√
t
E((ez

√
t − Ŝt)+) +

ez
√
t

√
t
e−

1

t2H
(J(a,b)−ε) .

Ŝ satisfies the conditions of the main Theorem 2.1 in [FSV21], so we have a small-t expansion

for 1√
t
E((ez

√
t− Ŝt)+), and for t small, 1√

t
ez
√
te−

1

t2H
(infy≥a J(y)−ε) is higher order than the error

term in the main Theorem 2.1 in [FSV21], so the same expansion holds for 1√
t
E((ez

√
t − St)+).
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