
Portfolio optimization with transient linear and non-linear

price impact under exponential utility

Martin Forde∗ Marko Weber† Hongzhong Zhang‡§

January 18, 2016

Abstract

We consider a market with one risky asset and one riskless asset with linear price impact where the price paid per
share is given by S̃t = St(1 + λStθ̇t) (so the wealth process X satisfies dXt = θtdSt − λS2

t θ̇
2
t ), where St is the best

quote that can be attained which follows a geometric Brownian motion dSt = St(µdt + σdWt) and θt is the number
of shares held at time t. In this setting, we compute the optimal trading strategy and implied welfare for an investor
with exponential utility and long time horizon, and we describe the asymptotic behaviour of these quantities as λ → 0.
Letting ut = Stθ̇t denote the wealth turnover where θt is the number of shares held at time t, we find that the optimal

strategy ût = ût(Yt) = −
√

ασ(Yt−Ȳ )√
2

1√
λ
+o( 1√

λ
) where Yt is the risky wealth, i.e. we sell when Y is above Ȳ = µ

ασ2 , and

buy when Y is below Ȳ , and û(Yt) ≈ − 1
2λ

for Yt ≫ 1, and û(Yt) ≈ − 1
2λ

for Yt ≫ 1 i.e. we sell at constant speed. We

then extend this to the case of non-linear price impact where the price per share is now given by St(1+λ|Stθ̇t|γsgn(θ̇))dθt
for γ ∈ (0, 1). In this case, the solution is governed by a non-linear ODE which exhibits a delicate bifurication-type
behaviour as the β parameter approaches a critical value β∗ which measures the welfare loss due to illiquidity. We also
look at the limit as γ → 0 which corresponds to proportional transaction costs as in [GM15]

1 Introduction

The impact of trades on execution prices is a key component in determining optimal rebalancing strategies. Classical
models assume prices are unaffected by trades, and conclude that a constant proportion of risky wealth is optimal (for
power utility) and constant risky wealth is optimal for exponential utility (cf. Merton[Mer69]), which results in infinite
trading volume. Small bid-ask spreads with proportional transaction costs preclude trading when the portfolio is near its
target inside the so-called no trade region (see Constantinides[Con86], Davis&Norman[DN90] et al.). Price impact models
are in a sense a continuous time idealization of a limit order book structure where traders are penalized with a higher
buy price or lower sell price if they wish to fill orders faster in large quantities. In contrast to the aforementioned models,
linear price-impact models recommend a trading rate which is proportional to its distance from the frictionless target (see
[GW15]), although empirical evidence would suggest that price impact is nonlinear.

[GW14] consider a non-linear price impact model for a financial market with one risky asset and a risk free bond with
zero interest rate where the price paid per share is given by S̃t = St(1 + λ| St

Xt
θ̇t|αsgn(θ̇))dθt, where St is the best quote

that can be attained which satisfies dSt = St(µdt + σdWt), θt is the number of shares held at time t and Xt is the total
investor wealth. This generalizes their linear price impact model in [GW15], and by linear we mean the case when α = 1.
We remark that these are transient price impact models, in the sense that the effect of illiquidity is a incurred cost, but
this illiquidity does not affect the price of the underlying asset, but rather just the price that the agent pays for asset
while his trading speed is non-zero. In this framework, [GW14] compute the optimal trading strategy, its implied welfare,
and the resulting trading volume for long-term investors with power utility. The optimal quantities are determined in
terms of a solution to a non-linear ordinary differential equation, and these quantities admit explicit asymptotic formulas,
which depend on a universal constant that depends only on α, which can be computed numerically. Trading rates are
finite as with linear impact (unlike transaction costs), and are lower near the frictionless target and higher away from this
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target, and the model includes the square-root impact law and, as extreme cases, linear impact (γ = 1) and proportional
transaction costs (the limit as α → 0).

[GM15] consider the case of proportional transaction costs (with no price impact) under exponential utility. They show
that the risky wealth process for the optimal trading strategy is a constant times the exponential of arithmetic Brownian
motion Υt with two reflecting barriers, and the optimal share holding evolves as dϕt/ϕt = d log θt = dLt − dUt where Lt

and Ut are the two local time processes associated with the construction of Υt; hence the risky wealth evolves within a
no-trade region, and trading only occurs when Υ hits the reflecting barriers.

Motivated by modelling of limit order books, Rogers&Singh[RS10] consider the problem of optimal hedging of a Euro-
pean contingent claim under a Black-Scholes model with transient linear price impact, similar to well known Almgren&Chriss[AC01]
model. The objective functional is the square of the difference between the option price and the hedging strategy, plus the
accrued costs from the effect of the price impact, which can be re-written in a more usable form using the Ito isometry.
This problem leads to a HJB equation, for they give a Feynman-Kac-type representation for the solution. The numerical
solution requires solving four parabolic PDEs of Black-Scholes type, and they also consider the leading order asymptotics
when the price impact parameter is small.

Bank et al.[BSV15] build on [RS10] and consider the case of a general predictable target strategy for a Bachelier
model, again with linear price impact. They solve this problem explicitly, by deriving a linear FBSDE for the optimal
number of shares, and solving it explicitly, where the solution takes the form of a (random) ODE. They take a convex
duality approach rather than solving a HJB equation; the FBSDE arises from computing the first order variation of the
objective functional using the Gâteaux derivative, setting this to zero and then exploiting the convexity of the objective
functional to show that this is a global optimizer. The solution to the FBSDE shows that the optimal policy is mean
reverting around a weighted average of expected future target positions, rather than the myopic policy of trading towards
the current target position, which in the [RS10] framework is just the Black-Scholes delta-value.

In this article we work in a similar setting to [GW14] but we now assume that S̃t = St(1 + λStθ̇t) and we consider
an investor who maximizes his equivalent safe rate under exponential utility in the large-time limit, i.e. trade so as to
maximize lim infT→∞ − 1

αT logE(e−αXT ). We show that compute the optimal dynamic trading strategy ut = θ̇tSt and the
implied welfare, and compute asymptotic expressions for these quantities as λ → 0. In particular, we find that

ut = û(Yt) = −
√
ασ(Yt − Ȳ )√

2

1√
λ

+ o(
1√
λ
)

as λ → 0, where Y is the risky wealth, Ȳ = µ
ασ2 is the frictionless optimizer, i.e. the optimal risky wealth for the frictionless

case, which is constant (see section 2 for a derivation); thus at leading order, we see that we sell when Y is above Ȳ , and
buy when Y is below Ȳ . In section 6, we perform similar (formal) computations for the case of non-linear price impact,
and for γ ∈ (0, 1), we find that the asymptotic behavoiur of the optimal trading strategy is essentially governed by the
same non-linear ODE and universal constant as for the power utility case discussed in [GW14].

2 Review of the frictionless case - the Merton problem with finite time
horizon and exponential utility

We work on a probability space (Ω,F , P ) with a filtration (Ft)t≥0 throughout, supporting a single Brownian motion and
satisfying the usual conditions. We consider a financial market with a standard safe asset earning zero interest rate and
a risky asset whose best quoted price St follows a geometric Brownian motion:

dSt = St(µdt+ σdWt)

with S0 > 0, where W is standard Brownian motion. Let Xt denote the investor’s total wealth at time t, θt the amount
of stocks owned, and Yt := θtSt denote his risky position, and assume that X0 > 0. Then Xt evolves as

dXt = Yt
dSt

St
= Yt(µdt+ σdWt) . (1)

Let A denote the set of progressively measurable processes Y such that
∫ T

0
Y 2
t dt < ∞ a.s. The Hamilton-Jacobi-Bellman

(HJB) equation for the value function V (t, x) = supY ∈A Ex,t(U(XT )) with exponential utility U(x) = −e−αx is

Vt = inf
y
[−yµVx − 1

2
y2σ2Vxx]
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with terminal condition V (T, x) = −e−αx. Solving for y we have

y∗ = − µVx

σ2Vxx
.

Using the ansatz V (x, t) = −e−αxe−αβ(T−t), we find that

y∗ =
µ

ασ2
, β =

µ2

2ασ2
.

β is the so-called equivalent safe rate, because an annuity which is worth At = βt at time t has the same exponential utility,
i.e. e−αβt (ignoring the constant in front of the exponential). Thus the optimal risky wealth is equal to the constant value

Ȳ =
µ

ασ2
.

