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Abstract

We consider a re-scaled Riemann-Liouville (RL) process ZHt =
∫ t
0

(t − s)H− 1
2 dWs, and us-

ing Lévy’s continuity theorem for random fields we show that ZH tends weakly to an almost
log-correlated Gaussian field Z as H → 0. Away from zero, this field differs from a standard
Bacry-Muzy field by an a.s. Hölder continuous Gaussian process, and we show that ξHγ (dt) =

eγZ
H
t − 1

2
γ2Var(ZHt )dt tends to a Gaussian multiplicative chaos (GMC) random measure ξγ for

γ ∈ (0, 1) as H → 0. We also show convergence in law for ξHγ as H → 0 for γ ∈ [0,
√

2) us-
ing tightness arguments, and ξγ is non-atomic and locally multifractal away from zero. In the
final section, we discuss applications to the Rough Bergomi model; specifically, using Jacod’s sta-
ble convergence theorem, we prove the surprising result that (with an appropriate re-scaling) the
martingale component Xt of the log stock price tends weakly to Bξγ([0,t]) as H → 0, where B is a
Brownian motion independent of everything else. This implies that the implied volatility smile for
the full rough Bergomi model with ρ ≤ 0 is symmetric in the H → 0 limit, and without re-scaling
the model tends weakly to the Black-Scholes model as H → 0. We also derive a closed-form
expression for the conditional third moment E((Xt+h−Xt)3|Ft) (for H > 0) given a finite history,
and E(X3

T ) tends to zero (or blows up) exponentially fast as H → 0 depending on whether γ is
less than or greater than a critical γ ≈ 1.61711 which is the root of 1

4
+ 1

2
log γ − 3

16
γ2. We also

briefly discuss the pros and cons of a H = 0 model with non-zero skew for which Xt/
√
t tends

weakly to a non-Gaussian random variable X1 with non-zero skewness as t→ 0. 1

1 Introduction

Gaussian multiplicative chaos (GMC) is a random measure on a domain of Rd that can be formally

written as Mγ(dx) = eγXx−
1
2γ

2E(X2
x)dx where X is a Gaussian field with zero mean and covariance

K(x, y) := E(XxXy) = log+ 1
|y−x| + g(x, y) for some bounded continuous function g. X is not defined

pointwise because there is a singularity in its covariance, rather X is a random tempered distribution,
i.e. an element of the dual of the Schwartz space S under the locally convex topology induced by
the Schwartz space semi-norms. For this reason, making rigorous sense of Mγ requires a regularizing
sequence Xε of Gaussian processes (with the singularity removed), (see e.g. [BBM13] and [BM03]
and Section 2.2 here for such a regularization in 1d based on integrating a Gaussian white noise over
truncated triangular regions or page 17 in [RV10]. In most of the literature on GMC, the choice of Xε

is a martingale in ε, from which we can then easily verify that M ε
γ(A) =

∫
A
eγX

ε
x− 1

2γ
2Var(Xεx)dx is a

martingale, and then obtain a.s. convergence of M ε
γ(A) using the martingale convergence to a random

variable Mγ(A) with E(Mγ(A)) = Leb(A), and with a bit more work we can verify that Mγ(.) defines
a random measure (see page 18 in [RV10]).

If γ2 < 2d, M ε
γ(dx) = eγX

ε
x− 1

2γ
2E((Xεx)2)dx tends weakly to a multifractal random measure Mγ with

full support a.s. which satisfies the local multifractality property limδ→0
log E(Mγ([x,x+δ]d)q)

log δ ) = ζ(q) for

q ∈ (1, q∗) (see Proposition 3.7 in [RV10]), where ζ(q∗) = 1 2 and

ζ(q) = dq − 1

2
γ2(q2 − q)
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so q∗ = 2
γ2 for d = 1, and E(Mγ([0, t])q) = ∞ if q > q∗, see Theorem 2.13 in [RV14] and Lemma 3 in

[BM03]). Mγ is the zero measure for γ2 = 2d and γ2 > 2d; in these cases a different re-normalization
is required to obtain a non-trivial limit.

In the sub-critical case, using a limiting argument it can be shown that Mγ satisfies

E(

∫
D

F (X, z)Mγ(dz)) = E(

∫
D

F (X + γ2K(z, .), z)dz) (1)

for any measurable function F and any interval D, which comes from the Cameron-Martin theorem
for Gaussian measures and the notion of rooted measures and the disintegration theorem (see [FS20]).
(1) can be taken as the definition of GMC, and it uniquely determines Mγ as a measurable function
of X, and hence also uniquely fix its law. GMC also has natural applications in Liouville Quantum
Field Theory.

Continuing in the same vein as [NR18] (see also [HN20]), we consider a re-scaled Riemann-Liouville

process ZHt =
∫ t

0
(t − s)H− 1

2 dWs in the H → 0 limit. Using Lévy’s continuity theorem for tempered
distributions, we show that ZH tends weakly to an almost log-correlated Gaussian field Z as H → 0,
which is a random tempered distribution, i.e. a random element of the dual of the Schwartz space
S. From Theorem A in [JSW19], we know this field differs from a standard Bacry-Muzy field by

a Hölder continuous Gaussian process, and we show that ξHγ (dt) = eγZ
H
t − 1

2γ
2Var(ZHt )dt tends to a

Gaussian multiplicative chaos (GMC) random measure ξγ for γ ∈ (0, 1) as H ↘ 0. Unlike standard
constructions of GMC, our approximating sequence ZHt is not a martingale so we cannot appeal to the
martingale convergence theorem. We later address the more difficult “L1-regime” where γ ∈ [1,

√
2)

using standard tightness/weak convergence arguments and comparing ξHγ to a sequence of GMCs ξHϕ
constructed in using a Gaussian white noise integrated over curved regions in the upper half plane
under the Haar measure.

These results have a natural application to the popular Rough Bergomi stochastic volatility model,
since ξHγ is the quadratic variation of the log stock price for this model and values of H as low as
.03 have been reported in empirical studies of this model (see e.g. [FTW19]). In section 4, using our
Riemann-Liouville GMC and Jacod’s stable convergence theorem, the we prove the surprising result
that the martingale component Xt of the log stock price for the Rough Bergomi model tends weakly
to Bξγ([0,t]) as H → 0 where B is a Brownian motion independent of everything else, which means the
smile for the rBergomi model with ρ ≤ 0 is symmetric in the H → 0 limit for γ ∈ (0, 1), and we find
that E(X3

t ) decays exponentially fast or blows up exponentially fast depending on whether γ is less
than or greater than a critical γ ≈ 1.61711 which solves 1

4 + 1
2 log γ − 3

16γ
2 = 0, and we also define a

H = 0 model with non-zero skew for which Xt/
√
t tends weakly to a non-Gaussian random variable

X1 with non-zero skewness as t→ 0.

