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Abstract: For a one-dimensional Itô process Xt =
∫ t
0 σsdWs and a general FX

t -adapted non-decreasing path-
dependent functional Yt, we derive a number of forward equations for the characteristic function of (Xt, Yt) for
absolutely and non absolutely continuous functionals Yt. The functional Yt can be the maximum, the minimum,
the local time, the quadratic variation, the occupation time or a general additive functional of X. Inverting the
forward equation, we obtain a new Fourier-based method for computing the Markovian projection E(σ2

t |Xt, Yt)
explicitly from the marginals of (Xt, Yt), which can be viewed as a natural extension of the Dupire formula
for local volatility models; E(σ2

t |Xt, Yt) is a fundamental quantity in the important mimicking theorems in
Brunick&Shreve[BS12]. We also establish mimicking theorems for the case when Y is the local time or the
quadratic variation of X (which is not covered by [BS12]), and we derive similar results for trivariate Markovian
projections. †

1. Introduction

There has been a growing literature on the problem of constructing a process that mimics certain properties of a given
Itô process, but is simpler in the sense that the mimicking process solves a stochastic differential equation, or more
generally a stochastic functional differential equation, while the original Itô process may have drift and diffusion terms
that are themselves adapted stochastic processes. The classical paper of Gyöngy[Gyö86] considers a multi-dimensional
Itô process, and constructs a weak solution to a stochastic differential equation which mimics the marginals of the
original Itô process at each fixed time. The drift and covariance coefficient for the mimicking process can be interpreted
as the expected value of the instantaneous drift and covariance of original Itô process, conditioned on its terminal level.

Brunick&Shreve[BS12] relax the conditions of non-degeneracy and boundedness on the covariance of the Itô process
imposed in [Gyö86], and they also significantly extend the Gyöngy result. More specifically, the main result Theorem
3.5 in [BS12] proves that we can match the joint distribution at each fixed time of various functionals of the Itō process,
including the maximum-to-date or the running average of one component of the Itô process. The mimicking process
now takes the form of a stochastic functional differential equation (SFDE) and the diffusion coefficient for the SFDE
is given by the so-called Markovian projection; in the case when we are mimicking the law of the terminal value of the
process Xt and another path-dependent functional Yt, the Markovian projection is given by the conditional expectation
σ̂(x, y, t)2 = E(σ2

t |Xt = x, Yt = y).

[BS12] do not provide a constructive method for computing σ̂(x, y, t)2; however, for the standard problem of just
mimicking the law of the terminal value of the process, this can be computed from the well known Dupire forward
equation for continuous semimartingales, in terms of infinitesimal calendar and butterfly spreads of put or call options.
This equation was derived heuristically in [Dup96] and can be proved rigorously using the Tanaka-Meyer formula
for continuous semimartingales, see Klebaner[Kle02]. Bentata&Cont[BC09II] extend this analysis to derive a forward
partial integro-differential equation for the call option price (in the sense of distributions) when the underlying asset
follows a (possibly) discontinuous semimartingale. In another article, [BC09] have also extended the Gyöngy mimicking
result to jump diffusion processes, but they assume a priori that the Markovian projection is continuous; it is not clear
if/when this holds if we do not also assume a priori that the original Itô process admits a positive density at the point
(x, y) of interest.

The other main technical obstacle in establishing fitting and mimicking results of this nature is establishing unique-
ness for the associated forward Kolmogorov equation (or associated partial integro-differential equation when there is
a jump component), in the sense of distributions. This can be done when Yt is an a.s. absolutely continuous functional
using standard existence and uniqueness theorems for the forward Kolmogorov equation associated with the mimicking
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diffusion process, which is degenerate when we are just mimicking the marginals of the two quantities (Xt, Yt), because
there is only one driving Brownian motion. It is less clear how to proceed for a.s. non-absolutely continuous function-
als likes the running maximum or local time, because the mimicking process now takes the form of a non-standard
stochastic functional differential equation for which the theory is less developed.