From (3), we see that the total wealth evolves as

dXt = Ȳ (µdt+ σdWt)

i.e. arithmetic Brownian motion, and the optimal number of shares θt evolves as

θt =
Ȳ

St

which clearly is not differentiable in t a.s. (this analysis can be made rigorous using verification theorems, see e.g. section
3.6.1 and Theorem 3.5.2 in [Pham09].

3 Linear price impact

We now incorporate linear price impact into the model above; we assume that trades in the risky asset are no longer
realized at the best quote St but rather at a less favorable price S̃t, which effectively penalizes the trader for making large
trades in a short period of time. Specifically, we assume that the price paid per share is given by

S̃t := St(1 + λStθ̇t) (2)

where θt is the number of shares held at time t, which we assume is differentiable in t (in contrast to the frictionless case
discussed above). Let Ct denote the cash position, which (from the self-financing condition) must evolve as

dCt = −St(1 + λStθ̇t)dθt = −Stθ̇tdt− λS2
t θ̇

2
t dt .

We now let ut = θ̇tSt denote the wealth turnover, Xt = θtSt +Ct denote the total wealth, and Yt = θtSt the risky wealth.
Then from Ito’s rule we have

dXt = Stdθt + θtdSt + dCt = θtSt(µdt+ σdWt) − λS2
t θ̇

2
t dt

= Yt(µdt+ σdWt) − λu2
tdt .

and

dYt = θtdSt + Stθ̇dt

which we can re-write as

dYt = Yt(µdt+ σdWt) + utdt . (3)

Moreover, we see that

θt =

∫ t

0

θ̇sds =

∫ t

0

us

Ss
ds .

Following Definition 1 in [GW15], we define an admissible trading strategy in terms of its ut process, and require that
the resulting wealth process remain positive:
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Definition 3.1 For initial wealth X0 > 0 and initial risky wealth Y0, an admissible strategy is a process ut, which is

bounded and adapted to the natural filtration of St such that
∫ T

0
utdt < ∞ a.s. for all T ), and such that the stochastic

differential equation (3) for Y has a unique strong solution on for t ∈ [0,∞) such that Yt ≥ 0 for all t, i.e. no short selling
allowed. For any such admissible strategy, from (3) we see that the corresponding wealth process X satisfies

Xt = X0 exp[

∫ T

((µ− 1

2
σ2 − λu2

t )dt+ σdWt)] .

We assume the investor has exponential utility function U(x) = −e−αx and trades so as to maximize his equivalent safe
rate, which we now define.

Definition 3.2 The equivalent safe rate is defined as

ESRα := lim inf
T→∞

− 1

αT
logE(e−αXT ) .

This corresponds to the linear rate that gives the same long-run utility as the trading strategy of the investor:

E(U(XT )) ≈ E(U(ESRα · T ))).

Note that this definition differs from the one presented for power utility in [GW15], where

E(U(XT )) ≈ E(U(exp{ESR · T}))).

4 Heuristics

This section contains a sketch derivation of the main result, based on heuristic control arguments, while the rigorous proof
is in section 5.

Suppose that the investor maximizes E(−e−αXT ) for some finite time horizon T . For a trading strategy ut = θ̇tSt,
(assuming sufficient smoothness) the value function V (t,Xt, Yt) evolves as

dV (t,Xt, Yt) = Vtdt+ VxdXt + VydYt +
1

2
Vxxd⟨X⟩t +

1

2
Vyyd⟨Y ⟩t + Vxyd⟨X,Y ⟩t

= Vtdt+ Vx(Yt(µdt+ σdWt) − λu2
tdt) + Vy(Yt(µdt+ σdWt) + utdt)

+
1

2
VxxY

2
t σ

2 +
1

2
VyyY

2
t σ

2 + VxyY
2
t σ

2dt .

By the martingale optimality principle of stochastic control, the value function V (t,Xt, Yt) must be a supermartingale for
any admissible strategy, and a martingale for the optimal one, i.e. the drift of V (t,Xt, Yt) cannot be positive is zero for
the optimizer. The corresponding HJB equation for V (t, x, y) is thus obtained by maximizing the drift over the strategy
u, and setting it equal to zero, which yields

0 = H := sup
u
[Vt + Vx(yµ − λu2) + Vy(yµ+ u) +

1

2
Vxxy

2σ2 +
1

2
Vyyy

2σ2 + Vxyy
2σ2]

= Vt + µyVx + µyVy +
1

2
y2σ2Vxx +

1

2
σ2y2Vyy + σ2y2Vxy + sup

u
[−λu2Vx + Vy(yµ+ u)] . (4)

Substituting

V (t, x, y) = −e−αxeαβteα
∫ y
0

q(ζ)dζ (5)

and solving for ∂H
∂u = 0 yields that

û(y) = −q(y)

2λ

and ∂2H
∂u2 = 2αλV (t, x, y) < 0 (and independent of u), so û is indeed the global maximizer. Substituting u = û, the HJB

equation reduces to the ordinary differential equation:

dq

dy
= f(y, q) (6)

where

f(y, q) =
1

σ2y2
[
(
1

2λ
− ασ2y2)q(y)2 − 2y(µ− ασ2y)q(y) + (2µy − ασ2y2 − 2β)

]
. (7)
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Remark 4.1 Note that Eq (6) has no boundary conditions, and the correct value for β is an unknown of the problem
(these issues will be dealt with in section 5).

An admissible solution to (6) should be bounded, and (in analogy with the frictionless case) be such that u(0+) > 0
and u(+∞) < 0.

On a compact interval [0, ỹ] that contains Ȳ = µ/(ασ2), we study the behavior of the solution for small λ. Following

[GW15], we guess a solution of the form q(y) = q1(y)
√
λ+ o(

√
λ) and β(λ) = β∗ − c(λ) where β∗ = µ2

2ασ2 (the equivalent
safe rate for the frictionless case) and c(λ) represents the welfare loss from illiquidity (recall that the utility function and
V (t, x, y) are negative so we expect c(λ) to be positive), and we guess that c(λ) = c̃1

√
λ+ o(

√
λ). Then we find that

q1(y) =
√
2ασ(y − Ȳ ) (8)

where Ȳ is the frictionless target. This implies that

û(y) = −
√
ασ(y − Ȳ )√

2

1√
λ

+ o(
1√
λ
) . (9)

Thus at leading order, we see that we sell when Y is above Ȳ , and buy when Y is below Ȳ and (formally at least) we see
that for small λ, Y evolves as

dYt = Yt(µdt+ σdWt) + utdt ≈ −
√
ασ(Yt − Ȳ )√

2

1√
λ
dt + YtσdWt

for λ ≪ 1, so we expect Y to have mean-reverting behaviour around Ȳ (this kind of result is made rigorous via weak

convergence arguments in [GW15]). We expect û(y) to blow up as λ → 0, because in the frictionless case θt =
Ȳ
St

which

clearly is not differentiable in t almost surely. Proceeding as in [GW15], we now evaluate the HJB equation at y = Ȳ ,
divide both sides by

√
λ and take again the limit for λ ↓ 0 to get

√
2ασ =

2c̃1α
2σ2

µ2

which we can re-arrange as

c̃1 =
µ2

√
2α

3
2σ

. (10)

5 Verification arguments

We now give the verification lemmas which make the arguments in section 4 rigorous.

Proposition 5.1 For λ > 0 sufficiently small, there exists a β and a solution to the ODE q(y) in (6) defined on (0,+∞),
which is bounded from below, increasing, and satisfies q(0+) = −2

√
λβ∗ and q(∞) = 1.

Proof. See Appendix A.

Remark 5.1 Using that q(∞) = 1, we see that the optimal trading strategy û(Yt) ≈ − 1
2λ for Yt ≫ 1 i.e. we sell at

constant speed.

We will require the following intermediate lemma.

Lemma 5.2 Let

F (y) := Ȳ − y(1− q(y)), ∀y > 0, (11)

c±(λ, y) :=
1

2

[
− 1±

√
1 + 4α(

q2(y)

2λσ2
+

2(β∗ − β)

σ2
− Ȳ )

]
, ∀y > 0, (12)

where we assume that λ > 0 is sufficiently small such that c+(λ,∞) > 0 and −c−(λ,∞)/α > Ȳ . Then

−
√

2(β∗ − β + 1/(4λ))

ασ2
≤ lim inf

y→∞
F (y) ≤ lim sup

y→∞
F (y) ≤ 0. (13)
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Proof. See Appendix B.