2 The Riemann-Liouville process and its GMC as H → 0

We work on a probability space (Ω,F ,P) with filtration (Ft)t≥0 throughout, which satisfies the usual
conditions. In this section we consider a re-scaled Riemann-Liouville process in the limit as H → 0; To
this end, let (Wt)t≥0 denote a standard Brownian motion and consider the following family of re-scaled
Riemann-Liouville processes:

ZHt =

∫ t

0

(t− s)H− 1
2 dWs (2)

for H ∈ (0, 1
2 ), for which RH(s, t) := E(ZHs Z

H
t ) =

∫ s∧t
0

(s− u)H−
1
2 (t− u)H−

1
2 du . The integrand here

is dominated by

h(u, s, t) = ((s− u)−
1
2 ∨ 1) · ((t− u)−

1
2 ∨ 1) (3)

which is integrable for s < t, so using the dominated convergence theorem, we find that

RH(s, t) → R(s, t) :=

∫ s∧t

0

(s− u)−
1
2 (t− u)−

1
2 du

for s 6= t as H → 0 and RH(s, t)→∞ for s = t > 0. We note also that R(0, 0) = limn→∞
∫ 0

0
nds = 0

(from the definition of Lebesgue integration) and we also note that RH(0, 0) = 0 so limH→0RH(0, 0) =
R(0, 0) = 0. We can evaluate this integral to obtain

R(s, t) := 2 tanh−1(

√
s√
t
) = log

1 +
√
s√
t

1−
√
s√
t

= log

√
t+
√
s√

t−
√
s

= log
(
√
t+
√
s)2

t− s
= log

1

t− s
+ g(s, t) (4)
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for 0 < s < t, where

g(s, t) = 2 log(
√
s+
√
t) (5)

and note that R(s, t) ≥ 0 for all s, t ≥ 0.∫
[0,T ]2

RH(s, t)dsdt ≤ 2

∫
[0,T ]2

∫ t

0

((s− u)−
1
2 ∨ 1) · ((t− u)−

1
2 ∨ 1)dudsdt < ∞

so from the dominated convergence theorem, we have

lim
H→0

∫
[0,T ]2

φ1(s)φ2(t)RH(s, t)dsdt =

∫
[0,T ]2

φ1(s)φ2(t)R(s, t)dsdt (6)

for any φ1, φ2 ∈ S, where S denotes the Schwartz space. Similarly, for any sequence φk ∈ S with
‖φk‖m,j → 0 for all m, j ∈ Nn0 for any n ∈ N (i.e. under the Schwartz space semi-norm defined in Eq
1 in e.g. [BDW18])

lim
k→∞

∫
[0,T ]2

φk(s)φk(t)R(s, t)dsdt = 0 (7)

since µ(A) =
∫
A
R(s, t)dsdt is a bounded non-negative measure (since

∫ T
0

∫ t
0
R(s, t)dsdt =

∫ T
0

2tdt =
T 2 < ∞), and the convergence here implies in particular that φk tends to zero pointwise, so we can
use the bounded convergence theorem. Thus if we define

LZH (f) := E(ei(f,Z
H)) = e−

1
2

∫
[0,T ]2

f(s)f(t)RH(s,t)dsdt

L(f) := e−
1
2

∫
[0,T ]2

f(s)f(t)R(s,t)dsdt

for f ∈ S, and note at the moment that we do not have a process or field as a subscript in L(f) since
we have not yet shown that this is the characteristic functional of a random field. Then from (6) and
(7) and Lévy’s continuity theorem for generalized random fields in the space of tempered distributions
(see Theorem 2.3 and Corollary 2.4 in [BDW18]), we see that LZH (f) tends to LZ(f) pointwise and
L(.) is continuous at zero, then there exists a generalized random field Z (i.e. a random tempered
distribution) such that LZ = L and ZH tends to Z in distribution with respect to the strong and weak
topology (see page 2 in [BDW18] for definition).Based on the right hand side of (4), we can say that
Z is an almost log-correlated Gaussian field (LGF).

Remark 2.1 Since g(s, t) is smooth away from (0, 0), from Theorem A in [JSW19], we know that
Z differs from the standard Bacry-Muzy field on (0, T ] with covariance log 1

|t−s| by some Gaussian

process Gt which is a.s. Hölder continuous on (0, T ].

2.1 Constructing a Gaussian multiplicative chaos from ZH as H → 0

We now define the family of random measures : ξHγ (dt) := eγZ
H
t − 1

2γ
2Var(ZHt )dt .

Theorem 2.1 Let Hn ↘ 0. Then for any A ∈ B([0, T ]) and γ ∈ (0, 1), ξHnγ (A) tends to some non-
negative random variable ξγ,A in L2 (and hence also converges in probability), ξγ([0, T ]) is a non-trivial
random variable (i.e. has finite non-zero variance), and there exists a random measure ξγ on [0, T ]
such that ξγ(A) = ξγ,A a.s. for all A ∈ B([0, T ]). ξγ is the GMC associated with the family of process
ZH as H → 0.

Proof. We wish to show that E((ξHnγ [0, T ]−ξHmγ [0, T ]))2 → 0, i.e. that ξHnγ [0, T ] is a Cauchy sequence
in L2. To this end, we first note that

E(ξHnγ ([0, T ])ξHmγ ([0, T ])) = E(

∫
[0,T ]2

eγ
2(ZHnt +ZHms )− 1

2γ
2E((ZHnt )2)− 1

2γ
2E((ZHms )2)ds dt)

=

∫
[0,T ]2

E(eγ
2(ZHnt +ZHms )− 1

2γ
2E((ZHnt )2− 1

2γ
2E((ZHms )2)ds dt

=

∫
[0,T ]2

e
1
2γ

2RHn (t,t)+ 1
2γ

2RHm (s,s) + γ2E(ZHnt ZHms )− 1
2γ

2RHn (t,t)− 1
2γ

2RHm (s,s)ds dt

=

∫
[0,T ]2

eγ
2E(ZHnt ZHms )ds dt .
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The integrand here is bounded by eγ
2
∫ s∧t
0

h(u,s,t)du (where h(u, s, t) is defined in (3)) and is integrable

on [0, T ]2, and E(ZHnt ZHms ) =
∫ s

0
(t − u)Hn−

1
2 (s − u)Hm−

1
2 du → R(s, t) Lebesgue a.e. on [0, T ]2 as

n,m→∞, so from the dominated convergence theorem we see that

E(ξHnγ ([0, T ])ξHmγ ([0, T ])) →
∫

[0,T ]2
eγ

2R(s,t)ds dt (n,m→∞)

= 2

∫
[0,T ]

∫
[0,t]

eγ
2R(s,t)ds dt

= 2

∫
[0,T ]

∫
[0,t]

(

√
t+
√
s√

t−
√
s

)γ
2

dsdt

= 2

∫
[0,T ]

t

∫
[0,1]

(

√
t+
√
tu√

t−
√
tu

)γ
2

du dt

= 2

∫
[0,T ]

t

∫
[0,1]

(
1 +
√
u

1−
√
u

)γ
2

du dt = 2

∫ T

0

taγdt = aγT
2 < ∞ (8)

for γ ∈ (0, 1), where

aγ :=

∫
[0,1]

(
1 +
√
u

1−
√
u

)γ
2

du =
2 · 2F1(2,−γ2, 3− γ2,−1)

(1− γ)(1 + γ)(2− γ2)
(9)

where 2F1(z) is the hypergeometric function, and using that 1 −
√
u ∼ 1

2 (1 − u) as u → 1, we can
easily verify that aγ →∞ as γ ↑ 1. Hence

E((ξHnγ ([0, T ])− ξHmγ ([0, T ]))2) = E(ξHnγ ([0, T ])2) − 2E(ξHnγ ([0, T ])ξHmγ ([0, T ])) + E(ξHmγ ([0, T ])2) → 0

so ξHnγ ([0, T ]) converges in L2(Ω,F ,P) to some a.s. non-negative random variable ξγ,[0,T ], and hence
also converges in probability. Similarly, for any A ∈ B([0, T ]), we can trivially modify the argument
above to show that

E(ξHnγ (A)ξHmγ (A)) →
∫
A

∫
A

eγ
2R(s,t)ds dt ≤ aγT

2 < ∞

so ξHγ (A) tends to some random variable ξγ,A in L2, and hence in probability.

