Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs

Martin Forde
King’s College London,
May 2014
(joint work with Christoph Czichowsky, Philipp Deutsch and Hongzhong Zhang)
Outline of talk

- The exponential Ornstein-Uhlenbeck model with proportional transaction costs.

- Admissible self-financing trading strategies.

- Shadow price processes - definition and why we use them.

- Explicit construction of the shadow price process for the exponential OU model.

- Asymptotics for the no-trade region and the risky fraction when the transaction cost is small. Results extend the work of [GMS13], who deal with the Black-Scholes case, and show new phenomena.

- The verification argument, and links to excursion theory.

- Brief discussion on duality.
We work on some \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})\) and consider a financial market with one riskless bond with a constant price equal to 1 (i.e. zero interest rates) and a risky asset \(S_t\). We assume that \(S_t\) is given by the exponential of an Ornstein-Uhlenbeck process \(S_t = e^{X_t}\), where

\[
dX_t = \kappa (\bar{x} - X_t) dt + \sigma dW_t
\]

with \(\kappa, \bar{x}, \sigma > 0\). By Itô’s formula, \(S_t\) satisfies

\[
dS_t/S_t = [\kappa (\bar{x} - \log(S_t)) + \frac{\sigma^2}{2}] dt + \sigma dW_t =: \mu(S_t) dt + \sigma dW_t.
\]

We now model the bid-ask interval by \([(1 - \lambda)S_t, S_t]\) for some \(\lambda \in (0, 1)\). The investor pays \(S_t\) for each share bought, but only receives \((1 - \lambda)S_t\) for each share sold. Let \((\varphi_0^0, \varphi_t)\) denote our holding in the riskless and risky asset at time \(t\).

Investor wishes to maximize his expected long-term growth rate:

\[
\liminf_{T \to \infty} \frac{1}{T} \mathbb{E}[\log V_T(\varphi_0^0, \varphi_T)]
\]

where \(V_t((\varphi_0^0, \varphi_t)) = \varphi_0^0 + \varphi_t^+ (1 - \lambda)S_t - \varphi_t^- S_t\) is the liquidation value of the portfolio at time \(t\) (investor has log utility).
Admissible trading strategies

Assume the investor starts with \(x \) dollars in cash \((x > 0) \). Then a pair of adapted processes \((\varphi_0^t, \varphi_t)\) is called an **admissible self-financing trading strategy** if both processes are predictable, have finite variation and:

(i) The **self-financing condition**:

\[
d\varphi_0^t = (1 - \lambda)S_t
d\varphi_t^\uparrow - S_t
d\varphi_t^\downarrow
\]

for all \(0 \leq t \leq T \). \(\varphi_t \) has F.V. so \(\varphi_t = \varphi_t^\uparrow - \varphi_t^\downarrow \), where \(\varphi_t^\uparrow, \varphi_t^\downarrow \) are two increasing processes.

(ii) The **solvency condition**: there exists an \(M > 0 \) such that the liquidation value

\[
V_t(\varphi_0^t, \varphi) = \varphi_0^t + \varphi_t^\uparrow(1 - \lambda)S_t - \varphi_t^\downarrow S_t \geq -M
\]

a.s., for all \(0 \leq t \leq T \).

- The self-financing condition in (1) ensures that no funds are added or withdrawn to the portfolio, and (2) ensures that the investor cannot owe more than \(M \) dollars at any time.
Definition of a shadow price

Definition. A shadow price is a continuous semimartingale \(\tilde{S}_t \in [(1 - \lambda)S_t, S_t] \), such that the optimal trading strategy \((\varphi_t^0, \varphi_t)\) for a fictitious market with price process \(\tilde{S}_t\) and zero transaction costs exists, has finite variation and the number of stocks \(\varphi_t\) only increases when \(\tilde{S}_t = S_t\) and decreases when \(\tilde{S}_t = (1 - \lambda)S_t\).

Clearly any price process \(\tilde{S}_t\) with zero transaction costs which lies in \([(1 - \lambda)S_t, S_t]\) leads to more favourable terms of trade than the original market with transaction costs. But a shadow price process is a particularly unfavourable model, for which it’s optimal to only buy when \(\tilde{S}_t = S_t\), sell when \(\tilde{S}_t = (1 - \lambda)S_t\) + do nothing in between.
Proposition (Corollary 1.9 in Schachermayer et al.[GMS13]).
Let \(\tilde{S}_t \) be a shadow price process whose optimal trading strategy (for zero transaction costs) is given by \((\varphi^0_t, \varphi_t)\), with \(\varphi^0_t, \varphi_t \geq 0 \). Then under non-zero transaction costs, we have

\[
\sup_{(\psi^0, \psi)} \mathbb{E}[\log V_T((\psi^0, \psi))] \geq \mathbb{E}[\log V_T((\varphi^0, \varphi))]
\]

\[
\geq \mathbb{E}[\log V_T((\psi^0, \psi))] + \log(1 - \lambda)
\]

for any admissible \((\psi^0, \psi)\). Thus if we choose \(\lambda \) suff small so that \(|\log(1 - \lambda)| < \varepsilon \) and take the sup over all \((\psi^0, \psi)\), we see that \((\varphi^0, \varphi)\) is an \(\varepsilon \)-optimal trading strategy for the original problem.

Or take \(\liminf \) as \(T \to \infty \) + sup over all admissible strategies, we obtain

\[
\liminf_{T \to \infty} \frac{1}{T} \mathbb{E}[\log V_T((\varphi^0, \varphi))] = \sup_{(\psi^0, \psi)} \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}[\log V_T((\psi^0, \psi))].
\]

Thus the optimal portfolio for the shadow price process is asymptotically optimal for the original problem under transaction costs, as \(\lambda \to 0 \) and/or as \(T \to \infty \).
First consider the case when $\lambda = 0$, i.e. zero transaction costs, and assume S_t follows a general Itô process of the form $dS_t = S_t(\mu_t dt + \sigma_t dW_t)$ with zero interest rates.