Lemma 5.3 There exists a probability measure P̂ , equivalent to P , such that the terminal wealth of XT of any admissible
strategy satisfies

−E(e−α(XT−X0)) ≤ −e−αβT EP̂ (e−α(Q(YT )−Q(Y0)))

where Q(y) =
∫ y

0
q(ζ)dζ and q(.) is defined as in Proposition 5.1, and equality holds for ut = û(Yt).

Proof. Recall that

dXt = Yt(µdt+ σdWt) − λu2
tdt ,

dYt = Yt(µdt+ σdWt) + utdt

and our ansatz V (t, x, y) = −e−αxeαβteαQ(y), and let L and A denote the infinitesimal generators of X and Y respectively.
Then for any admissible control ut we have

−ZT := V (t,Xt, Yt) = −e−α(XT−X0)+αβt+α(Q(Yt)−Q(Y0)) = −e
∫ T
0

α[−Lx(Xt)dt−ασYtdWt + βdt+AQ(Yt)dt+ασYtq(Yt)dWt]

= −e
∫ T
0

α(−Lx(Xs)+β+AQ(Ys))ds+
∫ t
0
γsdWt

= −e
∫ T
0

α(−Lx(Xt)+β+AQ(Yt))ds+
1
2

∫ t
0
γ2
sds

dP̂

dP
(14)

where γt = −αYtσ(1 − q(Yt)), and
dP̂
dP |Ft = e

∫ t
0
γsdWs− 1

2

∫ s
0
γ2
sds. dP̂

dP |Ft is the stochastic exponential of γt, but we know

that γt is uniformly bounded from (13), so we can use the Novikov condition to conclude that dP̂
dP |Ft is a true martingale.

From section 4 we know that V (t,Xt, Yt) has non-positive drift for any choice of u (note that we are not using the
martingale optimality principle to justify this statement because we don’t know the form of the true value function
Ṽ (t, x, y), rather it just follows because we maximize H in (4) over all u values in the lines that immediately follow (4),
but we know that H is zero when q is given by the solution q(y) defined in Proposition 5.1, and from Proposition 5.1 we

also know that q(Yt) is bounded, and hence ût = − q(Yt)
2λ is also bounded, consistent with our assumption for an admissible

ut in Definition 3.1. Hence the drift of the right hand side of (14) is non-positive, and from Ito’s formula we know this
drift is given explicitly by

−Zt[α(−Lx(Xt) + β +AQ(Yt)) +
1

2
γ2
t ] ≤ 0 .

Thus we have

−α(XT −X0) + αβT + α(Q(YT )−Q(Y0)) ≥ log
dP̂

dP

and the result follows. Finally (from Proposition 5.1) we know that the drift is zero when ut = û(Yt).

Remark 5.2 Under P̂ the dynamics of Y are

dYt = Yt[(µ− αYtσ
2(1− q(Yt))dt+ σdŴt )] + utdt

where Ŵ is a P̂ -Brownian motion.

We now have the following corollary of Lemma 5.3:

Corollary 5.4 For any admissible control we have

lim inf
T→∞

− 1

αT
logE(e−α(XT−X0)) ≤ β − lim inf

T→∞

1

αT
logEP̂ (e−α(Q(YT )−Q(Y0))) (15)

with equality for ut = û(Yt).
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Remark 5.3 In the proof of Proposition 5.1 we showed that c(λ) := µ2

2ασ2 − β converges to 0 for small λ. In addition,

f(y, 0) > 0 is equivalent to y ∈ (Ȳ −
√

2c(λ)
ασ2 , Ȳ +

√
2c(λ)
ασ2 ). Since q(y) is increasing, the value y∗ such that q(y∗) = 0 belongs

to the interval (Ȳ −
√

2c(λ)
ασ2 , Ȳ +

√
2c(λ)
ασ2 ). Therefore, for any ε > 0, if λ is chosen small enough, y∗ < Ȳ +

√
2c(λ)
ασ2 ) < Ȳ +ε.

Thus, the integral Q(y) =
∫ y

0
q(ζ)dζ is bounded from below by (Ȳ + ε)× q(0).

We now give the main result of the article.

Theorem 5.5 For any bounded control ut such that Yt ≥ 0 for all t > 0, we have

− lim inf
T→∞

1

αT
logEP̂ (e−α(Q(YT )−Q(Y0))) = 0

and hence (from (15)) we see that

lim inf
T→∞

− 1

αT
logE(e−α(XT−X0)) ≤ β (16)

and we have equality in (16) for the optimal control ut = û(Yt).

Proof. Set Zt = log Yt. From Ito’s formula we see that

dZt = [ασ2(Ȳ − eZt(1− q(eZt))) + ute
−Zt − σ2

2
]dt+ σdŴt

and recall that q(y) = Q′(y) ≤ 1 so

Q(y) =

∫ y

0

q(ζ)dζ ≤ y .

From Lemma 5.2 we now see that for large enough z, the drift of Zt satisfies (assuming u is uniformly bounded from above
by some ū)

lim
z→∞

[ασ2(Ȳ − ez(1− q(ez))) + ue−z − σ2

2
] ≤ −σ2

2
.

Let us define

L := inf{z > 0 : ασ2(Ȳ − ev(1− q(ev))) + ūe−v − σ2

2
≤ −σ2

4
, ∀v > z}

From the above we know that L is finite. For any t < 0, let us define

ϱt := sup{s < t : Zs < L}.

Then for all s ∈ (ϱt, t], Zt ≥ L. By comparison, we also know that,

Zs ≤ Us, ∀s ∈ (ϱt, t],

where

Uρt ≡ L, ∀s ∈ [0, ϱt] ; dUs = −σ2

4
ds+ σdŴs, ∀s > ϱt.

It follows that, for any t > 0, we have

E[e−αYt ] =E[e−αeZt
1Zt≤L] + E[e−αeZt

1Zt>L]

≥e−αeLP (Zt ≤ L) + E[e−αeUt
1Zt>L]

≥e−αeLP (Zt ≤ L) + E[e−αe
sups≥ϱt

Us

;Zt > L]

≥E[e−αe
sups≥0 U′

s
] (17)

where U ′
s is defined as

dU ′
s = −σ2

4
ds+ σdŴs, ∀s > 0 , U ′

0 = L.
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It is well known that sups≥0 U
′
s −L follows an exponential distribution with parameter Φ(0) (see e.g. page 213 in [Kyp06]

or just use the reflection principle and then apply Girsanov’s theorem and let t → ∞), where

Φ(0) := sup{m > 0 :
σ2

2
m2 − σ2

4
m = 0}

i.e. Φ(0) = 1
2 . Hence we have

E[e−αe
sups≥0 U′

s
] =

∫ ∞

0

e−αeL+x 1

2
e−

1
2xdx >

∫ L

0

e−αeL+x 1

2
e−

1
2xdx ≥ e−αe2L [1− e−

1
2L] > 0.

Putting this together and using (17), we find that

lim inf
T→∞

1

T
logE[e−α(Q(YT )−Q(Y0)] ≥ lim inf

T→∞

1

T
logE[e−αYT ] ≥ lim inf

T→∞

1

T
logE[e−αe

sups≥0 U′
s
] = 0 . (18)

Moreover, from Remark 5.3 we know that Q(y) ≥ (Ȳ + ε)× q(0), hence

lim inf
T→∞

1

T
logE[e−α(Q(YT )−Q(Y0)] ≤ 0 .

Finally, for the optimal control ut = û(Yt) we can easily show Yt ≥ 0, because the solution to dYt = Yt(µdt+σdWt)+û(y)dt
sits above the solution to dYt = Yt(µdt+σdWt)+ û(y)dt for Yt small because u(0+) > 0 (to rigourize this we just compute
the scale function for Y and apply Proposition 5.22 in [KS91].

6 Non-linear price impact

In this section, we posit the same dynamics for S as in section 3, but we now assume that the price paid per share is

S̃t := St(1 + λ|Stθ̇t|γsgn(θ̇)) (19)

for some γ ∈ (0, 1], so the cash position evolves as

dCt = −St(1 + λ|Stθ̇t|γsgn(θ̇))dθt .

Then from Ito’s rule we have

dXt = Stdθt + θtdSt + dCt = θtSt(µdt+ σdWt) − λ|Stθ̇t|γ+1dt

= Yt(µdt+ σdWt) − λ|ut|γ+1dt .

But we know that Ct = Xt − Yt. Thus

dYt = dXt − dCt = Yt(µdt+ σdWt) − λ|ut|γ+1dt+ (ut + λ|ut|γ+1)dt

= Yt(µdt+ σdWt) + utdt .