We also know that E(ξHnγ ([0, T ])) = T for all n and we have already established L2-convergence

for ξHnγ (A) as n → ∞ which implies L1 convergence, so (by Scheffe’s lemma) E(ξγ,[0,T ]) = T , which
further implies that P(ξγ,[0,T ] > 0) > 0 and (from the reverse triangle inequality)

|E(ξ2
γ,[0,T ])

1
2 − E((ξHγ,[0,T ])

2)
1
2 | ≤ E((ξγ([0, T ])− ξHγ ([0, T ]))2) → 0

so

E(ξ2
γ,[0,T ]) = lim

H→0
E((ξHγ,[0,T ])

2) = aγT
2

so in particular ξγ is not multifractal at zero, since the power is 2 here and not ζ(2). The L2-convergence
also means that ξHγ [0, T ] → ξγ,[0,T ] in Lq as H → 0 for all q ∈ [1, 2] which (again from the reverse
triangle inequality) implies that

lim
H→0

E(ξHγ ([0, T ])q) = E(ξqγ,[0,T ]) . (10)

Given that E(ξγ,[0,T ]) = T and Var(ξγ,[0,T ]) =
∫

[0,T ]2
eγ

2R(s,t)ds dt− T 2 > 0 since aγ > 1 for γ ∈ (0, 1),

we see that ξγ,[0,T ] is a non-trivial random variable.

For A,B ∈ B([0, T ]) disjoint, ξHγ,A∪B = ξHγ,A + ξHγ,B a.s. since ξHγ is a measure, and we know that

both sides tend to ξγ,A∪B and ξγ,A + ξγ,B in probability. But by a standard result, if Xn
p→X and

Xn
p→Y , then X = Y a.s., hence

ξγ,A∪B = ξγ,A + ξγ,B (11)

a.s.
Similarly for any sequence An ↓ ∅ with An ∈ B([0, T ]), E(ξγ,An) = Leb(An), so by Markov’s

inequality P(ξγ(An) > δ) ≤ Leb(An)
δ , so ξγ(An) tends to zero in probability, and from (11), we know

that ξγ(An) is decreasing, and hence also tends to some random variable Y a.s. (and hence also in
probability). Thus by the same standard result discussed above, Y = 0 a.s. Thus by Theorem 9.1.XV
in [DV07] (see also the end of Section 4 on page 18 in [RV10]), there exists a random measure ξγ on
[0, T ] such that ξγ(A) = ξγ,A a.s. for all A ∈ B([0, T ]).
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Remark 2.2 If we replace the definition of ZH with the usual Riemann-Liouville process ZHt =√
2H
∫ t

0
(t− s)H− 1

2 dWs, then adapting the arguments above, we see that

E((

∫
A

eγ
2ZHt − 1

2γ
2Var(ZHt )dt)2) → Leb(A)2

as H → 0, for all A ∈ B([0, T ]). But we know that the first moment of
∫
A
eγ

2ZHt − 1
2γ

2Var(ZHt )dt is

Leb(A) as well, hence
∫
A
eγ

2ZHt − 1
2γ

2Var(ZHt )dt→ Leb(A) in L2.

Remark 2.3 For c ∈ (0, 1], (Wc, ξγ([0, c]) ∼ (
√
cW1, cξγ [0, 1]), so in particular, ξγ([0, (.)]) is a

self-similar process, and we can easily verify ξγ([0, c]) is monofractal at zero, i.e. E(ξγ([0, c])q) =
cq E(ξγ([0, 1])q) .

2.2 Construction and properties of the usual Bacry-Muzy multifractal ran-
dom measure (MRM) via Gaussian white noise on triangles

In this subsection we briefly describe the family of (stationary) Gaussian process used in [BM03]; the
Bacry-Muzy multifractal random measure (MRM) is then the GMC associated with this family of
processes as the l parameter tends to zero. Define ωl(t) as in Eq 7 in [BBM13] with λ = 1 and T = 1,
and set ω̄l(t) := ωl(t) − E(ωl(t)), so ω̄l(t) =

∫
(u,s)∈Al(t) dW (u, s) where (in this subsection alone)

dW (u, s) is a two-dimensional Gaussian white noise with variance s−2duds, and Al(t) = {(u, s) :
|u− t| ≤ ( 1

2s) ∧ T, s ≥ l} is the cone-like region defined in Eq 11 in [BM03] (for the special case when

f(l) = f (e)(t) in their notation, see Eqs 12 and 15 in [BM03]). Then

KT
l (s, t) := E(ω̄l(t)ω̄l(s)) =


log T

τ l ≤ τ ≤ T
log T

l + 1− τ
l τ ≤ l

0 τ > T

(12)

where τ = |t − s|, and one can easily verify that KT
l (s, t) ≤ log T

τ (see Eq 25 in [BM03]). From a
picture, we also see that E(ω̄l(t) ω̄l′(s)) = Kl(s, t) for l > l′ (i.e. the answer does not depend on l′),
and KT

l (s, t)↗ log T
|t−s| as l→ 0. We now define the measure

MT,l
γ (dt) = eγω̄l(t)−

1
2γ

2Var(ω̄l(t))dt (13)

and we use M l
γ(dt) as shorthand for M1,l

γ (dt). One can easily verify that M l
γ(A) is a martingale with

respect to the filtration Fl := σ(W (A,B) : A ⊂ R+, B ⊆ [l,∞]) (see e.g. subsection 5.1 in [BM03]
and page 17 in [RV10]) and supl E(M l

γ(A)q) < ∞ (Lemma 3 i) in [BM03]), so from the martingale

convergence theorem, MT,l
γ (A) converges to MT

γ (A) in Lq for q ∈ (1, q∗), and from the reverse triangle
inequality this implies that

lim
l→0

E((MT,l
γ (A))q) = E((MT

γ (A))q) (14)

and MT is perfectly multifractal, i.e. E(|MT
γ ([0, t])|q) = cq,T t

ζ(q) (see e.g. Lemma 4 in [BM03]) for
some finite constant cq,T > 0, depending only on q and T . For integer q ≥ 1, we also note that

E(MT
γ (A)q) =

∫
A

...

∫
A

e
γ2 ∑

1≤i<j≤q log T
|ui−uj | dui...duq

=

∫
A

...

∫
A

e
γ2q(q−1) log T +

∑
1≤i<j≤q log 1

|ui−uj | dui...duq = T γ
2q(q−1)E(Mγ(A)q) (15)

so we see that

cq,T = cqT
γ2q(q−1) (16)

where cq = cq,1, and this also holds for non-integer q (see e.g. Theorem 3.16 in [Koz06]).

