The large-maturity smile for the Stein-Stein model

Martin Forde*
Dept. Mathematics
King’s College London,
4th April 2014

Abstract: We compute the large-maturity smile for the correlated Stein-Stein stochastic volatility model \(dS_t = S_tY_t dW_t^1, dY_t = \kappa(\theta - Y_t)dt + \sigma dW_t^2\), \(dW_t^1 dW_t^2 = \rho dt\), using the known closed-form solution for the characteristic function of the log stock price given in Schöbel&Zhu[SZ99]. The Stein-Stein model is not covered by the results in [FK13] and [JKRM13] because the volatility fails to satisfy the sublinear growth condition in [FK13] and is not an affine model.†

1. Introduction

The last few years have witnessed a number articles on large-time asymptotics for stochastic volatility models with/without a jump component. Using the Gärtner-Ellis theorem, [FJ11] compute the implied volatility smile for the popular Heston stochastic volatility model when \(\kappa > 0, \kappa > \rho \sigma\), in the large-time, large log-moneyness regime and [FJM10] compute the correction term using saddlepoint methods; the large-time smile is identical to the large-time smile for the Barndorff-Nielsen Normal Inverse Gaussian model, and [GJ11] show that the asymptotic smile can be computed in closed-form via the Gatheral SVI parameterization. [JM12] derive similar results for a displaced Heston model, and relax the aforementioned conditions on \(\kappa, \rho, \sigma\). [JKRM13] have extended the results in [FJ11] to a general class of affine stochastic volatility models (with jumps), which includes the Heston model with state-independent jumps, the Bates model with state-dependent jumps and the Barndorff-Nielsen-Shephard model.

[FP12] compute large-time asymptotics for the SABR model with \(\beta = 1, \rho \leq 0\) and \(\beta < 1, \rho = 0\); in particular for \(\beta = 1, \rho \leq 0\), they compute a closed-form expression for the asymptotic log stock price density and establish large-time asymptotics for the CEV model and the uncorrelated CEV-Heston model in the large-time, fixed-strike regime and a new large-time, large log-moneyness regime. [Forde11b] derives similar results for the modified SABR model in terms of the large-time asymptotic density of the Brownian exponential functional.

The long-term asymptotic behavior of the smile for exponential Lévy models and more general martingale models have been studied in [RT10], where it is proved that for fixed log-moneyness \(k\) and large maturity, the implied volatility converges to a constant value that does not depend on \(k\). This phenomenon is typically referred as the “smile-flattening” effect, which arises from the large deviation principle for i.i.d. random variables (see e.g. Cramér’s theorem in [DZ98]). For a general exponential Lévy model with mild conditions on the cumulant generating function, [GL11] derive an expansion of the form \(\sigma_t(x)^2 = \sigma_\infty^2 + a_1(x)/t + a_2(x)/t^2 + o((\log t)^2/t^3)\) as \(t \to \infty\) for the implied volatility \(\sigma_t(x)\) at log-moneyness \(x\) and maturity \(t\), where \(a_1(x)\) and \(a_2(x)\) are respectively affine and quadratic in \(x\).

In [Forde11], the author derives a large deviation principle for the log stock price under an uncorrelated stochastic volatility model driven by an Ornstein-Uhlenbeck process with a bounded volatility function. For this we use the fact that the occupation measure for the Ornstein-Uhlenbeck process satisfies an LDP with a good, convex lower semicontinuous rate function under the topology of weak convergence (and under the Prohorov metric), see section 7 in Donsker&Varadhan[DV76] (see also page 178 in Stroock[Str84] and [Pin85]), combined with the standard contraction principle and exponential tightness. In [FK13], we relax the assumptions of bounded volatility and zero correlation made in [Forde11]. The rate function for \(X_t/t\) now has the variational representation \(I(x) = \inf_{\mu \in P(\mathbb{R})} \frac{(x-M(\mu))^2}{2\nu(\mu)} + I_\alpha(\mu)\), for some linear functionals \(M, \nu\) which depend on the correlation \(\rho\). Using the LDP, we translate these results into large-time asymptotics for call options and implied volatility, and we extend the analysis to incorporate stochastic interest rates, by deriving a similar LDP for a three-factor model driven a CIR short rate process.