6.1 Heuristics for non-linear price impact

Proceeding as in section 4 in [GW14], we expect the value function V (t,Xt, Yt) to evolve as

dV (t,Xt, Yt) = Vtdt+ VxdXt + VydYt +
1

2
Vxxd⟨X⟩t +

1

2
Vyyd⟨Y ⟩t + Vxyd⟨X,Y ⟩t

= Vtdt+ Vx(Yt(µdt+ σdWt) − λ|ut|γ+1dt) + Vy(Yt(µdt+ σdWt) + utdt)

+
1

2
VxxY

2
t σ

2 +
1

2
VyyY

2
t σ

2 + VxyY
2
t σ

2dt .

Applying the usual HJB argument we obtain

0 = sup
u
[Vt + Vx(yµ − λ|u|γ+1) + Vy(yµ+ u) +

1

2
Vxxy

2σ2 +
1

2
Vyyy

2σ2 + Vxyy
2σ2]

= Vt + µyVx + µyVy +
1

2
y2σ2Vxx +

1

2
σ2y2Vyy + σ2y2Vxy + sup

u
[−λ|u|γ+1Vx + Vy(yµ+ u)] .
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Substituting

V (t, x, y) = −e−αxeαβteα
∫ y
0

q(ζ)dζ

and maximizing over u (for u > 0) yields the optimal monetary trading rate:

û(y) = − sgn(q(y))

(1 + γ)
1
γ λ

1
γ

|q(y)|
1
γ

which reduces the HJB equation to the ordinary differential equation to

−2c(λ)− 2yµ+
µ2

ασ2
+ y2ασ2 + y2ασ2q(y)2 + 2λ| q(y)

λ(1 + γ)
|1+

1
γ

+ − 2q(y)(−yµ+ y2ασ2 + sgn(q)| q(y)

λ(1 + γ)
|
1
γ ) + y2σ2q′(y) = 0 (20)

where β(λ) = µ2

2ασ2 − c(λ).

6.2 Asymptotic behaviour of q(y) for λ small and y ̸= Ȳ fixed

If we expand the HJB equation in (20) for small λ and assume that y ̸= Ȳ and set β = µ2

2ασ2 − c(λ) for c(λ) = o(1) and
we further assume that limλ→0 q(λ) = 0 we find that

−
q(y)1+

1
γ αγ( 1

λ(1+γ) )
1
γ

1 + γ
+

(µ− yασ2)2

2σ2
+ h.o.t. = 0

and re-arranging we see that a first order approximation for q is given by

q1(y) := 2−
γ

1+γ
[ (1 + γ)[λ(1 + γ)]

1
γ (µ− yασ2)2

αγσ2

] γ
1+γ

= 2−
γ

1+γ (1 + γ)γ− γ
1+γ (

ασ2

γ
)

γ
1+γ sgn(Ȳ − y)λ

1
1+γ |Ȳ − y|

2γ
1+γ

= const.× sgn(Ȳ − y)λ
1

1+γ |Ȳ − y|
2γ

1+γ (21)

as λ → 0. Moreover, setting γ = 1, we recover the same behaviour as in section 3, namely that q(y) ∼ q1(y)
√
λ with

q1(y) defined as in (8). (21) is similar to Eq 23 in [GW14]. For γ ∈ (0, 1), we see that q1(y) is sublinear and its derivative
explodes at y = Ȳ . However, the true solution to the HJB should be bounded with bounded derivative. Hence to achieve
sensible asymptotics in ths region, following [GW14] we now “zoom in” close to the Merton proportion Ȳ by letting λ and
|y − Ȳ | go small simultaneously.

6.3 Asymptotic behaviour of q(y) when λ and |y − Ȳ | go small together

Inspired by [GW14], we now set c(λ) = c̃1λ
2

γ+3 (1 + o(1)) as λ → 0 and y = Ȳ + λ
1

γ+3 z and q(y) = r(z)λ
3

γ+3 as λ → 0, so
we see that |y − Ȳ | now also tends to zero as λ → 0. In this new regime, taking the limit λ ↓ 0, the HJB equation now
reduces to

−2c̃1 + z2ασ2 − 2γ(1 + γ)−1− 1
γ |r(z)|1+

1
γ +

µ2r′(z)

α2σ2
= 0 (22)

Trivially, we can re-write as (22)

−1

2
z2ασ2 + c̃1 − µ2

2α2σ2
r′(z) + γ(1 + γ)−1− 1

γ |r(z)|1+
1
γ = 0 (23)

(note the similarity of this ODE to the ODE below Eq 25 in [GW14] for their r0(z) function). If we let r(z) = As(w)
where w = Bz for some constants A,B, then setting

A = 2−
γ

1+γ (αγσ2)
γ

1+γ ,

B = −2
γ

1+γ α3(αγσ2)−
γ

1+γ σ4/µ2
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we find that (22) transforms to

−c + w2 − γ(γ + 1)−
γ+1
γ |s(w)|

γ+1
γ − s′(w) = 0 (24)

where c = 2c̃1/(ασ
2), which is now the same ODE as Eq 12 in [GW14]. From Lemma 22 in [GW14], we know that there

exists a unique constant cγ > 0 and a unique solution sγ(w) to the ODE (24) such that

lim
w→±∞

sγ(w)

|w|
2γ

1+γ

= ∓(γ + 1) γ− γ
γ+1 .

Translating back to q, we has thus found that

q(Ȳ + λ
1

γ+3 z) ∼ r(z)λ
3

γ+3 = Asγ(Bz)r(z)λ
3

γ+3 (25)

as λ → 0 (note the similarity of this formula to Eq 14 in [GW14]).

6.4 The limiting cases γ = 1 and γ = 0

For γ = 1, we can easily verify that s(w) = −2w is the solution to (24), so cγ = 2 (see the top of the proof of Lemma 6 in

[GW14]) and c̃1 = 1
2ασ

2. Note that in section 4 we found that c̃1 = µ2

√
2α

3
2
, which shows that this constant is different in

the two regimes.

From Lemma 7 in [GW14], we know that c0 := limγ→0 cγ = ( 32 )
2
3 .

6.5 Small-λ asymptotics for the optimal trading policy

From the expression for û(y) above, we see that for z ̸= 0 fixed we have

û(Ȳ + λ
1

γ+3 z) ∼ − sgn(q(y))

(1 + γ)
1
γ λ

1
γ

|q(y)|
1
γ = −sgn(y − Ȳ )

|r(z)λ
3

γ+3 |
1
γ

(1 + γ)
1
γ λ

1
γ

= −sgn(z)
|r(z)|

1
γ

(1 + γ)
1
γ

1

λ
1

3+γ

= −sgn(z)
|Asγ(Bz)|

1
γ

(1 + γ)
1
γ

1

λ
1

3+γ

as λ → 0 (note the similarity of this formula to Eq 17 in [GW14]). The formula shows that (at leading order), the optimal
policy is to buy when the weight is below the frictionless target Ȳ , and to sell when it is above, as with linear impact. In
contrast to the linear case) r(z) is not linear in general for γ ̸= 1, so û is no longer linear in y − Ȳ . Setting γ = 1, the

final expression here is O(λ− 1
4 ), which agrees with the γ = 1 calculations in (9) when we let y = Ȳ + λ

1
γ+3 z = Ȳ + λ

1
4 z.

The equivalent safe rate is given by

β(λ) =
µ2

2ασ2
− c̃1λ

2
γ+3 [1 + o(1)]

=
µ2

2ασ2
− 1

2
cγασ

2λ
2

γ+3 [1 + o(1)]

as λ → 0.

γ cγ
0.0 1.31037
0.2 1.5605551
0.4 1.71006801
0.6 1.82587907
0.8 1.92060895
1.0 2
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Figure 1: Here we have plotted and tabulated the universal constant γ 7→ cγ for γ ∈ (0, 1], using a bisection trial and
error approach in Mathematica with the NDSolveValue command. Note this is the same graph as Figure 2 in [GW14].
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A Proof of Proposition 5.1

Remark A.1 Given two slope fields f1(y, q), f2(y, q) and suppose that f1(y, q) > f2(y, q) for all (y, q) ∈ R+ × R. If qi(·)
solves q′i(y) = fi(y, qi(y)), i = 1, 2, with initial condition q1(y0) = q2(y0) for some y0 ∈ R. Denoting the common domain
of q1(·) and q2(·) by D, then it can be easily seen that q1(y) < q2(y) for all y ∈ (0, y0) ∩ D; and q1(y) > q2(y) for all
y ∈ (y0,∞) ∩ D.