3 ξγ for the full sub-critical range γ ∈ (0,
√
2)

3.1 The Sandwich lemma

We now look to extend the definition of ξγ to γ ∈ (0,
√

2). We will use the following standard result:
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Theorem 3.1 (Kahane’s Inequality) (see e.g. Appendix of [RV10]). Let I be a bounded subinterval
of R and (X(u))u∈I , (Y (u))u∈I be two centred continuous Gaussian processes with E[X(u)X(u′)] ≤
E[Y (u)Y (u′)] for all u, u′. Then, for all convex functions F : R→ R, we have:

E[F (

∫
I

eX(u)− 1
2E(X(u)2)du)] ≤ E[F (

∫
I

eY (u)− 1
2E(Y (u)2)du)] .

Lemma 3.2 (The Sandwich lemma). Fix any τ and δ such that 0 < τ < τ + δ < 1. Then for
τ ≤ s ≤ t ≤ t+ δ and H > 0 sufficiently small, we can sandwich RH(s, t) as follows:

K4τ
l∗(H,τ)(k) ≤ RH(s, t) ≤ K4

l∗(H)(k) (17)

for k = |t−s| < δ for 0 < s < t < 1, where l∗(H, τ) = 1
F ′H(k∗) > 0 and l∗(H) := 4e−

1
2H > 0 (which both

tend to zero as H → 0), and FH(k) := RH(τ, τ + k). Note the upper bound trivially holds for s = 0 as
well, since RH(0, k) = 0 and KT

l (k) ≥ 0. We also remind the reader that if 0 = s < t, R(s, t) = 0 not
log 1

t−0 + g(0, t) =∞.

Remark 3.1 The lower bound of the Sandwich lemma will only be used to prove the local multifrac-
tality of ξγ , and is not needed for everything else in the article.

Proof. We define GH(k) := RH(τ+δ−k, τ+δ), and at this point we refer the reader to Appendix A for

some basic properties of GH(k). Then choosing l∗ = l∗(H) such that GH(0) = (τ+δ)2H

2H ≤ 1
2H = log( 4

l∗ ),
we see that

l∗(H) = 4e−
1

2H ↓ 0 as H → 0 .

(A-1) implies that GH(k) ≤ log 4
k , and for k ∈ [l∗, 4], K4

l∗(k) = log 4
k (see Eq 12 for definiton of KT (.)),

so in this case GH(k) ≤ K4
l∗(k). For k ∈ (0, l∗), K4

l∗(k) = log( 4
l∗ ) + 1− k

l∗ > log 4
l∗ ≥ GH(0) > GH(k).

Hence for both cases, we have the following upper bound:

GH(k) = RH(τ + δ − k, τ + δ) ≤ K4
l∗(H)(k) .

From Appendix A, we recall that

RH(s, k + s) =

∫ s

0

(u(k + u))H−
1
2 du

and if we restrict attention to Aδ := {(s, t) : t−s = k and (s, t) ∈ [τ, τ+δ]2) for 0 < τ < τ+δ < 1 with
k ∈ [0, δ], then from Appendix A we know that RH(s, t) is maximized at s = τ + δ− k and minimized
at s = τ (see Figure 2). Thus

RH(s, t) ≤ GH(k) ≤ K4
l∗(H)(k) (18)

for (s, t) ∈ [τ, τ + δ]2 where k = |t− s|.
From the second part of Appendix A, we know that F0(k) := log 1

k + 2 log(
√
τ +
√
τ + k) > log 4τ

k
but we also know that FH(k) ↑ F0(k) uniformly on compact intervals away from zero, and FH(0) <∞
and log( 4τ

k ) → ∞ as k → 0, so from the aforementioned uniform convergence, we see that for H > 0
sufficiently small there exists a k∗ = k∗(H, τ) > 0 such that

FH(k∗) = log
4τ

k∗
(19)

(see middle plot in Figure 2) with

FH(k) ≥ log
4τ

k
for k ∈ [k∗, 4τ ] , FH(k) ≤ log

4τ

k
for k ≤ k∗ . (20)

Now set l∗ = l∗(H, τ) such that |F ′H(k∗)| = 1
l∗
. l∗ ∈ [τ, τ + δ] for H sufficiently small, and l∗ ≥ k∗ since

1

k∗
= | d

dk
log

4τ

k
|k=k∗ | > |F ′H(k∗)| (21)

(see Figure 2 middle plot). We now note the following:

• In the region [k∗, l∗], FH(k) > log(4τ/k) so FH(k) > log(4τ/l∗) + 1−k/l∗ (since the latter is just
the tangent line to log(4τ/k) at k = l∗), see Figure 2 middle plot.
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• At k = k∗, FH is greater than said tangent and by construction has the same gradient as the
tangent, i.e. 1

l∗
. Then as k decreases to zero, the gradient of FH increases in absolute value (due

to the convexity of FH) so FH is greater than the tangent line.

Thus K4τ
l∗

(k) = log 4τ
l∗

+ 1− k
l∗
< FH(k) for k ∈ (0, l∗). We also see that l∗ ↓ 0 as H ↓ 0, since k∗ → 0

as H → 0. Thus, to sum up, we have shown that

GH(k) = RH(τ + δ − k, τ + δ) ≤ K4
l∗(H)(k)

and

K4τ
l∗(H,τ)(k) ≤ FH(k) = RH(τ, τ + k)

for k ∈ [0, 4τ ]. From Appendix A, we recall that RH(s, k+ s) =
∫ s

0
(u(k+ u))H−

1
2 du and if we restrict

attention to Aδ := {(s, t) : t − s = k, (s, t) ∈ [τ, τ + δ]) for 0 < τ < τ + δ < 1 with k ∈ [0, δ], then
RH(s, t) is maximized at s = τ + δ − k and minimized at s = τ . Thus

K4τ
l∗(H,τ)(k) ≤ FH(k) ≤ RH(s, t) ≤ GH(k) ≤ K4

l∗(H)(k) (22)

for (s, t) ∈ [τ, τ + δ]2 where k = |t− s|.

3.2 Existence of a limiting law for ξγ for γ ∈ (0,
√
2)

Let P be an independently scattered infinitely divisible random measure (see [BM03] for details) with

E(eiqP (A)) = eϕ(q)µ(A)

for q ∈ R where µ(du, dw) = 1
w2 dwdu denotes the Haar measure. Here we restrict attention to the

special case where ϕ(q) = 1
2γ

2q2, in which case P (du, dw) is just γ times a Gaussian white noise with
variance 1

w2 dudw (similar to Section 2.2). Let AHt := {0 ≤ u ≤ t, w ≥ gH(u, t)} for a family of
functions which satisfy the following condition:

Condition 1 gH(., t) ≥ 0 with gH(u, t) increasing in t and H.