In this article, we look at the large-time behavior of the closed form expression for the characteristic function of the log stock price under the Stein-Stein model introduced in [SS91], which is derived in [SZ99]. Using the Gärtner-Ellis

*martin.forde@kcl.ac.uk
†We thank Rohini Kumar for insightful comments.
Theorem from large deviations theory, we compute a large-time large deviation principle for the log stock price. From this we can then characterize the large-time behavior of call option prices and implied volatility in the large-time, large log-moneyness regime. The Stein-Stein model reduces to a special case of the Heston model when the mean reversion level \(\theta = 0 \). We refer the reader to Deuschel et al.\[DFJV14\] for a discussion on tail asymptotics for the Stein-Stein model using Laplace’s method on Wiener space for a small-noise diffusion process and some simple scaling properties, and the earlier work on tail asymptotics for the zero correlation case in Gulisashvili&Stein\[GS10\].

2. Large deviation theory and the Gärtner-Ellis theorem

In this section, we recall some fundamental notions in large deviations theory (we refer the reader to Section 2.3 in \[DZ98\] and Section 2.2 in \[JM12\] for more details). A family of random variables \((Z_t)\) is said to satisfy the large deviation principle (LDP) as \(t \to \infty \) with good rate function \(I \) if for all \(B \in \mathcal{B}(\mathbb{R}) \) we have the following bounds

\[
- \inf_{x \in B^*} I(x) \leq \liminf_{t \to \infty} \frac{1}{t} \log \mathbb{P}(Z_t \in B) \leq \limsup_{t \to \infty} \frac{1}{t} \log \mathbb{P}(Z_t \in B) \leq - \inf_{x \in \bar{B}} I(x),
\]

where \(B^o (\bar{B}) \) denotes the interior (resp. closure) of \(B \).

We now assume that the cumulant generating function \(V_t(p) = \log \mathbb{E}(e^{p Z_t}) \) is finite on some neighborhood of zero and that the following limit exists as an extended real number

\[
V(p) = \lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}(e^{p Z_t}) \quad \forall p \in \mathbb{R}. \tag{2.1}
\]

Let \(\mathcal{D}_V = \{ p \in \mathbb{R} : |V(p)| < \infty \} \) and assume that \(\{0\} \in \mathcal{D}_V^c \). From Hölder’s inequality we can show that \(V_t \) is convex for all \(t > 0 \) and the limit \(V \) is also convex (see Lemma 2.3.9 in \[DZ98\]). Moreover \(V(0) = 0 \), thus (by convexity) we see that \(V(p) > -\infty \) for all \(p \in \mathbb{R} \). \(V : \mathbb{R} \to (-\infty, \infty) \) is called essentially smooth if \(V \) is differentiable in \(\mathcal{D}_V \) and satisfies \(\lim_{n \to \infty} |V'(p_n)| = \infty \) for every sequence \((p_n) \) in \(\mathcal{D}_V^c \) which converges to a boundary point of \(\mathcal{D}_V^c \). A cgf \(V \) which satisfies this second property is called steep. The Fenchel-Legendre transform \(V^* \) of \(V \) is defined by the variational formula

\[
V^*(x) = \sup_{p \in \mathbb{R}} [px - V(p)]
\]

for all \(x \in \mathbb{R} \), with an effective domain \(\mathcal{D}_{V^*} = \{ x \in \mathbb{R} : V^*(x) < \infty \} \). In general \(V^* \) can be discontinuous and \(\mathcal{D}_{V^*} \) can be a strict subset of \(\mathbb{R} \) (see section 2.3 in \[DZ98\] for some simple examples).

We now state a simplified version of Gärtner-Ellis theorem (c.f. Theorem 2.3.6 in \[DZ98\]) which will needed in the next section.

Theorem 2.1. Let \((Z_t)_{t \geq 0}\) be a family of random variables for which \(V \) as defined in (2.1) satisfies \(\{0\} \in \mathcal{D}_V^c \). If \(V \) is essentially smooth and lower semicontinuous, then the LDP holds with good rate function \(V^* \).