In this article, we consider an R-valued square integrable Itô semimartingale of the form dXt = σtdWt, and a general
FXt -adapted non-decreasing process Yt (this is our path-dependent functional of interest). We first consider the case
when Yt is a.s. non absolutely continuous and Xt = g(Yt) for some continuous function g(.), on the growth set of Yt;
this condition is satisfied when for example when Y is the running maximum of X with g(y) = y, or if Yt = Lat the local
time of X at a with g(y) = a. In this setup, we derive a general forward equation for the Fourier-Laplace transform of
the law of (Xt, Yt), and the forward equation can be inverted to compute the Markovian projection σ̂(x, y, t)2 explicitly
via a Fourier-Laplace inversion, without the a priori assumption that (Xt, Yt) has a density at (x, y) or that σ̂(t, ., .)
is continuous at (x, y). In section 5, we consider the case when Yt is an a.s. absolutely continuous functional; we
first derive a mimicking result for the case when Yt = 〈X〉t which is not considered in [BS12], and we then derive a
forward equation for the Fourier-Laplace transform of the law of (Xt, Yt) and a similar equation when Y is an additive
functional of X. In both cases, we can use the forward equation to compute the appropriate Markovian projection, and
we conclude the article with a similar forward equation for a trivariate Markovian projection.

2. The modelling set up

We let X : [0, T ] × Ω 7→ R denote an Itô process, i.e. a continuous martingale defined on a filtered probability space
(Ω,F ,Ft,P) satisfying the usual conditions, with stochastic integral representation

Xt =

∫ t

0

σsdWs , (2.1)

where W is a standard one-dimensional Brownian motion adapted to Ft, and σt is a adapted process with E(
∫ t

0
σ2
sds) <

∞ for all t ≤ T . Let FXt denote the natural filtration of X. Throughout, we let (Yt)t≥0 denote an a.s. continuous non-
decreasing FXt -adapted process with Y0 = 0 - this is our path-dependent functional of interest. We assume that Yt has
full support on R+ and that E(Yt) <∞ for all t ≤ T .

We begin with a short technical lemma.

Lemma 2.1. There exists a function σ̂2 : R× R+ × (0, T ] 7→ R+ such that σ̂2(., ., t) is (Borel) measurable and

E(σ2
t |Xt, Yt) = σ̂2(Xt, Yt, t) a.s.

Proof. See Appendix C.

Remark 2.2. We refer to σ̂2(x, y, t) as the Markovian projection of σ2
t on (Xt, Yt).

2.1. The Brunick-Shreve mimicking result

We now briefly summarize the main result in Brunick&Shreve[BS12] for the special case when the dimension n = 1
and the process under consideration is driftless.

For an Itô process of the form in (2.1), [BS12] consider a certain class of path-dependent functionals Y of X (which
they refer to as updating functions), which can include Yt = X̄t (the running maximum of X), Yt = Xt (the running

minimum of X) or an additive functional of the form Yt =
∫ t

0
g(Xs)ds, but cannot include 〈X〉t the quadratic variation

of X or Lat the local time of X at x = a because these functionals are not continuous in the sup norm topology. For
continuous functionals Y in the class of updating functions, the main Theorem 3.6 in [BS12] proves that there exists

a filtered probability space (Ω̂, F̂ , F̂t, P̂) that supports a continuous adapted process X̂ on R and a one-dimensional
Brownian motion Ŵ satisfying

X̂t =

∫ t

0

σ̂(X̂s, Ŷs, s)dŴs ,

where

σ̂(X̂t, Ŷt, t)
2 = E(σ2

t |Xt, Yt)
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Lebesgue a.e. on [0, T ], such that the distribution of Yt under P agrees with the distribution of Ŷt under P̂ for all
t ∈ [0, T ].

From here on, we make the following assumption throughout:

Assumption 2.3. We assume that E(σ2
t ) < K < ∞ for all t ∈ [0, T ] and that σt is positive and stochastically

continuous.

2.2. Mimicking the joint marginals of the terminal level and the local time

As mentioned above, Theorem 3.6 in [BS12] does not cover the case when the path-dependent functional is the local
time of X at zero. However, by adapting their argument, we will now prove a similar mimicking result for local time1.
Let Lt denote the local time of X at zero and let Yt = |Xt| −Lt =