We now define the process ωHt = P (AHt ) for t ≥ 0 with filtration

FH := σ(P (A×B) : B ⊆ [H,∞], A,B ∈ B(R)) (23)

(compare to a similar filtration on page 17 in [RV10]), and ωHt is a Gaussian process since ϕ(q) is the
characteristic function of a Gaussian with covariance

E(ωHs ω
H
t ) =

∫ s

0

∫ ∞
gH(u,t)

1

w2
dwdu =

∫ s

0

1

gH(u, t)
du

for 0 ≤ s ≤ t, and differentiating with respect to s, we see that if g satisfies 1
gH(s,t) = RHs (s, t) then

(for H fixed) the Gaussian process ωH has the same covariance as our process ZH , and the explicit
formula for gH is given as

gH(s, t) =
1

γ

2s
1
2−Ht

3
2−H

Γ( 1
2 +H)(t(1 + 2H) 2F1(1, 1

2 −H,
3
2 + H, st ) + s(1− 2H)2F1(2, 3

2 −H,
5
2 +H, st ))

where 2F1(a, b, c, z) is the regularized hypergeometric function3 (and in Appendix B we verify that

Condition 1 above is satisfied. For H = 0 we have g0(s, t) =
√
s (t−s)√

t
. For H2 < H1, ωH2

t − ωH1
t =

P (AH2
t \ A

H1
t ) and ωHt = P (AHt ) are independent for any H ≥ H1, so ωHt is an FH -martingale (see

(23) for definition of FH , and we refer to this as a backward martingale since the martingale evolves
as H goes smaller not larger and we start the martingale at some H > 0), and from this one can easily
verify that ξHϕ (I) is also an FH -backward martingale for any Borel set I.

Theorem 3.3 Let ξHϕ denote the GMC of γωH on [0, 1]. Then for any q ∈ (1, q∗) and any interval

I ⊆ [0, 1], ξHϕ (I) tends to some non-negative random variable ξϕ,I as H → 0 a.s. and in Lq, and

E(ξHϕ (I)q)→ E(ξqϕ,I).

3we are using Mathematica’s definition here
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Proof. From the upper bound in the Sandwich Lemma RH(s, t) ≤ Kθ
l∗(H)(s, t) for 0 < s < t < 1,

where θ = 4 · sup(I) and KT
l (s, t) is the covariance of the model in [BM03], and l∗(H) ↓ 0 as H ↓ 0.

Then from Kahane’s inequality we have that

E(ξHϕ (I)q) ≤ E(Mθ
l∗(H)(I)q) (24)

whereMT
l is defined as in Section 2.2. Moreover, from Lemma 3 in [BM03] we know that supl>0 E(Mθ

l (I)q) <

∞ for q ∈ [1, q∗), so we have the uniform bound supH>0 E(ξHϕ (I)q) <∞.

From above we know that ξHϕ (I) is a FH -backwards martingale. Then (by Doob’s martingale

convergence theorem for continuous martingales) ξHϕ (I) tends to some random variable (which we call
ξϕ,I) as H → 0 a.s. and in Lq for q ∈ [1, q∗). Moreover, from the reverse triangle inequality, the
aforementioned Lq-convergence implies that

E((ξHϕ (I))q) → E(ξqϕ,I) (25)

as H → 0, for q ∈ [1, q∗).

Theorem 3.4 The laws of ξHγ ([0, .) on C0([0, 1]) converge weakly as H → 0 to the law of a non
decreasing process on C0([0, 1]) which induces a non-atomic measure ξγ on [0, T ] with E(ξγ(A)) =
Leb(A).

Remark 3.2 In a previous version, we gave a slightly stronger result involving L1-convergence using
Theorem 25 in [Sha16]) via generalized randomized shifts, but in practice we are really just interested
in simulating ξH for some single small H-value, and seeing whether the law of ξH is close to some
limiting law.

Proof. Note that although E(ωHs ω
H
t ) = E(ZHs Z

H
t ) this does not imply that E(ωHs ω

H2
t ) = E(ZHs Z

H2
t )

for H 6= H2. However (crucially) ξHϕ (defined in Theorem 3.3) has the same law as our original ξHγ
measure for all H > 0, and the non-decreasing process ξHϕ ([0, (.)) and ξHγ ([0, (.)) have the same finite-

dimensional distributions, so it suffices to prove weak convergence in law of the sequence ξHϕ ([0, (.)).
Thus from the a.s. convergence in Theorem 3.3 and the bounded convergence theorem, we see that
for n distinct time values t1, ...tn ∈ [0, 1] and u1, ..un ∈ R

lim
H→0

E(e
∑n
k=1 iukξ

H
ϕ ([0,tk))) = E(e

∑n
k=1 ξγ,[0,tk]) .

So we have convergence of the finite-dimensional distributions of the process ξHγ ([0, .])). Moreover,
from the upper bound for the Sandwich lemma, for 0 < s < t < 1 we have

E(ξHγ ([s, t])q) ≤ E((M4,l∗(H)
γ ([s, t]))q) ↗ E((M4

γ ([s, t]))q) = cq,4|t− s|ζ(q) .

Moreover, ζ(q) = 1 + (1 − 1
2γ

2)(q − 1) + O((q − 1)2), and hence ζ(q) > 1 for q > 1 sufficiently small

for γ ∈ (0,
√

2). Hence by Problem 2.4.11 in [KS91] (or Theorem 1.8 in chapter XIII in [RY99]) with
Xm
t := ξHγ ([0, t]) and H = 1/m, the probability measures QH = P ◦ (Xm)−1 induced by the sequence

of processes ξHγ ([0, .]) on C0([0, 1]) are tight under the usual sup norm topology. Thus by Proposition

2.4.15 in [KS91] (see also Theorem B.1.3 in [FH05] and page 1 in [BM16]), the sequence QH converges
weakly to a probability measure Q on C0([0, 1]). Moreover, since

ξHϕ ([0, s]) ≤ ξHϕ ([0, t])

for 0 < s < t, and we have a.s. convergence of both sides, so ξϕ([0, s])) ≤ ξϕ([0, t])) and hence Q is the
law of a non-decreasing continuous process, which induces a measure on [0, 1] which we call ξγ , with
no atoms. We know that E(ξγ,A) = Leb(A), so E(ξγ(A)) = Leb(A).

3.2.1 Local multifractality

Proposition 3.5 For γ ∈ (0,
√

2), ξγ has the following locally multifractal behaviour away from zero:

lim
δ→0

logE(ξγ([t, t+ δ])q)

log δ
= ζ(q) (26)

for t ∈ (0, 1) and q ∈ (0, q∗).
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Figure 1: Here we see simulations of ξγ using a spectral expansion for (from left to right) γ = 0.125,
0.25, 0.375 and 0.5 with n = 1000 eigenfunctions, 1000 time points, H = 0 and we have used Gauss-
Legendre quadrature. For this range of γ-values, the first four raw sample moments are in very close
agreement with the theoretical values for H = 0.

Proof. Applying Kahane’s inequality and Sandwich Lemma for q ∈ (1, q∗) we have

E[(M4τ,l∗(H,τ)
γ ([τ, τ + δ]))q] ≤ E[(ξHγ ([τ, τ + δ]))q] ≤ E[(M4,l∗(H)

γ ([τ, τ + δ]))q] (27)

where MT,l
γ is defined as in Section 2.2. Using the Lq convergence of MT,l

γ (A) in (14) and (25), we see
that

E[(M4τ
γ ([τ, τ + δ]))q] ≤ E[(ξγ([τ, τ + δ]))q] ≤ E[(M4

γ ([τ, τ + δ]))q] .

Then using the multifractality property of MT
γ we see that:

cq,4τδ
ζ(q) = cq,1(4τ)γ

2q(q−1)δζ(q) ≤ E[(ξγ([τ, τ + δ]))q] ≤ cq,4δ
ζ(q) = cq,14γ

2q(q−1)δζ(q)

where we have used (16) in the final line. Taking the logarithm of the above inequality, dividing by
log δ and taking limits yields the local multifractality property for ξγ (recall that we are assuming that
τ > 0 here).