3. The Stein-Stein model

From here on, we work on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) with a filtration \((\mathcal{F}_t)_{t \geq 0}\) throughout, supporting two independent Brownian motions and satisfying the usual conditions. We now recall the Stein-Stein stochastic volatility model for a log stock or forward price process \(X_t = \log S_t \):

\[
\begin{cases}
 dX_t = -\frac{1}{2} Y_t^2 \, dt + Y_t \, dW_t^1, \\
 dY_t = \kappa (\theta - Y_t) \, dt + \sigma dW_t^2
\end{cases} \tag{3.1}
\]

where \(\kappa, \sigma > 0, X_0 = x_0, Y_0 = y_0, \) and \(W^1, W^2 \) are Brownian motions such that \(dW_t^1 dW_t^2 = \rho dt, |\rho| < 1 \). The law of \(X_t - x_0 \) does not depend on \(x_0 \), so without loss of generality we set \(X_0 = 0 \).

We first verify the martingale property for \(S_t \).
Proposition 3.1. \((S_i)\) is a martingale.

Prove. Let \(0 < t_1 < t_2 < \infty\). We know that \(\sup_{t \geq 0} \mathbb{E}(e^{Y_0^2}) < \infty\) if \(c < \kappa/\sigma^2\), using that \(Y_t \sim N(e^{-\kappa t}y_0 + \theta(1 - e^{-\kappa t}), \frac{\sigma^2}{2\kappa}(1 - e^{-2\kappa t}))\). Now consider a uniform random variable \(U\) on \([t_1, t_2]\), independent of \(S\), and let \(\mathcal{F}_t^U = \sigma(Y_s; 0 \leq s \leq t)\) denote the filtration generated by the \(Y\) process. Then we have

\[
\mathbb{E}(e^{\frac{1}{2} J_{t_1}^t Y_s^2 dt}) = \mathbb{E}(e^{\frac{1}{2}(t_2-t_1)\mathbb{E}(Y_s^2 | \mathcal{F}_t^U)}) \\
\leq \mathbb{E}(\mathbb{E}(e^{\frac{1}{2}(t_2-t_1)Y_s^2} | \mathcal{F}_t^U)) \\
(\text{using the conditional Jensen’s inequality}) \\
= \mathbb{E}(\frac{1}{t_2-t_1} \int_{t_1}^{t_2} e^{\frac{1}{2}(t_2-t_1)Y_s^2} ds) < \infty \\
= \frac{1}{t_2-t_1} \int_{t_1}^{t_2} e^{\frac{1}{2}(t_2-t_1)\mathbb{E}(Y_s^2)} ds < \infty \\
(\text{by Fubini’s theorem})
\]

for \(\frac{1}{2}(t_2-t_1) \leq \kappa/\sigma^2\). By Corollary 5.14, p.199 in [KS91], we conclude that \(S_t = e^{-\frac{1}{2} \int_0^t Y_s^2 ds + \int_0^t Y_s dW_s}\) is a martingale. \(\Box\)

3.1. The large-time large deviation principle for the re-scaled log return

The following proposition establishes a large-time large deviation principle for the re-scaled log return for the Stein-Stein model:

Proposition 3.2. \(X_t/t\) satisfies a large-time LDP as \(t \to \infty\) with a good convex continuous rate function given by the Fenchel-Legendre transform

\[
I(x) = \sup_{p} \{px - V(p)\}
\]

where

\[
V(p) = V(p; \kappa, \theta, \sigma, \rho) = \begin{cases} \frac{1}{2} [\kappa - p\rho + \frac{(p-1)p\rho^2\kappa^2}{4\rho^2}] - \Gamma(p) & (p \in (p_-, p_+)) \\
+\infty & (p \notin (p_-, p_+)) \end{cases}
\]

\(\rho = \sqrt{1 - \rho^2}, \Gamma(p) = \sqrt{\kappa^2 - 2\rho\kappa\rho + p(1 - p\rho^2)}\) and \(p_\pm = \frac{\sigma^2 - 2\kappa\rho \pm \sqrt{4\kappa^2 - 4\kappa^2\rho^2 + \sigma^2}}{2\rho^2}\) are the roots of \(\Gamma(p)^2\). \(I\) is continuous and attains its minimum uniquely at \(x^* = V'(0) = -\frac{1}{2}(\theta^2 + \sigma^2/2\kappa)\).