∫ t
0

sgn(Xs)dXs and Zt = (Xt, Yt). Then Zt is an Itô
process, and we have

E
(
σ2
t

[
1 sgn(Xt)

sgn(Xt) 1

]
|Xt, Yt

)
=

[
1 sgn(Xt)

sgn(Xt) 1

]
σ̂2(Xt, Yt) ,

t-a.e., where σ̂2(Xt, Yt) = E(σ2
t |Xt, Yt). Applying Theorem 3.6 in [BS12] to Zt, we can then mimic the marginals of Zt

for each t > 0 with a diffusion-type process of the form

dX̂t = σ̂(X̂t, Ŷt, t)dŴt ,

dŶt = σ̂(X̂t, Ŷt, t) sgn(X̂t) dŴt

on some (Ω̂, F̂ , {F̂t}, P̂). Then (X̂t, |X̂|t − Ŷt) has the same distribution under P̂ as (Xt, |Xt| − Yt) = (Xt, Lt) under P,
and |X̂|t − Ŷt is a version of the local time process L̂t of X̂t.

3. Computing E(σ2
t |Xt, Yt) explicitly - the non-absolutely continuous case

In the following subsections, we show how to compute the Markovian projection σ̂2(., ., t) explicitly for non absolutely
continuous functionals, by deriving a forward equation for the Fourier-Laplace transform of the law of (Xt, Yt).

Theorem 3.1. Assume the process (Yt)t≥0 is not absolutely continuous a.s. and there exists a continuous function
g : R+ 7→ R such that

Xt = g(Yt) (3.1)

a.s. on the growth set of Yt
2. Set φ(k, λ, t) = E(eikXt−λYt) for k ∈ R, λ ∈ C, Re(λ) ≥ 0 and assume that at least one

of k or λ is not zero. Then we have the following forward equation for φ:

∂t[φ+ λE(G(k, λ, Yt))] = −1

2
k2U , (3.2)

where G(k, λ, y) =
∫ y

0
eikg(u)−λudu and

U(k, λ, t) = E(σ2
t e

ikXt−λYt) = E(σ̂(Xt, Yt, t)
2 eikXt−λYt)

is the Fourier-Laplace transform of the bounded measure q(dx, dy, t) = σ̂(x, y, t)2p(dx, dy, t), where p(dx, dy, t) = P(Xt ∈
dx, Yt ∈ dy). 3.

Proof. Applying the Itô formula to Zt = eikXt−λYt we obtain

dZt = ikZtdXt −
1

2
k2Ztσ

2
t − λ eikg(Yt)−λYtdYt ,

1We are grateful to Gerard Brunick for pointing this out.
2By growth set, we mean the support of the random measure induced by the process Y on [0, T ], i.e. the complement of the largest open

set of zero measure.
3We know qt is bounded because we imposed that E(σ2

t ) = E(σ̂2(Xt, Yt, t)) <∞.
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where we have used that Xt = g(Yt) on the growth set of Yt in the final term. Integrating, we obtain

Zt − 1 = ik

∫ t

0

ZsdXs −
1

2
k2

∫ t

0

Zsσ
2
sds − λG(k, λ, Yt) .

Taking expectations, and using that |Zt| ≤ 1 and E(
∫ t

0
σ2
sds) <∞, we can apply Fubini’s theorem to obtain

E[Zt + λG(k, λ, Yt)] − 1 = −1

2
k2

∫ t

0

E(Zsσ
2
s)ds . (3.3)

But σt is stochastically continuous and Zt is continuous a.s., so Zuσ
2
u → Zsσ

2
s a.s. as u → s. Moreover, |Ztσ2

t | ≤
σ2
t ≤ K for all t ∈ [0, T ]. Thus by the dominated convergence theorem limu→s E(Zuσ

2
u) = E(Zsσ

2
s) so the integrand

E(Zsσ
2
s) in (3.3) is continuous in s. Thus we can differentiate (3.3) everywhere with respect to t to obtain (3.2). Finally,

using iterated expectations, we have that

E(Ztσ
2
t ) = E(Ztσ̂(Xt, Yt)

2).