4 Application to the Rough Bergomi model - skew flatten-
ing/blowup as H → 0

We consider the standard Rough Bergomi model for a stock price process XH
t :

dXH
t = − 1

2

√
V Ht +

√
V Ht dWt ,

V Ht = eγZ
H
t − 1

2γ
2Var(ZHt )

ZHt =
∫ t

0
(t− s)H− 1

2 (ρdWs + ρ̄dW⊥t )

(28)

where γ ∈ (0, 1), |ρ| ≤ 1 and W , W⊥ are independent Brownian motions, and (without loss of

generality) we set X̃H
0 = 0. We let X̃H

t =
∫ t

0

√
V Ht dWt denote the martingale part of XH .

Theorem 4.1 For γ ∈ (0, 1), X̃H tends to B⊥ξγ([0,(.)]) stably (and hence weakly) in law on any finite

interval [0, T ], where B⊥ is a Brownian motion independent of everything else.

Corollary 4.2 From the weak convergence of ξHγ ([0, T ) and the previous result we see that

lim
H→0

E(eikX
H
t ) = lim

H→0
E(e−

1
2 (ik+k2)ξHγ ([0,t])) = E(e−

1
2 (ik+k2)ξγ([0,t])) = E(eik(− 1

2 ξγ([0,t])+Bξγ ([0,t])))

which (by a well known result in Renault&Touzi[RT96]) implies that implied volatility smile for the
true Rough Bergomi model in (28) is symmetric in the log-moneyness k = log K

S0
.

Remark 4.1 We call this the skew flattening phenomenon, so in particular X̃H
t (for a single fixed t)

tends weakly to a symmetric distribution µ.
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Proof. From Theorem 2.1, we know that 〈X̃H〉t tends to a random variable ξγ([0, t]) in L2 (and hence

in probability), and 〈X̃H ,W 〉t = ρ
∫ t

0

√
V Hu du . But

E((V Ht )
1
2 ) = E(e

1
2 (γZHt − 1

2γ
2 1

2H t
2H))

= E(e
1
2γZ

H
t − 1

2 ·
1
4γ

2· 1
2H+ 1

2 ·
1
4γ

2· 1
2H−

1
2γ

2 1
4H t

2H) = e−
1

16H γ
2t2H → 0

as H → 0, so (by Markov’s inequality) P(
√
V Ht > δ) ≤ 1

δE(
√
V Ht ) → 0, so

√
V Ht tends to zero in

probability, and hence

Gt := 〈X̃H ,W 〉t
p→ 0 . (29)

Moreover, for any bounded martingale N orthogonal to W

〈X̃H , N〉t = 0 . (30)

Thus setting Zt = Wt and applying Theorem IX.7.3 in Jacod&Shiryaev[JS03] (see also Proposition
II.7.5 and Definition II.7.8 in [JS03]), we can construct an extension (Ω̃, F̃ , (F̃t), P̃) of our original
filtered probability space (Ω,F ,Ft,P) and a continuous Z-biased F-progressive conditional PII mar-
tingale X̃ on this extension (see Definition 7.4 in chapter II in [JS03] for definition), such that X̃H

converges stably (and hence weakly) to X̃ (see Definition 5.28 in chapter XIII in [JS03] for definition
of stable convergence) for which

〈X̃〉t = ξγ([0, t])

〈X̃,M〉t = 0

for all continuous (bounded) martingales M with respect to the original filtration Ft. From Proposition

7.5 and Definition 7.8 in Chapter 2 in [JS03], this means that X̃t = X ′t +
∫ t

0
usdWs where X ′ is an

F̃t-local martingale and u is a predictable process on the original space (Ω,F ,P). One such M is
Mt = Wt∧τb∧τ−b , where τb = inf{t : Wt = b}, so we have a pair of continuous local martingales (M,X)

with 〈X̃,M〉t = 〈X̃,W 〉t =
∫ t

0
usds = 0 for t ≤ τb∧τ−b, so in fact ut ≡ 0. Then applying F.Knight’s

Theorem 3.4.13 in [KS91] with M (1) = X and M (2) = W , if Tt = inf{s ≥ 0 : 〈X〉s > t}, then XTt is a
Brownian motion independent of W . Hence X has the same law as B⊥ξγ([0,t]) for any Brownian motion

B⊥ independent of W .

4.1 H → 0 behaviour for the usual rough Bergomi model

If we replace the definition of ZH with the usual RL process ZHt =
√

2H
∫ t

0
(t− s)H− 1

2 ds (as is usually
done), then from Remark 2.4, we know that ξHγ (A) tends Leb(A) in L2 for any Borel set A ⊆ [0, 1],

so adapting Theorem 4.1 for this case, we see that X̃H tends weakly to a standard Brownian motion,
which means the rough Bergomi model tends weakly to the Black-Scholes model in the H → 0 limit.

4.2 A closed-form expression for E((X̃H
t )3)

In this subsection we compute an explicit expression for the skewness of X̃H
t (conditioned on its

history), which (as a by-product) gives a more “hands-on” proof as to why the skew tends to zero as
H → 0, and also allows us to see how fast the skew decays.

We first note that (trivially) X̃H has the same law as X̃H defined by
dX̃H

t =
√
V Ht (ρdBt + ρ̄dWt) ,

V Ht = eγZ
H
t − 1

2γ
2Var(ZHt )

ZHt =
∫ t

0
(t− s)H− 1

2 dBt

(31)

where B is independent of W , and this is the version of the model we use in this subsection. We
henceforth use Et((.)) as shorthand for the conditional expectation E((.)|FB,Wt ), and we now replace
the constant ρ with a time-dependent ρ(t), and replace our original V Ht process with

V Ht = ξ0(t) eγZ
H
t − 1

2γ
2Var(ZHt )

to incorporate a non-flat initial variance term structure.
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Proposition 4.3

Et0((X̃H
T − X̃H

t0 )3) = 3γ

∫ T

t0

∫ t

0

ρ(s) ξ
1
2
t0(s)ξt0(t) e

1
2γ

2Covt0 (ZHs Z
H
t )− 1

8γ
2Vart0 (ZHs )(t− s)H− 1

2 dsdt (32)

where ξt0(t) = ξ0(t)eγ
∫ t0
0 (t−u)H−

1
2 dBu− γ2

4H [t2H−(t−t0)2H ]. This simplifies to

E((X̃H
T )3) = 3ργV

3
2

0

∫ T

0

∫ t

0

e
1
2γ

2(RH(s,t)− s2H8H )(t− s)H− 1
2 dsdt < ∞ (33)

if t0 = 0, ρ is constant and ξ0(t) = V0 for all t (i.e. flat initial variance term structure).

Proof. See Appendix C.

Remark 4.2 Using that RH(s, t) → RfBM(s, t) as s, t → 0 (for H > 0 fixed), where RfBM(s, t) =
1

2H
1
2 (t2H + s2H − |t − s|2H) is the covariance function of 1√

2H
WH where WH is a standard (one or

two-sided) fractional Brownian motion, we find that the exponent in (33) behaves like 1
16H (s2H +

2t2H − 2(t− s))2H) for s < t as s, t→ 0, and thus can effectively be ignored, so (for ρ constant)

E((X̃H
T )3) ∼ 3ργV

3
2

0

∫ T

0

∫ t

0

(t− s)H− 1
2 dsdt =

3ργV
3
2

0

(H + 1
2 )(H + 3

2 )
TH+ 3

2 (T → 0) .