Proof. From Eq 13 in [SZ99], we have the following closed-form expression for the characteristic function of the log return

\[
\phi_t(u) = \mathbb{E}(e^{iuX_t}) = e^{-\frac{1}{2}iu\rho(\sigma^2y^2 + \sigma^2) + \frac{1}{2}D(t, \hat{s}_1, \hat{s}_2) y^2 + B(t, \hat{s}_1, \hat{s}_2) y + C(t, \hat{s}_1, \hat{s}_2)}
\]

for \(u \in \mathbb{R}\), where

\[
D(t, T) = \frac{1}{\sigma^2} [\kappa - \gamma_1 \sinh(\gamma_1 t) + \gamma_2 \cosh(\gamma_1 t) + \gamma_2 \sinh(\gamma_1 t)]
\]

\[
B(t, T) = \frac{1}{\sigma^2\gamma_1} \kappa \theta \gamma_1 - \gamma_2 \gamma_3 + \gamma_3 [\sinh(\gamma_1 t) + \gamma_2 \cosh(\gamma_1 t)]
\]

\[
C(t, T) = -\frac{1}{2} \log [\cosh(\gamma_1 t) + \gamma_2 \sinh(\gamma_1 t)] + \frac{1}{2} \sigma^2 t + \frac{\kappa^2 \gamma_1^2 - \gamma_3^2}{2\sigma^2 \gamma_1} \left(\frac{\sinh(\gamma_1 t)}{\cosh(\gamma_1 t) + \gamma_2 \sinh(\gamma_1 t)} - \gamma_1 t \right)
\]

\[
+ \frac{(\kappa \theta \gamma_1 - \gamma_2 \gamma_3) \gamma_3}{\sigma^2 \gamma_1^3} \left(\frac{\cosh(\gamma_1 t) - \gamma_1 t}{\cosh(\gamma_1 t) + \gamma_2 \sinh(\gamma_1 t)} \right)
\]

where \(y = Y_0\) and \(\hat{s}_1 = \frac{1}{2} u^2 \rho^2 + \frac{1}{4} i u (1 - 2 \kappa \rho / \sigma), \hat{s}_2 = i u k \theta \rho^{-1}, \hat{s}_3 = \frac{1}{2} i u \kappa \rho^{-1}\). \(\phi_t(u)\) is regular in a neighborhood of the origin, so by Theorem 7.1.1 in Lukacs [Luk70], \(\phi_t(u)\) is also regular in the horizontal strip \(\{u \in \mathbb{C} : p_{-}(t) < u < p_{+}(t)\}\), where

\[
p_{+}(t) = \sup_{p \geq 1} \mathbb{E}(e^{p Y_t}) < \infty,
\]

\[
p_{-}(t) = \inf_{p \leq 0} \mathbb{E}(e^{p Y_t}) < \infty
\]
Note that $p_\pm(t)$ is not the same as p_\pm as defined in the statement of the proposition, and we will show that $p_-(t) \leq p_-$ and $p_+ \leq p_+(t)$ (see discussion above (3.6)).