Remark 3.2. Clearly φt(k, λ) and E(G(k, λ, Yt)) can both be computed just from the marginals of (Xt, Yt). Thus, using
(3.2) we can back out the unknown U(k, λ, t) for k 6= 0 4, from φ(k, λ, t) for all t ∈ (0, T ], and thus q(dx, dy, t) (via
a Laplace-Fourier inversion). q(dx, dy, t) is absolutely continuous with respect to p(dx, dy, t) = P(Xt ∈ dx, Yt ∈ dy)
because E(σ2

t ) < ∞. If p(dx, dy, t) = ρt(x, y)dxdy + αt(dx, dy) where αt is singular with respect to Lebesgue measure,
then q(dx, dy, t) = σ̂(x, y, t)2(ρt(x, y)dxdy + αt(dx, dy)) and we can then compute σ̂(x, y, t)2 from q(dx, dy, t) and
p(dx, dy, t) at atoms and non atomic points of p(dx, dy, t).

3.1. The local volatility case and the Dupire formula

In this subsection, we derive a simpler forward equation for the characteristic function of X alone, which yields
an alternative methodology to the Dupire formula for computing the usual one-dimensional Markovian projection
E(σ2

t |Xt = x).

Proposition 3.3. Let φ(k, t) = E(eikXt) for k ∈ R. Then we have the following forward equation for φ:

∂tφ = −1

2
k2U (3.4)

where

U(k, t) = E(σ2
t e

ikXt) = E(σ̂(Xt, t)
2 eikXt)

is the Fourier transform of the bounded measure q(dx, t) = σ̂(x, t)2p(dx, t), where p(dx, t) = P(Xt ∈ dx) and σ̂(x, t)2 =
E(σ2

t |Xt = x).

Remark 3.4. Using (3.4) and performing a Fourier inversion, we can back out q(dx, t) (and thus σ̂(x, t)2) from φ(k, t)
for all t ∈ (0, T ]. If p(dx, t) has a C2,1 density p(x, t), then (3.4) is just the Fourier transform of the forward Kolmogorov
equation

∂tp = ∂2
xx(

1

2
σ̂(x, t)2p) ,

and integrating this twice in x we obtain the celebrated Dupire formula

∂TC =
1

2
σ̂(K,T )2∂2

KKC

for the price of a call option C(K,T ) = E(XT − K)+. Proposition 3.3 provides a way of computing σ̂(x, t) without
having to calculate (or estimate) ∂TC or ∂2

KKC, which is notoriously difficult in practice with noisy and incomplete
option price data.

4For k = 0 we just use the continuity of φ.
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4. Examples

4.1. The running maximum

If Yt = max0≤s≤tXs the running maximum of Xt, then from Doob’s maximal inequality (see page 14 in [KS91]) we
have that E(Y 2

t ) ≤ 4E(X2
t ) < ∞ because Xt is a square integrable martingale. In this case, g(y) = y because Y can

only increase if Xt = Yt and (3.2) becomes

∂t[φ +
λ

ik − λ
E(e(ik−λ)Yt)] = −1

2
k2U .

4.2. The running minimum

If Yt = −Xt = −min0≤s≤tXs, i.e. minus the running minimum of Xt, then g(y) = −y and (3.2) becomes

∂t[φ −
λ

ik + λ
E(e−(ik+λ)Yt)] = −1

2
k2U .

Remark 4.1. If we have an Itô process of the form in (2.1) and observed barrier option prices given by E((Xt −
K)+1Xt>b

) for all K, b, t with b ≤ K, t ∈ [0, T ], then formally differentiating twice with respect to K and once in b
we can recover the marginals of (Xt, Xt) for all t ∈ [0, T ]. Using the Brunick-Shreve result, we can then mimic these
down-and-out call option prices with a diffusion-type process of the form dXt = σ(Xt, Xt)dWt.

4.3. Local time

If Yt = Lat is the local time for X at x = a, then g(y) = a and (3.2) becomes

∂t[φ − eika E(e−λL
a
t )] = −1

2
k2U .

5. Absolutely continuous functionals

5.1. The forward Kolmogorov equation for absolutely continuous functionals

In this section, we assume (Yt)t≥0 is absolutely continuous a.s. with Yt =
∫ t

0
bsds for some adapted process bt such

that
∫ t

0
|bs|ds <∞ a.s. This includes the case when Y is an additive functional: Yt =

∫ t
0
b(Xs, s)ds, or when Yt = 〈X〉t

the quadratic variation of X or more generally a weighted variance swap-type functional Yt =
∫ t

0
b(Xs)σ

2
sds (note that

these are all FXt -adapted processes).

Lemma 5.1. There exists a measurable function b̂ : R× R+ × (0, T ] 7→ R such that b̂(., ., t) is measurable and

E(bt |Xt, Yt) = b̂(Xt, Yt, t) a.s.

