
The quadratic Volterra Heston model

(updated 30/06/24). Consider the following stochastic volatility model

dSt = St
√
VtdWt

Zt = g0(t) +

∫ t

0

K(t− s)
√
VsdWs

for some K ∈ L2, where Vt = aZ2
t + c and W is a standard Brownian motion. This is a slight variant of the quadratic

rough Heston model in [GJR20] (note we have set the parameter b in the original [GJR20] formulation to zero, since the
law of V there only depends on b− Z0).

A typical choice for K is the Gamma kernel K(t) := 1
Γ(α) t

α−1e−λt with α = H + 1
2 (H ∈ (0, 1

2 ]) and g0(t) =

Z0 + θλ
1
2 +H

∫ t
0
K(t − s)ds = Z0 + θ(1 − Γ(α,tλ)

Γ(α) ) → Z0 + θ as t → ∞ and g0(0) = 0, which is known as the quadratic

rough Heston model since in this case we expect that V has rough sample paths when H ∈ (0, 1
2 ).

We typically want Zt to be such that Zt < 0, so Zt decreases (and hence Vt increases) when St decreases so implied
volatility is negatively skewed. Note we can re-write the defining eq for V just in terms of V and not Z as

Vt = a(g0(t) +

∫ t

0

K(t− s)
√
VsdWs)

2 + c = a(g0(t) +

∫ t

0

K(t− u)
dSu
Su

)2 + c (1)

and since V only depends on the history of S itself, we call this a pure feedback model. We can also we add an additional
term of the form f(t) +

∫ t
0
κ(t− s)

√
VsdBs to the right hand side of (1) (note this additional term is linear not quadratic

in
∫ t

0
κ(t− s)

√
VsdBs) with dBtdWt = ρdt, which simplifies to the (non-quadratic) rough Heston model when a = 0.

Simulating VIXT

We can decompose Zt+τ as

Zt+τ = gt(τ) +

∫ t+τ

t

K(t+ τ − s)
√
VsdWs

where gt(τ) := Et(Zt+τ ) = g0(t+ τ) +
∫ t

0
K(t+ τ − s)

√
VsdWs. Then we see that

Et(Z2
t+τ ) = Et(Zt+τ )2 + Vart(Zt+τ ) = Et(Zt+τ )2 + Et((

∫ t+τ

t

K(t+ τ − s)
√
VsdWs)

2)

= gt(τ)2 +

∫ t+τ

t

K(t+ τ − s)2Et(Vs)ds

= gt(τ)2 +

∫ t+τ

t

K(τ − (s− t))2Et(Vs)ds (2)

and ξ̃t(τ) := Et(Vt+τ ) is the (shifted) forward variance curve. Then we see that

Vt+τ = aZ2
t+τ + c

ξ̃t(τ) = Et(Vt+τ ) = Et(aZ2
t+τ + c)

= agt(τ)2 + a

∫ τ

0

K(τ − s)2ξ̃t(s)ds+ c = ft(τ) + a

∫ τ

0

K(τ − s)2ξ̃t(s)ds (3)

where ft(τ) := agt(τ)2 + c, and recall that gt(τ) is random as it contains a Volterra-type stochastic integral term.

Eq (3) is a linear Volterra Integral Equation (VIE) for ξ̃t(.) of the form

x(τ) + (k ∗ x)(τ) = f(τ) (4)

with x(τ) = ξ̃t(τ), k(τ) = −aK(τ)2 and f(τ) = ft(τ) in our case, and the convolution operator ∗ is defined by
(f ∗ g)(τ) :=

∫ τ
0
f(s)g(τ − s)ds =

∫ τ
0
f(τ − s)g(s)ds. The solution to this type of equation is given by

x(τ) = f(τ) − (r ∗ f)(τ) (5)

where r is the resolvent of k, which is the unique function r which satisfies r + r ∗ k = k. To see this, we substitute (5)
into (4) to get

x + k ∗ x = x + k ∗ (f − r ∗ f) = x + (k − k ∗ r) ∗ f = x + r ∗ f = f
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so we see that (4) is satisfied. Hence the solution to (3) is

ξ̃t(τ) = ft(τ) − (R̃ ∗ ft)(τ) = ft(τ) −
∫ τ

0

R̃(τ − s)ft(s)ds

where R̃ is the resolvent of K̃(t) := −aK(t)2 (see section 6.2 in Rømer[Rom22]). For the choice K(t) = 1
Γ(α) t

α−1e−λt, we
can write

K̃(t) = −a2 1

Γ(α)2
t2α−2e−2λt = c∗

1

Γ(α∗)
tα

∗−1e−λ
∗t

for some c∗, λ∗ and α∗. Then it turns out the resolvent of R̃ can be computed explicitly as

c∗e−λ
∗ttα

∗−1Eα∗,α∗(−ctα
∗
)

where Eα,β(t) =
∑∞
n=0

tn

Γ(αn+β) is known as the Mittag-Leffler function. The Laplace transform of λt−α−1Eα,α(−λtα)

has the simple explicit form λ
λ+zα .