Looking at the expressions for B, C, D on page 12 in [SZ99], we see that $\phi_t(u)$ has a pole at $u = -ip$ if and only if
\[
cosh(\gamma_1 t) + \gamma_2 \sinh(\gamma_1 t) = 0.
\]
For $p \in (p_-, p_+)$ i.e. such that $\Gamma(p) > 0$, using that $\gamma_1 = \Gamma(p)$ and $\gamma_2 = -\Gamma(p)/(\kappa - \rho p\sigma)$, this equation is satisfied if $t = t^*(p) = \frac{1}{\gamma_1} \tanh^{-1}(\frac{1}{\gamma_2}) = \frac{1}{\Gamma(p)} \tanh^{-1}(\frac{\Gamma(p)}{\kappa - \rho p\sigma})$. But negative t-values are physically meaningless, so our preliminary analysis would indicate that
\[
T^*(p) = \begin{cases} \frac{1}{\gamma_1} \tanh^{-1}(\frac{1}{\gamma_2}) = \frac{1}{\Gamma(p)} \tanh^{-1}(\frac{\Gamma(p)}{\kappa - \rho p\sigma}) & (\kappa - \rho p\sigma < 0) \\
+\infty & (\kappa - \rho p\sigma \geq 0)
\end{cases}
\]
where $T^*(p) = \sup\{t : \mathbb{E}(e^{pX_t}) < \infty\}$ is the moment explosion time. We now first consider the case when $p > 1$. In this case, if $\rho \leq 0$ then $\kappa - \rho p\sigma > 0$ and for $p \in (p_-, p_+)$ we have that $\Gamma(p) > 0$, so $T^*(p) = +\infty$. Otherwise, if $\rho > 0$, then $\kappa - \rho p\sigma < 0$ if $p > p^*$ where $p^* = \kappa/\rho$. However
\[
p^* - p_+ = \frac{2\kappa - \rho \sigma - \rho \sqrt{4\kappa^2 - 4\kappa \rho \sigma + \sigma^2}}{2\rho \sigma^2},
\]
and using that
\[
(2\kappa - \rho \sigma)^2 - \rho^2(4\kappa^2 - 4\kappa \rho \sigma + \sigma^2) = 4\kappa \rho^2(\kappa - \rho \sigma) > 0
\]
we see that $p^* > p_+$, so it turns out that $T^*(p) = \infty$ for all $p \in (1, p_+)$. An almost identical calculation shows that $T^*(p) = \infty$ for all $p \in (p_-, 0)$. Moreover, for $p \in [0, 1]$, from Jensen’s inequality and the martingale property we have that $\mathbb{E}(S_t^p) \leq S_0^p < \infty$ for all t. Thus we have shown that $T^*(p) = \infty$ for all $p \in (p_-, p_+)$, so the mgf of X_t is given by the analytic extension of ϕ to the imaginary axis for $p \in (p_-, p_+)$. The expression for $C(.)$ in [SZ99] is given by
\[
C(t, \hat{s}_1, \hat{s}_2, \hat{s}_3) = -\frac{1}{2} \log[cosh(\gamma_1 t) + \gamma_2 \sinh(\gamma_1 t) + \frac{1}{2} \kappa t] + \frac{\kappa^2 \theta^2 - \gamma_1^2 - \gamma_2^2}{2^2 \gamma_1^2} \sinh(\gamma_1 t) + \gamma_2 \sinh(\gamma_1 t) - \frac{\Gamma(p)}{\Gamma(p)^2} - \Gamma(p) t \left[V(p) + \frac{1}{2} \rho \sigma \right] (t \to \infty).
\]
Letting $t \to \infty$ and using that $\cosh(\gamma_1 t) \to 1$ as $t \to \infty$, we also find that
\[
B(t, \hat{s}_1, \hat{s}_2, \hat{s}_3) \sim \frac{1}{\sigma^2 \gamma_1} \gamma_3 - \kappa \gamma_1 = O(1) \quad (t \to \infty),
\]
\[
D(t, \hat{s}_1, \hat{s}_2, \hat{s}_3) \sim \frac{1}{\sigma^2} (\kappa - \gamma_1) = O(1) \quad (t \to \infty),
\]
and thus constitute higher order terms as $t \to \infty$, which we can ignore at the order we are interested in. Thus we have
\[
\lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}(e^{pX_t}) = V(p)
\]
for $p \in (p_-, p_+)$. This means that for $p \in (p_-, p_+)$ and $t < \infty$ fixed, we have $\mathbb{E}(e^{pX_t}) < \infty$, so
\[
p_-(t) \leq p_-, \quad p_+(t) \geq p_+.
\]
We now consider \(p \geq p_+ \). To this end we fix a \(q \in (1, p_+) \); then from the monotonicity of the \(L^p \) norm we have
\[
(\mathbb{E}(e^{qX_t}))^{1/q} \leq (\mathbb{E}(e^{pX_t}))^{1/p}.
\]
From this and (3.5) we obtain
\[
V(q) = \liminf_{t\to\infty} \frac{1}{t} \log \mathbb{E}(e^{qX_t}) \leq \liminf_{t\to\infty} \frac{1}{t} \log (\mathbb{E}(e^{pX_t}))^{q/p}.
\]
But \(\forall K > 0 \), there exists a \(q(K) < p_+ \) such that \(V(q) \geq K \). Thus for \(t \) sufficiently large we have
\[
(e^{Kt})^{p/q(K)} \leq \mathbb{E}(e^{pX_t})
\]
or
\[
K \leq K - \frac{p}{q(K)} \leq \liminf_{t\to\infty} \frac{1}{t} \log \mathbb{E}(e^{pX_t}).
\]
Thus letting \(K \to \infty \) we see that \(\lim_{t\to\infty} \frac{1}{t} \log \mathbb{E}(e^{pX_t}) = +\infty \). A similar analysis shows that \(\lim_{t\to\infty} \frac{1}{t} \log \mathbb{E}(e^{pX_t}) = +\infty \) for \(p \leq p_- \).