Proof. Follows by a similar argument to Lemma 2.1.

Proposition 5.2. p(dx, dy, t) = P(Xt ∈ dx, Yt ∈ dy) satisfies a degenerate forward Kolmogorov equation in the
following weak sense:

∀t ∈ [0, T ],
d

dt

∫
ψ p(dx, dy, t) =

∫
(ψt + b̂(x, y, t)ψy +

1

2
σ̂(x, y, t)2ψxx) p(dx, dy, t) (5.1)

5 for all test functions ψ ∈ C2,1,1
b (R × R+ × [0, T ]). This implies that p(dx, dy, t) = P(Xt ∈ dx, Yt ∈ dy) is a solution

to the degenerate forward Kolmogorov equation

∂tp = −∂y(b̂(x, y, t)p) + ∂2
xx(

1

2
σ̂(x, y, t)2p) (5.2)

in the sense of distributions.

Proof. See Appendix A.
5where integration is over R× R+.
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5.2. A mimicking result for quadratic variation

Now let Ω = Cx0,y0([0, t],R × R+), (Xt, Yt) = (ω1(t), ω2(t)) the canonical process on Ω, and Bt its natural filtration.
Recall that a probability measure Q on (Ω,BT ) is a solution to the martingale problem associated with a second order
differential operator A (in the Stroock-Varadhan sense) if the process

f(Xt, Yt)− f(x0, y0)−
∫ t

0

Af(Xs, Ys)ds (5.3)

is a (Q,Bt)-martingale for all f ∈ C∞c (R×R+). The martingale problem is said to be well posed if there exists a unique
Q to the martingale problem.

Proposition 5.3. For the case when (Yt)t≥0 is absolutely continuous a.s., if b̂, σ̂2 are bounded and continuous and

have two bounded continuous spatial derivatives, then there exists a weak solution (X̂, Ŷ , Ŵ ), (Ω̂, F̂ , F̂t, P̂) to{
dX̂t = σ̂(X̂t, Ŷt, t)dŴt ,

dŶt = σ̂(X̂t, Ŷt, t)
2dt

(5.4)

with X0 = Y0 = 0 which is unique in law, and if Ŷ has full support under P̂, then P̂(X̂t ∈ dx, Ŷt ∈ dy) = P(Xt ∈
dx, Yt ∈ dy) for all t ∈ [0, T ], i.e. (X̂t, Ŷt) mimics the marginals of (Xt, Yt) for all t ∈ [0, T ].

Proof. From Proposition 4.1 in Figalli[Fig08] (see also Theorems 3.2.6 and Corollary 6.3.3 in Stroock&Varadhan[SV79],

and Proposition 5.4.11 in [KS91]), from the conditions on b̂, σ̂2, then there exists a unique solution Q to the martingale
problem for

A =
1

2
σ̂(x, y, t)2∂2

xx + b̂(x, y, t)∂y

and thus there exists a weak solution (X̂, Ŷ , Ŵ ), (Ω̂, F̂ , F̂t, P̂) to (5.4) which is unique in law. Moreover, from Proposition

5.2 we know that p(dx, dy, t) and p̂(dx, dy, t) = P̂(Xt ∈ dx, Yt ∈ dy) satisfy the same weak forward Kolmogorov equation
(5.1). But from the second part of the proof of the same Proposition in [Fig08], we also know that the solution to (5.1)
is unique.

Remark 5.4. Proposition 5.3 is not covered by the main result in [Gyö86] because Gyöngy assumes that the mimicking
process is non-degenerate, which is not the case here because the Y process has no diffusion coefficient. Proposition 5.3
is not covered in entirety by Theorem 3.6 in [BS12] because the latter requires that the functional Y be continuous in
the sup norm topology, which is not the case when e.g. Yt = 〈X〉t.

Remark 5.5. Using Hörmander’s theorem for a diffusion with time-dependent coefficients (see Eq 1.5 in [CM02]), we
can find conditions in terms of Lie brackets under which p(dx, dy, t) admits a smooth density p(x, y, t), and is thus a
classical solution to the forward Kolmogorov equation.