The following Proposition summarizes the qualitative behaviour of the zero contours of f(y, q) (see also Figure 3
below), and will be needed for the rest of the proof which follows.
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Figure 2: In the upper graph here, we have plotted a single Monte Carlo simulation of how the number of shares θt = Yt/St

evolves using the (asymptotically) optimal trading strategy û(y) = −
√
ασ(y−Ȳ )√

2
1√
λ

under linear price impact from (9)

(dark blue) against the evolution of θt in the frictionless Merton setting (light blue) and the optimal θt process under
the Guasoni&Muhle-Karbe[GM15] model (red) with proportional transaction costs but no price impact. We see that the
price impact curve smoothly tracks the Merton optimal portfolio and the transaction costs curve is piecewise constant
because of the no-trade region. Here the parameters are µ = .05, σ = .1, λ = .0.00001, α = 1, the size of the proportional
transaction costs is ε = .0001 and the time horizon here is t = 1 year. The lower graph shows the corresponding evolution
of the risky wealth under all three models. For the model in [GM15], the process dΥt = (µ− 1

2σ
2)dt+σdWt+dLt−dUt is

arithmetic Brownian motion with two reflecting barriers (hence the local processes Lt and Ut) at Υ = 0 and Υ = b = log u
l

and their risky wealth process Yt = leΥt where l = (µ̄ − λ̄)/α, µ̄ = µ/σ2 and λ̄ = ( 34 µ̄
2)

1
3 ε

1
3 , u = (µ̄ + λ̄)/α, and the

optimal number of shares evolves as dθt/θt = d log θt = dLt − dUt (θt here is φt in their notation); hence we see that Yt

evolves within the so-called no-trade region [l, u], and trading only occurs when Υ hits the reflecting barriers; specifically
we sell when hit the upper barrier u and buy when we hit the lower barrier b.
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Figure 3: Here we have plotted the zero contours of f(y, q) for λ = .1, σ = 1,µ = 1, α = 1 and β estimated using

β ≈ β∗ − c̃λ
1
2 as derived in section 4 (note that the contour plot looks qualitatively the same for all parameter choices

as proved in Proposition A.1, see Appendix C for full mathematical details). The blue line is h− and the grey line is h+.
The three vertical asymptotics are (from left to right) y−, y+ and ŷ respectively, and the three horizontal asymptotes
(from top to bottom) 1, 2

√
βλ and −2

√
βλ. The solution q(y) for the correct β value is extremely difficult to solve for

numerically due to the peculiar nature of the ODE in (6), but from the analysis below we know that limy→0 q(y) = −2
√
βλ

and limy→∞ q(y) = 1 and q(y) is increasing.

Proposition A.1 Assume 0 < λ ≤ ασ2

8µ2 = 1
16β∗ (where β∗ is defined in section 4). Then for any β ∈ (0, β∗], there exist

two functions h−(y) and h+(y) such that f(y, h±(y)) = 0 such that

1. h−(y) and h+(y) are strictly increasing and decreasing respectively, for all y ∈ (0, y−), and h±(0+) = ±2
√
βλ;

2. h−(y) is strictly decreasing for all y ∈ (y+, ŷ), with limy↑ŷ h−(y) = −∞;

3. h−(y) is strictly decreasing for all y ∈ (ŷ,∞), with limy↓ŷ h−(y) = ∞ and limy→∞ h−(y) = 1;

4. h+(y) is strictly increasing for all y ∈ (y+,∞), with limy→∞ h+(y) = 1

5. h± have the asymptotic behaviour

h±(y) = ±2σ
√
βλ + λµ(2∓ 1

σ
√
βλ

)y + o(y) (y → 0) (A-1)

h±(y) = 1−
2λµ±

√
2
√
λ(ασ2 + 2λ(µ2 − 2αβσ4))

2αλσ2

1

y
+ o(

1

y
) (y → ∞) (A-2)

where

y± :=
Ȳ ±

√
2

ασ2 (β∗ − β)(1− 4λβ)

1 + 4λ(β∗ − β)
, ŷ :=

1√
2λασ2

. (A-3)

Proof. See Appendix C.

Corollary A.2 If q̃ is a solution to (6) that crosses h− over (0, y−), then q̃(0+) = h+(0+) = 2
√
βλ. If q̄ is a solution to

(6) that crosses h+ over (y+,∞), then q̄(∞) = −∞.

• There exists a unique solution q0(y) to (6) such that −∞ < q0(0+) < 0 and q0 is increasing on (0, y+).
Taking the limit for y ↓ 0 of the slope field f(y, q) yields f(0+, q) < 0 for q ∈ (−2

√
λβ, 2

√
λβ) and f(0+, q) > 0 for

q ∈ (−∞,−2
√
λβ)∪ (2

√
λβ,+∞) and from (A-1) we see that for λ sufficiently small, we have that limy↓0 h

′
+(y) < 0

and limy↓0 h
′
−(y) > 0.
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We now show that if a solution q(y) has finite limit as y → 0, then q2(0+) = 4λβ. Since the functions h±(y) are
monotone on a small interval (0, ε), also any solution q(y) is monotone close to 0. By taking the limit y ↓ 0 in the
equation q′(y) = f(y, q(y)), since we assume q2(0+) ̸= 4λβ, we get q′(y) ∼ K

y2 close to 0 for some constant K. This

implies that q(y) ∼ −K
y close to 0, which contradicts the assumption that q(0+) is finite.

Proceeding along similar lines for the top of page 25 in [GW15], for each z > 0 we define

q(z) := inf{k : q(0+; z, k) = 2
√
λβ}

where q(y; z, k) denotes the solution to the ODE in (6) which passes through the point (z, k). Fix y0 sufficiently
small and consider the solutions to the ODE given by q0(y) := q(y; y0, q(y0)) and q̃0(y) := q(y; y1, q(y1)) for some
y1 ∈ (0, y0). Now assume that q̃0(y1) < q0(y1). Then q̃0(y0) < q0(y0) because solutions cannot cross. But
this contradicts the definition of q0(.), hence we must have q̃0(y0) ≥ q0(y0). Conversely, if q̃0(y0) > q0(y0) then
q̃0(y1) > q0(y1) which contradicts the definition of q̃0(.). Thus we see that q̃0(.) = q0(y) for all y ≤ y0 so we can say
that q0(.) = inf{q(.) : q(0+) = 2

√
λβ , q satisfies (6)}.

We now prove that q0(0+) = −2
√
λβ. First, assume by contradiction that q0(0+) = 2

√
λβ, then for y0 sufficiently

small we must have q0(y0) > h−(y0). The solution that starts from (y0, h−(y0)) also has limit 2
√
λβ as y → 0

because dq
dy < 0 in the region between h− and h+, and this solution is below q0(y), contradicting its minimality.

Now, assume by contradiction that q0(0+) = −∞. Then there is a point (y1, q̃0) ∈ (0, ε)× (−∞,−2
√
λβ) such that

q̃0 > q0(y1). Since f(y, q) > 0 on (0, ε)× (−∞,−2
√
λβ), the solution that starts in (y1, q̃0) has limit −∞ as y → 0,

but is also above q0(y), which leads to a contradiction by the definition of q0(.). From this analysis we also see that
q0 must be increasing for y ∈ (0, y−) because dq

dy > 0 below h− for y ∈ (0, y−) (see the previous Proposition and

Figure 3). Moreover, dq
dy > 0 for all y ∈ (y−, y+).

To emphasize the dependence of q0 on β, we can denote the solution q0(·) by q
(β)
0 (·). Then since q

(β)
0 (0+) = −2

√
βλ,

we know that for any 0 < β1 < β2, q
(β1)
0 (y) > q

(β2)
0 (y) for sufficiently small y > 0. We claim that this inequality

actually holds over the common domain of these two functions. This is because, if there is a smallest y2 > 0 such

that q
(β1)
0 (y2) = q

(β2)
0 (y2), then Remark A.1 implies that q

(β2)
0 (0+) > q

(β1)
0 (0+), which is a contradiction.

• There exists a solution q∞(y) defined up to +∞ such that the limit as y → ∞ exists and is positive, and q∞ is
increasing on (y−,∞).
From (A-2) we can see that limy↑∞ h±(y) = 1 and h+(y) < h−(y). Moreover, from (A-2), we see that (for λ
sufficiently small) h−(y) is strictly decreasing and h+(y) is strictly increasing for y > ŷ (see (A-3) and Figure 3 for
the definition and significance of ŷ).