Differentiating \(V(p) \) we obtain
\[
V'(p) = \frac{(2p-1)\theta^2\kappa^2 + 2(1-p)p\theta^2\kappa^2}\Gamma'(p) - \frac{1}{2} (\rho\sigma + \Gamma'(p))
\]
and
\[
\Gamma'(p) = \frac{\sigma(-2\kappa\rho + (1 + 2p(-1 + \rho^2))\sigma)}{2\Gamma(p)}.
\]

Nothing that \(\Gamma(p_{\pm}) = 0 \), we see that \(V(p) \) and \(|V'(p)| \to +\infty \) as \(p \to p_{\pm} \). So \(V \) is essentially smooth, and \(V \) is lower semicontinuous. \(V_t(p) = \mathbb{E}(e^{pX_t}) \) satisfies Assumption 2.3.2 in [DZ98] as \(t \to \infty \), so by Lemma 2.3.9 in [DZ98] \(V \) is also convex, so from the Gärtner-Ellis Theorem (see Theorem 2.3.6 in [DZ98]) \(X_t/t \) satisfies the LDP with good convex rate function \(I(x) \).

We also have the upper bound
\[
I(x) \leq p_+ x \vee p_- x - V_{\min} < \infty
\]
where \(V_{\min} = \inf_{p \in [p_- \ldots p_+]} V(p) > -\infty \). But a convex function is continuous on the interior of its domain, so \(I \) is continuous. Finally, from elementary calculations we find that the unique minimum of \(I \) occurs at \(x^* = (I')^{-1}(0) = V'(0) \).

4. Call options and implied volatility

Let \(\mathbb{P}^*(A) = \frac{1}{S_0} \mathbb{E}(S_1 1_A) \) for \(A \in \mathcal{F}_t \) denote the Share measure (\(\mathbb{P}^* \) is a probability measure because \(S_t \) is a martingale by Proposition 3.1). From Girsanov’s theorem, it is easily shown that
\[
\begin{align*}
\{ d(-X_t) &= -\frac{1}{2} Y_t^2 dt - Y_t dW_t^1, \\
\quad dY_t &= [\kappa(\bar{\theta} - Y_t) + \rho\sigma Y_t] dt + \sigma dW_t^2 \\
&= \kappa(\bar{\theta} - Y_t) dt + \sigma dW_t^2,
\}
\tag{4.1}
\end{align*}
\]
where \(\bar{\kappa} = \kappa - \rho\sigma \), \(\bar{\theta} = \kappa\theta / (\kappa - \rho\sigma) \) and \(dW_t^1 dW_t^2 = \rho dt \) are independent \(\mathbb{P}^* \)-Brownian motions.

Assumption 4.1. From here on we further assume that \(\bar{\kappa} = \kappa - \rho\sigma > 0 \), which ensures that \(Y_t \) is mean-reverting under \(\mathbb{P}^* \).

From (4.1), we have the following trivial corollary of Proposition 3.2.
Fig 1. Here we have plotted $V(p)$ for $\kappa = 1.15, \theta = 0.1, \sigma = 0.2, \rho = -0.4$.

Fig 2. Here we have plotted the rate function $I(x)$ for the same parameter values as above.
Corollary 4.2. For \(\kappa > \rho \sigma \), \(-X_t/t\) satisfies the LDP under \(\mathbb{P}^* \) as \(t \to \infty \) with a good convex continuous rate function \(I_S(x) \) given by the Fenchel-Legendre transform of

\[
V_S(p) = V(p; \tilde{\kappa}, \tilde{\theta}, \sigma, -\rho)
\]

and \(I_S \) is continuous and attains its minimum value uniquely at \(-x^+ = (V_S)'(0) = -\frac{1}{2}(\tilde{\theta}^2 + \sigma^2/2\tilde{\kappa})\).

By Corollary 4.2 and the continuity of the rate function \(I_S \), we obtain the following corollary, which will be used to characterize the large-time behaviour of call option prices.