The mimicking result in Proposition 5.4 can be applied to the following absolutely continuous functionals:

• An additive functional: Yt =
∫ t

0
b(Xs, s)ds - in this case b̂(x, y, t) = E(b(Xt, t)|Xt = x, Yt = y) = b(x, y, t) and

Proposition 5.4 holds if b̂, σ̂2 satisfy the regularity conditions in the proposition.
• Quadratic variation: Yt = 〈X〉t =

∫ t
0
σ2
sds - in this case b̂(x, y, t) = E(b(Xt, Yt, t)|Xt = x, Yt = y) = σ̂(x, y, t)2,

and Proposition 5.4 holds if σ̂2 satisfies the regularity conditions in the proposition.

6. Computing E(σ2
t |Xt, Yt) explicitly - absolutely continuous cases

6.1. Quadratic variation

Proposition 6.1. Set φ(k, λ, t) = E(eikXt−λ〈X〉t) for k ∈ R, λ ∈ C, Re(λ) ≥ 0. Then we have the following forward
equation for φ

∂tφ = −(
1

2
k2 + λ)U , (6.1)

where

U(k, λ, t) = E(σ2
t e

ikXt−λ〈X〉t) = E(σ̂(Xt, 〈X〉t, t)2 eikXt−λ〈X〉t)

is the Fourier-Laplace transform of the bounded measure u(dx, dy, t) = σ̂2(x, y, t)P(Xt ∈ dx, 〈X〉t ∈ dy) , where
σ̂2(x, y, t) = E(σ2

t |Xt = x, 〈X〉t = y).
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Proof. Applying the Itô formula to Zt = eikXt−λ〈X〉t we obtain

Zt = 1 +

∫ t

0

ikZs dXs − (
1

2
k2 + λ)

∫ t

0

σ2
sds .

Taking expectations, applying Fubini and using the stochastic continuity of σt to differentiate wrt t as before and then
using iterated expectations, we obtain (6.1).

6.2. Additive functionals and the occupation time

Proposition 6.2. Let Yt =
∫ t

0
g(Xs, s)ds, where g is bounded and Borel measurable and set φ(k, λ, t) = E(eikXt−λYt)

for k ∈ R, λ ∈ C, Re(λ) ≥ 0. Then we have the following forward equation for φ

∂tφ = −1

2
k2U − λE(g(Xt, t)) , (6.2)

where

U(k, λ, t) = E(σ2
t e
ikXt−λYt) = E(σ̂(Xt, Yt, t)

2 eikXt−λYt)

is the Fourier-Laplace transform of the bounded measure u(dx, dy, t) = σ̂2(x, y, t)P(Xt ∈ dx, Yt ∈ dy) , where σ̂2(x, y, t) =
E(σ2

t |Xt = x, Yt = y) a.s.

Proof. Applying the Itô formula to Zt = eikXt−λYt we obtain

Zt = 1 +

∫ t

0

ikZs dXs −
1

2
k2

∫ t

0

Zsσ
2
sds − λ

∫ t

0

Zsg(Xs, s)ds

and we then proceed as before.

Remark 6.3. Using (6.1) and (6.2) and performing a Laplace-Fourier inversion, we can back out u(dx, dy, t) and thus
σ̂(x, y, t)2 from φ(k, λ, t) at all t ∈ (0, T ].

Remark 6.4. The special case g(x, t) = 1x>b corresponds to the occupation time of Xt above the level b. The case
g(x, t) = x corresponds to t times the running average of Xt.

7. Tri-variate Markovian projections

7.1. Computing E(σ2
t | (Xt, Yt,

∫ t

0
b(Xs)ds)

Proposition 7.1. Let (Xt, Yt) satisfy the same conditions as Theorem 3.1 and assume that g′(y) = c6 is constant

and let Γt =
∫ t

0
b(Xs, s)ds, where b is bounded and Borel measurable and set φ(k, λ, γ, t) = E(eikXt−λYt−γΓt) for

k ∈ R, λ, γ ∈ C, Re(λ),Re(γ) ≥ 0. Then we have the following forward equation

∂tE(Zt +
λ

ikc− λ
Z̄t) = −1

2
k2E(Ztσ

2
t )− γE((Zt −

λ

ikc− λ
Z̄t)b(Xt, t)) (7.1)

where Zt = eikXt−λLt−γΓt , Z̄t = e−λLt−γΓt and E(Ztσ
2
t ) is the Fourier-Laplace transform of the bounded measure

u(dx, dy, dz, t) = σ̂2(x, y, z, t)P(Xt ∈ dx, Yt ∈ dy,Γt ∈ dz) , where σ̂2(Xt, Yt,Γt) = E(σ2
t |Xt, Yt,Γt) a.s.