Since for λ sufficiently small (say, λ ∈ (0, ασ2

8µ2 ]) f(y, 1) > 0, we have that f(y, q) > 0 for q ∈ (h+(y), h−(y)) and

f(y, q) < 0 for q ∈ (−∞, h+(y)) ∪ (h−(y),+∞). We prove now that a solution with initial condition (ȳ, h+(ȳ)) has
limit −∞ as y → ∞. Since h+(y) is increasing, this solution q(y) is decreasing after it crosses the curve (y, h+(y)), in
particular q(y) ≤ h+(ȳ) for any y ≥ ȳ. Since q(y) is monotone, it has a limit as y → ∞; assume by contradiction that
this limit is finite. As the derivative of any monotone function with finite limit at infinity converges to 0 at infinity,
from the equality 0 = limy↑∞ q′(y) = limy↑∞ f(y, q(y)), we get limy↑∞ q(y) = 1. But this cannot hold because q(y)
is decreasing for y ≥ ȳ. A similar argument proves that a solution with initial condition (ȳ, h−(ȳ)) has limit 1 for
y ↑ +∞. Proceeding as in the previous bullet point, we now define

q̄(z) := sup{k : q(+∞; z, k) = −∞} . (A-4)

and consider the solution to the ODE given by q∞(y) := q(y; ȳ, q̄(ȳ)). Then from the preceding arguments, we know
that q̄(ȳ) > h−(ȳ), and using the same comparison arguments as in the previous bullet point we can easily show
that q∞(y) = sup{q(y) : q(+∞) = −∞, q(y) satisfies (6)}. Hence q∞(y) is a solution to the ODE, limy↑∞ q∞(y) = 1

and it is increasing for y > y+ because dq
dy > 0 in the region between h− and h−, and q∞ cannot cross h+. Moreover

(as before) dq
dy > 0 for all y ∈ (y−, y+).

• If β ≥ β∗, then q0(y) ≤ 0 < q∞(y) for all y > 0.
Notice that for all y > 0

f(y, 0) =
1

σ2y2
(2µy − ασ2y2 − 2β) = − α

y2
[(y2 − 2µ

ασ2
y +

2β∗

ασ2
) +

2(β − β∗)

ασ2
]

=− α

y2
[(y2 − 2Ȳ y + Ȳ 2) +

2(β − β∗)

ασ2
] = − α

y2
[(y − Ȳ )2 +

2(β − β∗)

ασ2
] ≤ 0.
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Since q0(0) = −2
√
λβ < 0 and q∞(+∞) = 1 > 0, neither q0(y) nor q∞(y) can cross the line q = 0 (as they would

have to do so with positive derivative).

• Fix a ε ∈ (0, β∗) we let β = β∗ − ε. Then we claim that for sufficiently small λ > 0, either q0(·) explodes to +∞ at
some finite y-value (so q0(·) has a finite domain) or there exists a ȳ in the common domain of q0(·) and q∞(·) such
that q0(ȳ) ≥ 1 > q∞(ȳ). To that end, recall that the slope field f(y, q) is

1

σ2y2
[(

1

2λ
− ασ2y2)q2 − 2yασ2(Ȳ − y)q − ασ2(Ȳ − y)2 + 2ε].

Let us choose a fixed δ ∈ (0, 1
2

√
ε/(2ασ2))) so that, for sufficiently small λ > 0 we have

0 < (Ȳ −
√

2ε

ασ2
(1− 4λβ))/(1 + 4ελ) ≡ y− < Ȳ − δ < Ȳ + 2δ < y+ ≡ (Ȳ +

√
2ε

ασ2
(1− 4λβ))/(1 + 4ελ).

Let us also impose that δ is also lies in (0, 1
6 Ȳ (

√
1 + 3ε/(ασ2Ȳ 2)− 1) so that

−12ασ2δ2 − 4ασ2Ȳ δ + ε > 0 (A-5)

(this will be needed in Eq (A-6) below). On the other hand, notice that for any (y, q) ∈ [Ȳ − δ, Ȳ +2δ]× [−1, 1], we
always have

1

2λ
− ασ2y2 > 0,

−2yασ2(Ȳ − y)q ≥ −4(Ȳ + 2δ)ασ2δ,

−ασ2(Ȳ − y)2 ≥ −4ασ2δ2,

where the first inequality just follows from Ȳ + 2δ < y+ < ŷ = 1/
√
2ασ2λ (again see Proposition A.1 and Figure 3

for physical significance of ŷ). Adding the three inequalities above, we see that on [Ȳ − δ, Ȳ + 2δ]× [−1, 1] we have

f(y, q) ≥ 1

σ2y2
[(

1

2λ
− ασ2y2)q2 +

1

σ2y2
[−12ασ2δ2 − 4ασ2Ȳ δ + 2ε]

≥ 1

σ2y2
(
1

2λ
− ασ2y2)q2 +

ε

σ2y2
(A-6)

≥ 1

σ2y2
(
1

2λ
− ασ2y2)q2 + ε⋆ , (A-7)

where ε⋆ := ε
σ2(Ȳ+2δ)2

, and the second inequality follows from (A-5).

Now recall that q0(·) is strictly increasing on the intersection of its domain and (0, y+), hence we can bound q0(·)
by q0(0+) = −2

√
βλ over (0, Ȳ − δ). Moreover, we just showed that the slope field is bounded by ε⋆ from below

over the domain [Ȳ − δ, Ȳ + δ]× [−1, 1], we know that we can bound q0(·) by a function g(·) over [0, Ȳ + δ], where
g(y) = −2

√
λβ+ε⋆(y−Ȳ+δ)+. As a consequence, q0(·) either explodes to +∞ by Ȳ+δ, or∞ > q0(Ȳ+δ) > g(Ȳ+δ) =

2δϵ⋆−2
√
βλ. Let us assume further that λ > 0 is sufficiently small so that q0(Ȳ + δ) > 2δϵ⋆−2

√
βλ > 0. Thus, over

[Ȳ + δ, Ȳ +2δ], we either have q0(·) explodes to +∞ or it is finite and increasing over q0(Ȳ + δ) > 2ε⋆δ−2
√
2βλ > 0,

based on the comments about q0(·) we made earlier. It follows that

q0(Ȳ + 2δ) > −2
√
λβ +

∫ Ȳ+2δ

Ȳ+δ

q′0(y)dy

≥ −2
√
λβ +

∫ Ȳ+2δ

Ȳ+δ

[
1

σ2y2
(
1

2λ
− ασ2y2)q0(y)

2 + ε⋆]dy

(from Eq (A-6))

≥ −2
√
λβ +

∫ Ȳ+2δ

Ȳ+δ

[
1

σ2y2
(
1

2λ
− ασ2y2)(−2

√
λβ + 2ε⋆δ)2 + ε⋆]dy

> 1 (A-8)

for λ sufficiently small. This proves the our claim.
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• There exists β such that q0(y) = q∞(y).
From the previous points we know that for some βup > β∗ the function q0(y) is strictly negative on its domain, while
q∞(y) is strictly positive and defined on (0,+∞). For some βlow < β∗ there exists a point ȳ such that q0(ȳ) ≥ 1.
Consider a point ỹ close to 0 that belongs to the domain of q0 for every β ∈ [βlow, βup]. Assume for the moment that
ỹ belongs to the domain of q∞ for βlow, then we have that q0(ỹ) < 0 < q∞(ỹ) for βup and q0(ỹ) > q∞(ỹ) for βlow.
Since the solutions q0 and q∞ depend continuously on β, there exists a β(λ) ∈ (βlow, βup) such that q0(ỹ) = q∞(ỹ)
(and therefore q0 = q∞).
If ỹ does not belong to the domain of q∞ for βlow, then since also this domain depends continuously on β there
exists β̃ ∈ (βlow, β

∗) such that for β̃ the point ỹ belongs to the domain of q∞ and q∞ has limit −∞ at the left end
of its domain. As before, for some β ∈ (βlow, β̃), q0(ỹ) = q∞(ỹ).

• Now that there is at least a β ∈ (0, β∗) such that there is a solution q(·) to the ODE, which is strictly increasing
and q(·) < h−(·) over (y+,∞) and q(·) > h+(·) over (0, y+). Suppose there are 0 < β1 < β2 < ∞ satisfies the

above properties, let us denote by q(βi)(·), h(β)
± (·), y(βi)

± , i = 1, 2, the corresponding solution, the 0-contours, and the

critical points where h
(βi)
+ (·) collapses to h

(βi)
− (·). Then from the discussion about q0(·) and Remark A.1 we know

that we must have
q(β1)(y) > q(β2)(y) , ∀y ∈ (0,∞).