Corollary 4.3.

\[
\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}^*(X_t > xt) = -I_S(x) \quad \text{for all} \quad x > x^+,
\]

\[
\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}^*(X_t < xt) = -I_S(x) \quad \text{for all} \quad x < x^+.
\]

Recall that the payoff of a European call option with strike \(K \) is \(\mathbb{E}(S_t - K)^+ \), and the payoff of a European put option with strike \(K \) is \(\mathbb{E}(K - S_t)^+ \).

Corollary 4.4. We have the following large-time asymptotic behaviour for put/call options in the large-time, large log-moneyness regime:

\[
- \lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}(S_t - S_0 e^{xt})^+ = I_S(x) \quad (x \geq x^+),
\]

\[
- \lim_{t \to \infty} \frac{1}{t} \log [\mathbb{E}(S_t - S_0 e^{xt})^+] = I_S(x) \quad (x^* \leq x \leq x^+),
\]

\[
- \lim_{t \to \infty} \frac{1}{t} \log(\mathbb{E}(S_0 e^{xt} - S_t)^+) = I_S(x) \quad (x \leq x^*).
\]

Proof. We first assume \(x > x^+ \), and recall that \(I_S(x) \) is non-decreasing for \(x > x^+ \). From Corollary 4.3, we know that for all \(\varepsilon > 0 \) there exists a \(t^* = t^*(\varepsilon) \) such that for all \(t > t^* \) we have

\[
\frac{1}{S_0} \mathbb{E}(S_t - S_0 e^{xt})^+ = \mathbb{P}^*(X_t > xt) - e^{xt} \mathbb{P}(X_t > xt) \leq \mathbb{P}^*(X_t > xt) \leq e^{-(I_S(x) - \varepsilon)/t}
\]

which gives the upper bound for the call price. For the lower bound we have

\[
\frac{1}{S_0} \mathbb{E}(S_t - S_0 e^{xt})^+ = \mathbb{E}^\mathbb{P}^*(1 - e^{xt} e^{-X_t})^+ = e^{xt} \mathbb{E}^\mathbb{P}^*(e^{-xt} - e^{-X_t})^+.
\]

Observe that for any \(\delta > 0 \),

\[
\mathbb{E}^\mathbb{P}^*(e^{-xt} - e^{-X_t})^+ \geq \mathbb{E}^\mathbb{P}^*[(e^{-xt} - e^{-X_t})^+ \mathbb{1}_{\{X_t < -xt - \delta\}}] \geq (e^{-xt} - e^{-xt-\delta}) \mathbb{P}^*(X_t < -xt - \delta).
\]

Combining this with (4.2) we have

\[
\frac{1}{S_0} \mathbb{E}(S_t - S_0 e^{xt})^+ \geq e^{xt}(e^{-xt} - e^{-xt-\delta}) \mathbb{P}^*(-X_t < -xt - \delta) = (1 - e^{-\delta}) \mathbb{P}^*(-X_t < -xt - \delta) = (1 - e^{-\delta}) \mathbb{P}^*(X_t/t > x + \delta/t) \geq (1 - e^{-\delta}) \mathbb{P}^*(X_t/t > x + \delta).
\]

Using Corollary 4.3 we get

\[
\lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}(S_t - S_0 e^{xt})^+ \geq I_S(x + \delta).
\]

This holds for all \(\delta > 0 \), so taking \(\lim_{\delta \to 0} \) and by the continuity of \(I_S(x) \) we obtain the first result that \(\lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}(S_t - S_0 e^{xt})^+ = I_S(x) \). The other cases follow similarly.
4.1. Implied volatility

Using the same proofs as in Corollary 1.7 and Corollary 2.17 in [FJ11] for the Heston model (or Theorem 14 in [JKRM13] for a general affine model), we have the following asymptotic behaviour in the large-time, large log-moneyness regime, where $\hat{\sigma}_t(x_t)$ is the implied volatility of a put/call option with strike $S_0e^{x_t}$ for the correlated Stein-Stein model:

$$\hat{\sigma}_\infty(x)^2 = \lim_{t \to \infty} \hat{\sigma}_t^2(x_t) = \begin{cases} 2(2I(x) - x - 2\sqrt{I(x)^2 - I(x)x}) & (x \notin [x^*, x_+]) \\ 2(2I(x) - x + 2\sqrt{I(x)^2 - I(x)x}) & (x \in (x^*, x_+)) \end{cases}.$$
References