Proof. See Appendix.

Remark 7.2. Using (7.1) and performing a Laplace-Fourier inversion, we can back out u(dx, dy, dz, t) and thus
σ̂(x, y, z, t)2 from φ(k, λ, γ, t) at all t ∈ (0, T ].

Remark 7.3. We can derive a similar forward equation for (Xt, Yt, 〈X〉t) (we defer the details for the sake of brevity).

6The local time and the maximum process both satisfy this condition.



8

References

[BC09] A.Bentata and R.Cont, “Forward equations for option prices in semimartingale models”, 2009, to appear in
Finance and Stochastics.

[BC09II] A.Bentata and R.Cont, “Mimicking the marginals of a semimartingale”, 2009.
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Appendix A: Proof of Proposition 5.2

Xt and Yt are continuous semimartingales, so we can apply Itô’s formula to the test function ψ:

dψ(Xt, Yt, t) = ψt(Xt, Yt, t)dt + ψx(Xt, Yt, t)dXt + ψy(Xt, Yt, t)dYt +
1

2
ψxx(Xt, Yt, t)σ

2
t dt

Integrating and using that ψ(X0, Y0, 0) = ψ(0, 0, 0) = 0, we obtain

ψ(Xt, Yt, t) =

∫ t

0

ψt(Xs, Ys, s)ds +

∫ t

0

ψx(Xs, Ys, s)dXs +

∫ t

0

ψy(Xs, Ys, s)dYs

+

∫ t

0

1

2
ψxx(Xs, Ys, s)σ

2
sds .

ψx, ψxx, ψy and ψt are bounded because ψ ∈ C2,1,1
b and E(

∫ t
0
σ2
sds) < ∞ by assumption so we can take expectations,

apply Fubini’s theorem and re-arrange to obtain

E(ψ(Xt, Yt, t) =

∫ t

0

E((ψt(Xs, Ys, s) + ψy(Xs, Ys, s)bs +
1

2
ψxx(Xs, Ys, s)σ

2
s)ds .

Finally, using iterated expectations we obtain the result.

Appendix B: Proof of Proposition 7.1

Applying the Itô formula to Zt = eikXt−λYt−γΓt we obtain

dZt = ikZtdXt −
1

2
k2Ztσ

2
t − λ Z̄tdYt − γZtb(Xt, t)dt ,

where Z̄t = eikg(Yt)−λYt−γΓt , and we have used that Xt = g(Yt) on the growth set of Yt in the penultimate term. But
from Ito’s lemma we also have

dZ̄t = Z̄t((ikc− λ) dYt − γb(Xt, t)dt).

Combining both expressions, we obtain

dZt = ikZtdXt −
1

2
k2Ztσ

2
t −

λ

ikc− λ
(dZ̄t + γb(Xt, t)dt) − γZtb(Xt, t)dt

and we then proceed as before.
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Appendix C: Proof of Lemma 2.1

Similar to the proof of Proposition 4.4. in [Gyö86], we now recall the definition of σ̂2(x, y, t) = E(σ2
t |Xt = x, Yt = y)

via the Radon-Nikodým theorem: we consider the measure qt defined by the formula

qt(A) = E(1(Xt,Yt)∈A σ
2
t ) . (C-1)

for every B ∈ B(R×R+). qt is absolutely continuous with respect to p(dx, dy, t) (the distribution of (Xt, Yt) on R×R+).
Thus, by the Radon-Nikodým theorem, there exists a measurable function σ̂2(t, ., .) such that

qt(A) =

∫
R×R+

1A σ̂
2(x, y, t) p(dx, dy, t) .

For every t, σ̂2(t, ., .) is unique up to a set of pt-measure 0. We then define E(σ2
t |Xt = x, Yt = y) = σ̂2(x, y, t) and from

the standard Kolmogorov definition of conditional expectation, E(σ2
t |Xt, Yt) = σ̂2(Xt, Yt, t) a.s.