Remark 4.3 Note that X̃H is driftless so (31) is only a toy model at the moment, but we easily adapt
Proposition 4.3 and the two remarks above to incorporate the additional − 1

2 〈X̃
H〉t drift term required

to make St = eX̃
H
t a martingale. However, the relative contribution from this drift will disappear in the

small-time limit, so we omit the tedious details, since rough stochastic volatility models are generally
used (and considered more realistic) over small time horizons.

4.3 Convergence of the skew to zero

Corollary 4.4 For γ ∈ (0, 1) and 0 ≤ t ≤ T ≤ 1, Et0((X̃H
T − X̃H

t0 )3)→ 0 a.s. as H → 0.

Proof. For T ≤ 1, using that RH(s, t) ↑ R(s, t) and (t− s)H− 1
2 ↑ (t− s)− 1

2 we see that

|Et0((X̃H
T − X̃H

t0 )3)| ≤ 3|ρ|γ
∫ T

t0

∫ t

0

ξ
1
2
t0(s)ξt0(t)e

1
2γ

2(Rt0 (s,t)− s2H8H )(t− s)− 1
2 dsdt

≤ 3|ρ|γ
∫ T

t0

∫ t

0

ξ
1
2
t0(s)ξt0(t)e

1
2γ

2(R(s,t)− s2H8H )− 1
2 log(t−s)dsdt

≤ 3ξ̄
1
2
t0(s)ξ̄t0(t) |ρ|γ

∫ T

t0

∫ t

0

e
1
2 (1+γ2) log 1

t−s + 1
2γ

2ḡdsdt ≤ const.× E(M√ 1
2 (1+γ2)

([0, T ])2) < ∞

for γ ∈ (0, 1) where Mγ(dt) is the usual [BM03] GMC, and R0(s, t) = Et0(ZsZs) =
∫ s
t0

(s − u)−
1
2 (t −

u)−
1
2 duds, ḡ = 2 log(2

√
2), ξ̄t = sup0≤s≤t ξs. The result follows from dominated convergence theorem.

4.4 Speed of convergence of the skew to zero

Proposition 4.5 (see [Ger20]). Let ρ(.) be continuous and bounded away from zero with constant
sign for t sufficiently small. Then

− lim
H→0

H log[sgn(ρ)E((X̃H
T )3)] = r̂(γ) =

{
1
16γ

2 0 ≤ γ ≤ 1 ,
1
4 + 1

2 log γ − 3
16γ

2 γ ≥ 1
(34)

r̂(γ) is negative for γ larger than the root of 1
4 + 1

2 log γ− 3
16γ

2 at ≈ 1.61711, which makes the integral
explode as H → 0 for such values of γ.
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4.5 A H = 0 model - pros and cons

Returning to Section 4.1, we can circumvent the problem of vanishing skew, by considering a toy model
of the form

Xt = σ(ρWt + ρ̄B⊥ξγ([0,t])) (35)

where ρ̄ =
√

1− ρ2, W and ξγ([0, t]) are defined as in Section 2.1 with γ ∈ (0, 1), and B⊥ is a Brownian
motion independent of W . Then (setting α = σρ and β = σρ̄), from the tower property we see that

E(eikXt) = E(E(eik(αWt+βBξγ ([0,t]))|W )) = E(eikαWt− 1
2k

2β2ξγ([0,t])))

and (from Remark 2.3) we know that ξγ([0, t]) ∼ tξγ([0, 1]) (i.e. self-similarity), so

E(e
ik√
t
Xt) = E(eikαWt/

√
t− 1

2k
2β2ξγ([0,t])/t) = E(eikαW1− 1

2k
2β2ξγ([0,1]))

so X is self-similar: Xt/
√
t ∼ X1 for all t > 0, and X1 (and hence Xt) has non-zero skewness for α 6= 0;

more specifically

E((
Xt√
t
)3) = 4σ3ρ(1− ρ2)γ (36)

and E(X2
1 ) = σ2, and we can derive a similar (slightly more involved) expression for E(X4

1 ). The ρ
component achieves the goal of a H = 0 model with non-zero skewness, and one can establish the
following small-time behaviour for European put options in the Edgeworth Central Limit Theorem
regime:

1√
t
E((ex

√
t − eXt)+) ∼ ex

√
t E((x− Xt√

t
)+) ∼ E((x− Xt√

t
)+) ∼ E((x− X̄1)+)

and limt→0 σ̂t(x
√
t, t) = CB(x, .)−1(C(x)) for x > 0, where σ̂t(x, t) denotes the implied volatility of a

European call option with strike ex
√
t maturity t and S0 = 1 (CB(x, σ) is the Bachelier model call price

formula). Hence we see the full smile effect in the small-time FX options Edgeworth regime unlike the
H > 0 case where the leading order term is just Black-Scholes, followed by a next order skew term,
followed by an even higher order convexity term.

We can go from a toy model to a real model adding back the usual − 1
2 〈X〉t drift term for the log

stock price X so St = eXt is a martingale, and in this case we lose self-similarity for X but Xt/
√
t

still tends weakly to a non-Gaussian random variable, and in particular limt→0 E((Xt√
t
)3) = 4σ3ρρ̄2γ.

4. This model overcomes two of the main drawbacks of the original Bacry et al. multifractal random
walk, namely zero skewness and unrealistic small-time behaviour. However, the property in (36)

does not appear to be time-consistent, since if we define ηht := E((Xt+h−Xt√
h

)3|Ft) for t > 0, then

E((ηht )2) = O(h−γ
2

) (and not O(1) as we would want), so we do not pursue this model further at the
present time.
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A Definition and properties of FH(k) and GH(k) for the Sand-
wich lemma

RH(s, t) =
∫ s∧t

0
(s − u)H−

1
2 (t − u)H−

1
2 du =

∫ s
0
uH−

1
2 (t − s + u)H−

1
2 du for 0 ≤ s ≤ t, and note that

the integrand is non-negative. Going forward we set k = t− s. We restrict RH(s, t) to Aδ := {(s, t) :

t− s = k, (s, t) ∈ [τ, τ + δ]2) with k ∈ (0, δ) and δ ∈ (0, 1− τ), i.e. RH(s, k+ s) =
∫ s

0
(u(k+u))H−

1
2 du .

This expression is maximized at s = τ + δ − k and minimized at s = τ for constant k (see Figure 2).
Recall that GH(k) := RH(τ + δ − k, τ + δ), we will now establish some basic properties of GH(k).

From the analysis above: GH(k) =
∫ τ+δ−k

0
(u(k + u))H−

1
2 du . Taking the derivative with respect to k

and using the Leibniz rule, we see that

G′H(k) = −(τ + δ − k)H−
1
2 (τ + δ)H−

1
2 + (H − 1

2
)

∫ τ+δ−k

0

uH−
1
2 (k + u)H−

3
2 du

which is negative (since H < 1
2 ), so GH(k) is decreasing in k. The integral term in the previous

equation explodes as k ↓ 0:∫ τ+δ−k

0

uH−
1
2 (k + u)H−

3
2 du ≥

∫ τ+δ−k

0

(k + u)2H−2du =
(τ + δ)2H−1

2H − 1
− k2H−1

2H − 1
↑ ∞ .
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Figure 2: Left plot: R(s, t) is maximized at s = τ + δ − k, and minimized at s = τ . In the middle,
we have plotted the various quantities appearing in the lower bound part of the proof of the Sandwich
Lemma with H = .1, τ = .95 (of course in practice we care about much lower H-values but it is clearer
to see what is going on here for a larger H-value so the curves are not so close to each other). Note
the blue dashed line is tangential to the grey line at k = k∗, and the blue line has steeper slope than
the grey line at this point. On the right we we have plotted gH(s, t) for different t values for the RL
process/field with H = 0 (left).