On the other hand, fix any y0 > max{y(βi)
+ ; i = 1, 2}, we denote by q̄(β1)(y) = q(·; y0, q(β2)(y0)). Then by Remark

A.1 we have that
q(β1)(y) > q̄(β1)(y; y0, q

(β2)(y0)) > q(β2)(y), ∀y ∈ (y0,∞).

In particular, by construction of q
(β1)
∞ (·) we know that q̄(β1)(·; y0, q(β2)(y0)) will cross h

(β1)
+ (·) at some y-value and

we will have q̄(β1)(+∞; y0, q
(β2)(y0)) = −∞. However, that implies that q(β2)(+∞) = −∞, which is impossible.

Hence, there is a unique β ∈ (0, β∗) such that the ODE has a bounded, strictly increasing solution q(·), that satisfies
q(0+) = −2

√
βλ and q(+∞) = 1.

Remark A.2 From Corollary A.2 and the above construction we know that the global solution q satisfies q(y) < h−(y)
over (0, y−] and 1 > q(y) > h+(y) over [y+,∞).

B Proof of Lemma 5.2

We begin by introducing
G(z) = zF (1/z), p(z) = q(1/z), ∀z > 0.

Then we have
G(z) = Ȳ z + p(z)− 1, G(0+) = 0.

We will first establish that

−
√

2(β∗ − β + 1/(4λ))

ασ2
≤ lim inf

y→∞
F (y) ≤ lim sup

y→∞
F (y) ≤ Ȳ . (B-1)

Then we will improve the upper bound by comparison and contradiction. First, using that p(z) < 1 for all z ∈ (0,∞), we
know that

F (1/z) =
G(z)

z
< Ȳ , ∀z ∈ (0,∞).

Recall that G(z) := zF (1/z) = Ȳ z − (1− p(z)) = Ȳ z − (1− q( 1z )). And we know that h+(y) < q(y) (see Remark A.2) for
all y ≥ y+, so we have

Ȳ z + h+(
1

z
)− 1 < Ȳ z + q(

1

z
)− 1 = G(z) < Ȳ z, ∀z ∈ (0, 1/y+).

Using the explicit expression for h+(·) we know that

lim
z↓0

h+(1/z)− 1

z
= lim

y→∞

y[Ȳ y − ŷ2 +
√
∆(y)/(ασ2)]

ŷ2 − y2
= −

√
2(β∗ − β + 1/(4λ))

ασ2
− Ȳ .

and ŷ = 1√
2ασ2λ

as in Proposition A.1.
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Ȳ z + h+(
1

z
)− 1 < G(z) < Ȳ z, ∀z ∈ (0, 1/y+).

Hence we have the upper bound in (B-1). On the other hand, by the fact that p(1/z) > h+(1/z) for all z ∈ (0, 1/y+), we
know that

lim inf
z↓0

G(z)

z
≥Ȳ + lim inf

z↓0

h+(1/z)− 1

z

=Ȳ + lim
y→∞

y[Ȳ y − ŷ2 +
√
∆(y)/(ασ2)]

ŷ2 − y2

=−
√

2(β∗ − β + 1/(4λ))

ασ2
.

This proves the lower bound in (B-1).

We now prove that G′(z) ≤ 0 for z sufficiently small, and hence G(z) ≤ 0 for z sufficiently small (note that G(0) = 0,
so if G′(z) ≤ 0 for small z then G is negative for z small). This will prove the upper bound in (13). Suppose this is not
the case, then there is a z0 > 0 sufficiently small such that p2(z) is strictly decreasing over (0, 2z0), and that

G′(z0) >0, (B-2)

− 1

α
· c−(λ,

1

2z0
) =

1

2α

[
1 +

√
1 + 4α

(
p2(2z0)

2λσ2
+

2(β∗ − β)

σ2
− Ȳ

)]
> Ȳ . (B-3)

(B-3) holds due to the assumption −c−(λ,∞)/α > Ȳ and the fact that p(z) continuously increases to 1 as z decreases to
0. On the other hand, from p′(z) = q′(1/z) · (−1/z2) = −f(1/z, q(1/z))/z2, we see that G(z) solves a Riccati equation:

G′(z) = Ȳ − f(
1

z
, p(z))/z2 = Ȳ − 1

σ2
[
q2

2λ
+ 2(β∗ − β)− ασ2[y(1− q)− Ȳ ]2] (B-4)

and noting that y(1− q)− Ȳ = −G(z)/z, we see that

G′(z) =A(z) +
α

z2
G2(z), ∀z > 0, (B-5)

where

A(z) = Ȳ − 2(β∗ − β)

σ2
− p2(z)

2λσ2
.

Now consider the following proxy Riccati equation:

G′(z) = A(2z0) +
α

z2
G2(z), G(z0) = G(z0), ∀z ∈ (0, z0). (B-6)

Making the substitution G(z) = − z2

α
u′(z)
u(z) , we see that u(z) satisfies the linear Eq

Aαu(z)

z2
+

2u′(z)

z
+ u′′(z) = 0

where A is shorthand for A(2z0), which has solution u(z) = B+z
c+ + B−z

c− for arbitrary constants B+, B−, where c±
satisfy c2 + c+Aα = 0, which has solutions given by c± = 1

2 (−1±
√
1− 4αA) ≡ c±(λ,

1
2z0

), and we see that

c± =
1

2
(−1±

√
1− 4αA(2z0))

=
1

2
(−1±

√
1− 4α(Ȳ − 2(β∗ − β)

σ2
− p2(2z0)

2λσ2
))

=
1

2

[
− 1±

√
1 + 4α(

q2(1/2z0)

2λσ2
+

2(β∗ − β)

σ2
− Ȳ )

]
(B-7)

which agrees with the definition of c±(λ,
1

2z0
). From this we find that

G(z) = − z

α
· c+z

c+ + θc−z
c−

zc+ + θzc−
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where θ = B+/B−. We can now re-write this as

G(z) = − z

α
· wc+z

c+ + (1− w)c−z
c−

wzc+ + (1− w)zc−
, ∀z ∈ (0, z0), (B-8)

where w = 1
1+θ ∈ (−∞,∞], with w = ∞ if θ = −1. Here w is a free parameter used to match the “terminal condition”

G(z0) = G(z0). We claim that w ̸= 1. If not, then we see that G(z) = − c+
α z. Thus, by the monotonicity of p2(z) (and

hence A(z)) we have

0 > −c+
α

= G′(z0) = A(2z0) +
α

z20
G2(z0) > A(z0) +

α

z20
G2(z0) = G′(z0) > 0. (B-9)

This is a contradiction; hence w ̸= 1.

Recall that G(z0) = G(z0), so

G′(z0) = A(2z0) +
α

z20
G2(z0) > A(z0) +

α

z20
G2(z0) = G′(z0)

for z ∈ (0, z0) and hence G(z) > G(z) for z ∈ (0, z0). Thus (for w ̸= 1) zc− ≫ zc+ as z → 0 so we see that

lim sup
z↓0

G(z)

z
≥ lim sup

z↓0

G(z)
z

= −c−
α

≡ − 1

α
c−(λ,

1

2z0
). (B-10)

However, using (B-3) we know that this is contradictory to the upper bound in (B-1). Thus, in conclusion, we must have
that G′(z) ≤ 0 for sufficiently small z > 0. This proves the upper bound in (13).