Finally we compute the VIX index as

VIXt =
1

∆
Et(

∫ t+∆

t

Vudu) =
1

∆
(Et(

∫ ∆

0

Vt+τdτ) =
1

∆

∫ ∆

0

ξ̃(τ)dτ

=
1

∆
(

∫ ∆

0

(ft(τ)dτ −
∫ τ

0

R̃(τ − s)ft(s)(s)ds)dτ)

=
1

∆
(

∫ ∆

0

ft(τ)dτ −
∫ ∆

0

∫ ∆

s

R̃(τ − s)dτft(s)ds)

=
1

∆
(

∫ ∆

0

ft(τ)dτ −
∫ ∆

0

∫ ∆−s

0

R̃(τ)dτft(s)ds)

=
1

∆
(

∫ ∆

0

ft(τ)dτ −
∫ ∆

0

R̄(∆− s)ft(s)ds)

=
1

∆

∫ ∆

0

(1− R̄(∆− s))ft(s)ds

where R̄(t) :=
∫ t

0
R(s)ds. We would typically compute this integral numerically using Gaussian quadrature. Note that

VIXt is a random variable, since ft(τ) depends on gt(τ), and the latter involves a Volterra-type stochastic integral. We
can still also use antithetic sampling for VIXt, i.e. simulate two paths V and V (2) driven by W and −W respectively.

We can approximate V numerically with an Euler-type scheme as follows:

Zj∆t = g0(j∆t) +

j−1∑
k=0

K((j − k)∆t)
√
Vk∆t ∆Wk

where ∆Wk is a sequence of i.i.d. N(0,∆t) random variables. Since this sum has to be computed for each i, simulating 1
path of Z requires a double loop, since we have to repeat this for j = 1..N , where N is the number of time steps for
the Monte Carlo scheme.

We can improve accuracy using

σ2
j,k = E((

∫ tk+1

tk

K(j∆t− s)dWs)
2) =

∫ tk+1

tk

K(t− s)2ds = F (tk+1)− F (tk)

(where we have set t = j∆t) and F (s) = 4−Hλ−2HΓ(2H, 2(t−s)λ) (where Γ(a, z) =
∫∞
z
tα−1e−tdt here is the incomplete

Gamma function for which MATLAB and Python have in built functions), and now approximate the Z process as

Zj∆t = g0(j∆t) +

j−1∑
k=0

σj,k
√
Vk∆t Z̃k

Vj∆t = aZ2
j∆t + c

where the Z̃k’s are i.i.d standard Normals.
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Figure 1: Here we have plotted market mid-implied vol (in red, computed from the average of out-of-the-money bid and
ask option prices for which the spreads are tighter) vs calibrated model (blue) implied volatility as a function of the strike
K at 1545 EST on Fri 21st June 2024 for SPX smiles with T = 1 mnth = 20/251 (left), T = 2mnths = 40/251 (middle),
and VIX smile for T = 1mnth = 17/251 (right) using data from CBOE datashop, calibrated parameters are H = 0.0624,
a = 0.321, c = 0.00436, λ = 5.136, θ = −0.0922 and Z0 = −0.0509 so

√
V0 = .0720 (recall that Z0 is not a paramater),

using 2.5million paths and 2048 time steps with antithetic sampling. The crosses are the bid and ask implied vols, and the
dashed vertical lines are the model (blue) and market (grey dashed) VIX forward prices. Note that for the SPX smiles,
the qrHeston smile does not lie within the bid-offer spread, but this is the case for the lower strikes of the VIX smile.
Calibration does not appear to work so well on Fri 20th Jan 2023 when peculiarly where was little difference between the
1month and 2 month SPX smiles i.e. not much skew flattening, and for this date H = .132 which is clearly a lot larger
than for the 2024 fits here. We thank John Armstrong for his help in running the Python code for this on a GPU using
the CREATE HPC cluster at kcl.
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Figure 2: Here we see calibration results for the same maturities on Fri 21st Jan 2024, for which H = .0671, a = 0.337,
c = 0.00492, λ = 3.77, θ = −0.0943 and Z0 = −0.0470.
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