Hence G′H(k)→ −∞ as k ↘ 0. Conversely, if we fix k and let H → 0, we find that

GH(k) ↑ G0(k) = log
1

k
+ 2 log(

√
τ + δ − k +

√
τ + δ) (H → 0)

≤ g(k) := log
1

k
+ 2 log(2

√
τ + δ) = log

1

k
+ log(4(τ + δ))

with equality at k = 0 in the sense that both sides of the inequality are infinite. Thus

GH(k) ≤ G0(k) ≤ g(k) ≤ log
4

k
(A-1)

since τ + δ < 1 by assumption.

Similarly, we recall that FH(k) := RH(τ, τ + k) =
∫ τ

0
(τ − u)H−

1
2 (τ + k − u)H−

1
2 du, so

F ′H(k) = (H − 1

2
)

∫ τ

0

(τ − u)H−
1
2 (τ + k − u)H−

3
2 du ≥ (H − 1

2
)

∫ τ

0

(τ − u)2H−2du

F ′′H(k) = (H − 1

2
)(H − 3

2
)

∫ τ

0

(τ − u)H−
1
2 (τ + k − u)H−

5
2 du

so FH(k) is decreasing and convex in k, and F ′H(k) ↘ −∞ as k ↘ 0. FH(k) increases pointwise as
H ↓ 0 to F0(k) := log 1

k + 2 log(
√
τ +
√
τ + k). The second term is minimized at k = 0, so we define:

f(k) := log 4τ
k and note that f(k) < F0(k).

B Monotonicity properties of gH(s, t)

The covariance of the RL process for s < t < 1 is R(s, t) =
∫ s

0
(s−u)H−

1
2 (t−u)H−

1
2 du =

∫ s
0
uH−

1
2 (t−

s+u)H−
1
2 du . Differentiating this expression using the Leibniz rule we see that Rs(s, t) = sH−

1
2 tH−

1
2 +

( 1
2 −H)

∫ s
0
uH−

1
2 (t− s+ u)H−

3
2 du and recall that gH(s, t) = 1

Rs(s,t)
. Then we can infer monotonicity

properties of g from Rs:

• By inspection Rs is a decreasing function of t, so g is increasing in t.

• For 0 < s < t, (t − s + u)H−
1
2 is a smooth function of u on [0, s] so the integral term in our

expression for Rs is finite ∀t > 0. Thus Rs(s, t) tends to +∞ as s→ 0 so gH(0, t) = 0 for t > 0.

• For s = t > 0 the first term in (3) is finite but the integral diverges, so we also have gH(t, t) = 0.

• For s, t ∈ (0, 1]2, (st)H−
1
2 , 1

2 −H and uH−
1
2 (t − s + u)H−

3
2 are non-negative and decreasing in

H, so gH(s, t) is increasing in H.

• By inspection, gH(s, t) is continuous for s ∈ [0, t], and performing a Taylor series expansion of
∂
∂sgH(s, t)(s, t) we can show that ∂

∂sgH(s, t)→ −∞ as s↘ 0 and s↗ t.

These properties can be seen in the right plot in Figure 2.
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C Proof of Proposition 4.3

We first recall that for any continuous martingale M , using Ito’s lemma and integrating by parts we
know that E(M3

t ) = 3E(
∫ t

0
Msd〈M〉s) = 3E(Mt〈M〉t). Thus we see that

Et0((X̃H
T − X̃H

t0 )3)

= 3Et0((X̃H
T − X̃H

t0 )(〈X̃H
T 〉 − 〈X̃H

t0 〉))

= 3Et0(

∫ T

t0

ρ(s)
√
V Hs dBs ·

∫ T

t0

V Ht dt)

= 3Et0(

∫ T

t0

ρ(s)ξ
1
2
t0(s) e

1
2γ

∫ s
t0

(s−u)H−
1
2 dBu− 1

2 ·
1
2γ

2
∫ s
t0

(s−u)2H−1du
dBs ·

∫ T

t0

ξt0(t) e
γ
∫ t
t0

(t−u)H−
1
2 dBu− 1

2γ
2
∫ t
t0

(t−u)2H−1du
dt) .

So we (formally) need to compute

δI = Et0(e
1
2γ

∫ s
t0

(s−u)H−
1
2 dBu− 1

2 ·
1
2γ

2
∫ s
t0

(s−u)2H−1du
dBs · eγ

∫ t
t0

(t−u)H−
1
2 dBu− 1

2γ
2
∫ t
t0

(t−u)2H−1du
)

= Et0(e
γ
∫ t
t0

(t−u)H−
1
2 dBu + 1

2γ
∫ s
t0

(s−u)H−
1
2 dBu− (...)

dBs)

where (...) refers to the non-random terms. To this end, let X = γ
∫ t
t0

(t − u)H−
1
2 dBu + 1

2γ
∫ s
t0

(s −
u)H−

1
2 dBu and Y = dBs. Then E(XY ) = γ(t−s)H− 1

2 ds 1s<t (since formally E( 1
2γ
∫ s
t0

(s−u)H−
1
2 dBu ·

dBs) = 0, see end of proof for discussion on how to make this argument rigorous) and

E(Y eX) = e
1
2E(X2)E(XY ) = e

1
2VH(s,t)γ(t− s)H− 1

2 ds 1s<t

⇒ δI = e
− 1

2γ
2
∫ t
t0

(t−u)2H−1du− 1
2 ·

1
2γ

2
∫ t
t0

(s−u)2H−1du
e

1
2VH(s,t)γ(t− s)H− 1

2 ds 1s<t

where VH(s, t) = γ2
∫ t
t0

[(t− u)H−
1
2 + 1

2 (s− u)H−
1
2 1s<t]

2du . Cancelling terms in the exponent, we see
that δI simplifies to

δI = e
1
2γ

2
∫ s
t0

(s−u)H−
1
2 (t−u)H−

1
2 du− 1

8γ
2
∫ s
t0

(s−u)2H−1du)
(t− s)H− 1

2 ds γ 1s<t

= e
1
2γ

2Covt0 (ZHs Z
H
t )− 1

8γ
2Vart0 (ZHs ))γ(t− s)H− 1

2 ds 1s<t .

Then

Et0((X̃H
T − X̃H

t0 )3) = 3Et0
∫ T

t0

∫ T

t0

ρ(s)ξ
1
2
t0(s) ξt0(t)δIdt

and (32) and (33) follow. Finally we recall that a general stochastic integral
∫ t

0
φsdMs with respect to

a continuous martingale M is defined as an L2- limit of
∫ t

0
φ 1
n [ns]dMs; using this construction we can

rigourize the formal argument above with δI (we omit the tedious details for the sake of brevity).
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