C Proof of proposition A.1

Throughout we assume that β ∈ (0, β∗]. Recall that we have defined

β∗ =
µ2

2ασ2
, ŷ =

1√
2λασ2

, Ȳ =
µ

ασ2
,

and that the ODE for q(y) in the linear price impact case is given by:

q′(y) =
1

σ2y2
[( 1

2λ
− ασ2y2

)
q(y)2 − 2y(µ− ασ2y)q(y) + (2µy − ασ2y2 − 2β)

]
:= f(y, q(y)). (C-1)

We calculate the zero contour for f (ignoring the positive pre-factor 1/(σ2y2)):

0 =
( 1

2λ
− ασ2y2

)
q2 − 2y(µ− ασ2y)q + (2µy − ασ2y2 − 2β)

=ασ2

(
(ŷ2 − y2)q2 − 2y(Ȳ − y)q + 2Ȳ y − y2 − 2β

ασ2

)
Then for any y such that y ̸= ŷ, we have that the following functions for the 0-contours:

h±(y) =
2y(µ− ασ2y)± 2

√
∆(y)

1

λ
− 2ασ2y2

≡
y(Ȳ − y)±

√
∆(y)/(ασ2)

ŷ2 − y2
, ∀y ∈ (0, ŷ) ∪ (ŷ,∞) (C-2)

where

∆(y) = 2ασ2(β∗ − β +
1

4λ
)y2 − µ

λ
y +

β

λ
. (C-3)

We notice that for all β ∈ (0, β∗] and λ > 0, h±(0+) = ±2
√
βλ. Moreover, the coefficient of y2 in ∆(y) is positive:

Furthermore, straightforward calculation yields that ∆(y) < 0 if and only if y ∈ (y−, y+), where

y± =
Ȳ ±

√
2

ασ2 (β∗ − β)(1− 4λβ)

1 + 4(β∗ − β)λ
, (C-4)

where we have made the following assumption:
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Assumption C.1 We assume the following regarding λ henceforth,

0 < λ ≤ ασ2

8µ2
:=

1

16β∗ ⇔ 2Ȳ ≤ ŷ. (C-5)

Remark C.1 For any β ∈ (0, β∗] and λ satisfying Assumption C.1, we have

1. 1− 4λβ ≥ 1− 4λβ∗ ≥ 1− 1
4 > 0.

2. From

y+ :=
Ȳ +

√
2

ασ2 (β∗ − β)(1− 4λβ)

1 + 4λ(β∗ − β)
< Ȳ +

√
2

ασ2
β∗ = 2Ȳ ≤ ŷ

we know that y− ≤ y+ < 2Ȳ ≤ ŷ. Moreover,

y+ − Ȳ =

√
2

ασ2 (β∗ − β)(1− 4λβ)− Ȳ 4λ(β∗ − β)

1 + 4λ(β∗ − β)
=

√
(1− β

β∗ )(1− 4λβ)− 4λ(β∗ − β)

1 + 4λ(β∗ − β)
Ȳ

Notice that the denominator and Ȳ are positive, and the pre-factor in the numerator is greater than√
(1− β

β∗ )(1−
1

4
)− 4λ(β∗ − β) =: F (β),

which is a concave function of β. Since F (β∗) = 0 and F (0) =
√
3
2 − 4λβ∗ ≥

√
3
2 − 1

4 > 0, we may conclude that
F (β) ≥ 0 for all β ∈ (0, β∗]. Hence,

y+ ≥ Ȳ ,

where the equality holds if and only if β = β∗. Similarly, from

y− :=
Ȳ −

√
2

ασ2 (β∗ − β)(1− 4λβ)

1 + 4λ(β∗ − β)
≤ Ȳ

1 + 4λ(β∗ − β)
≤ Ȳ

we know that y− ≤ Ŷ , with equality if and only if β = β∗.

3. From

Ȳ −
√

2

ασ2
(β∗ − β)(1− 4λβ) > Ȳ −

√
2

ασ2
β∗ = Ȳ − Ȳ = 0

we know that y− > 0.

Remark C.2 From the sign change of the denominator in (C-2), we see that for all y ∈ (0, y−), we have h−(y) < h+(y);
and for all y ∈ (y+, ŷ), we have h−(y) < h+(y); for all y ∈ (ŷ,∞), we have h+(y) < h−(y).

We now give the proof of Proposition A.1:

Proof. (of Proposition A.1). We only prove the statement for h−(y). That for h+(y) can be proved in the same manner.
We begin by applying implicit function theorem to y2σ2f(y, q) to obtain that

h′
−(y) =

[y(q − 1) + Ȳ ](q − 1)

q(ŷ2 − y2)− y(Ȳ − y)

∣∣
q=h−(y)

, ∀y ∈ (0, y−) ∪ (y+, ŷ) ∪ (ŷ,∞). (C-6)

Recall that

h−(y) =
y(Ȳ − y)−

√
∆(y)/(ασ2)

ŷ2 − y2
, (C-7)

By conditioning on whether y > ŷ, we know from (C-7) that{
h−(y) < y(Ȳ − y)/(ŷ2 − y2), ∀y ∈ (0, y−) ∪ (y+, ŷ),
h−(y) > y(Ȳ − y)/(ŷ2 − y2), ∀y ∈ (ŷ,∞).
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This means that the denominator of h−(y) in (C-6) satisfies

h−(y)(ŷ
2 − y2)− y(Ȳ − y) < 0, ∀y ∈ (0, y−) ∪ (y+, ŷ) ∪ (ŷ,∞). (C-8)

We now prove that the numerator in (C-6) is negative over (0, y−) and is positive over (y+, ŷ) ∪ (ŷ,∞). To that end,
we notice that

h−(y)− 1 =
Ȳ y − ŷ2 −

√
∆(y)/(ασ2)

ŷ2 − y2
< 0 ∀y ∈ (0, y−) ∪ (y+, ŷ), (C-9)

because 0 < Ȳ < ŷ and 0 < y < ŷ. Moreover,

y(h−(y)− 1) + Ȳ =
ŷ2(Ȳ − y)− y

√
∆(y)/(ασ2)

ŷ2 − y2
=:

k(y)

ŷ2 − y2
. (C-10)

For y ∈ (0, y−) ∪ (y+, ŷ), the sign of (C-10) depends on that of its numerator k(y) only. We first treat y ∈ (0, y−), in
which case we bound k(y) from below, by bounding ∆(y) from above. To that end, recall that

∆(y) =2ασ2(β∗ − β +
1

4λ
)y2 − µ

λ
y +

β

λ
= 2ασ2(β∗ +

1

4λ
)y2 − µ

λ
y + 2ασ2β(

1

2ασ2λ
− y2)

=2ασ2(β∗ +
1

4λ
)y2 − µ

λ
y + 2ασ2β(ŷ2 − y2). (C-11)

Since 0 < y < y− < ŷ, (C-11) implies that, for any fixed y ∈ (0, y−), ∆(y) is increasing in β. Hence, for all β ∈ (0, β∗],

∆(y) ≤2ασ2(
1

4λ
)y2 − µ

λ
y +

β∗

λ
=

ασ2

2λ
(y2 − 2

µ

ασ2
y +

2β∗

ασ2
) =

ασ2

2λ
(y2 − 2Ȳ y + Ȳ 2) =

ασ2

2λ
(Ȳ − y)2. (C-12)

where the first ineqality follows because its only an equality for β = β∗. By (C-12) we know that, for all y < y− ≤ Ȳ ,

k(y) ≥ŷ2(Ȳ − y)− y

ασ2

√
ασ2

2λ
(Ȳ − y)2 = ŷ2(Ȳ − y)− y√

2ασ2λ
(Ȳ − y)

=ŷ2(Ȳ − y)− ŷy(Ȳ − y) = ŷ(Ȳ − y)(ŷ − y) > 0. (C-13)

(C-13) tells us that (C-10) is positive and hence k(y) > 0 and y(h−(y)− 1) + Ȳ > 0 (i.e. the left hand side of (C-10)) on
(0, y). Thus the numerator of (C-6), i.e. [y(h−(y) − 1) + Ȳ ](h−(y) − 1) is negative, which implies that h′

−(y) > 0 for all
y ∈ (0, y−) (see (C-6) and (C-8)).

For the case that y ∈ (y+, ŷ), we notice that

k(y) = ŷ2(Ȳ − y)− y
√
∆(y)/(ασ2) < ŷ2(Ȳ − y) < 0, (C-14)

because Ȳ ≤ y+ < y. From (C-9), (C-10), and (C-14), we know that the numerator in (C-6) is positive in this domain,
which implies that h′(y) < 0 for all y ∈ (0, y−) (see (C-6) and (C-8)).

We now treat the monotonicity of h−(y) for y ∈ (ŷ,∞). We begin by using (C-2) to obtain that

lim
y→∞

h−(y) = 1.

Moreover, for any fixed β ∈ (0, β∗], λ ∈ (0, 1/(16β∗)] and all sufficiently large y > 0, it can be seen through asymptotics
that h′

−(y) < 0 for large y. But it is easily seen that

(y(q − 1) + Ȳ )(q − 1) > 0, ∀y ∈ (0,∞), q ∈ (1,∞).

Hence, we may conclude from (C-6) and (C-8) that h′
−(y) < 0 for all y ∈ (ŷ,∞).
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