For the frictionless case, we are looking to maximize:

$$E[\log V_T] = E[\log[x + \int_0^T \phi_t dS_t]]$$

$$= E[\log x + \int_0^T \frac{\phi_t S_t}{x + \int_0^t \phi_t dS_t} dS_t - \frac{1}{2} \int_0^T \frac{\phi_t^2 S_t^2 \sigma_t^2 dt}{(x + \int_0^t \phi_t dS_t)^2}]$$

$$= E[\log x + \int_0^T (\pi_t \mu_t - \frac{1}{2} \pi_t^2 \sigma_t^2 dt)].$$

Maximizing the integrand over all π_t, we obtain that $\hat{\pi}_t = \frac{\mu_t}{\sigma_t^2}$, which is known as the Merton fraction. For the Black-Scholes case, $\hat{\pi}_t = \hat{\pi} = \mu/\sigma^2$ is constant, but in general $\hat{\pi}_t$ has infinite variation and so will φ_t (unlike the case $\lambda > 0$).

For the BS case, $dV_t = \hat{\pi} V_t dS_t / S_t = V_t(\hat{\pi} \mu dt + \hat{\pi} \sigma dW_t)$ is GBM, and so is $\phi_t = \hat{\pi} V_t / S_t$.

Martin Forde King’s College London, May 2014 (joint work with Christoph Czichowsky, Philipp Deutsch and Hongzhong Zhang)
Ansatz: if S increases from a to b without setting a new minimum in the meantime, then we guess that $\tilde{S}_t = g(S_t)$ for $0 \leq t \leq \tau_b$, for some $g \in C^2$ and target value $b = b(a, \lambda)$ to be determined. In general, $\tilde{S}_t = g(S_t; a_t, b(a_t, \lambda))$ where $a_t = \min_{0 \leq u \leq t} S_u$ up to time τ_b. For $t \geq \tau_b$, we set $b_t = \max_{\tau_b \leq u \leq t} S_u$, and then $\tilde{S}_t = g(S_t; a(b_t, \lambda), b_t)$ until S returns to the buy boundary (possibly along a new g curve), and so on.
Explicit construction of the shadow price contd.

Assume that $\tilde{S}_0 = S_0 = a$ and $\tilde{S}_t = g(S_t)$ during an excursion from $S = a$ to $S = b$ (we postulate that no trading occurs until S hits b, we will then show how to choose $b = b(a, \lambda)$).

- From the drawing we see that: $g(a) = a$ and $g(b) = (1 - \lambda)b$.
- **Smooth-pasting condition**: $g'(a) = 1$, $g'(b) = 1 - \lambda$ - this ensures that the volatility of \tilde{S}_t vanishes on both boundaries (see below).
- $(1 - \lambda)s \leq g(s) \leq s$ for all $s \in [a, b]$.
- Applying Itô’s formula to the shadow price process, we obtain

\[
d\tilde{S}_t = dg(S_t) = g'(S_t)dS_t + \frac{1}{2}g''(S_t)\sigma^2 S_t^2 dt
\]

or

\[
dg(S_t)/g(S_t) = \hat{\mu}_t dt + \frac{1}{2}\hat{\sigma}_t dW_t,
\]

where

\[
\hat{\mu}_t = [g'(S_t)S_t \mu(S_t) + \frac{1}{2}g''(S_t)\sigma^2 S_t^2]/g(S_t), \quad \hat{\sigma}_t = g'(S_t)\sigma S_t / g(S_t).
\]

- But the optimal risky fraction for an investor who maximizes log-utility (with zero transaction costs) is given by

\[
\frac{\hat{\mu}(s)}{\hat{\sigma}(s)^2} = \frac{(g'(s)s \mu(s) + \frac{1}{2}g''(s)\sigma^2 s^2)/g(s)}{(g'(s)^2 \sigma^2 s^2)/g(s)^2} = \frac{\varphi g(s)}{\varphi^0 + \varphi g(s)}.
\]
ODE for the shadow price

- Multiplying the numerator and denominator of the right hand side of (3) by \(\frac{a}{\varphi^0 + \varphi_a} \) and setting \(\bar{\pi} = \frac{a\varphi}{\varphi^0 + \varphi_a} \) we have

\[
\frac{\bar{\pi} g(s)}{a \frac{\varphi^0}{\varphi^0 + \varphi_a} + \bar{\pi} g(s)} = \frac{\bar{\pi} g(s)}{a \frac{\varphi^0 + a\varphi - a\varphi}{\varphi^0 + \varphi_a} + \bar{\pi} g(s)} = \frac{\bar{\pi} g(s)}{a(1 - \bar{\pi}) + \bar{\pi} g(s)}.
\]

- Combining with (3) yields the following ODE for \(g \):

\[
\frac{1}{2} \sigma^2 s^2 g''(s) = \frac{g'(s)^2 \sigma^2 s^2}{g(s)} \frac{\bar{\pi} g(s)}{a(1 - \bar{\pi}) + \bar{\pi} g(s)} - g'(s) s \mu(s)
\]

\[
= g'(s)^2 \sigma^2 s^2 \frac{\bar{\pi}}{a(1 - \bar{\pi}) + \bar{\pi} g(s)} - g'(s) s \mu(s)
\]

which simplifies to

\[
g''(s) = \frac{2\bar{\pi} g'(s)^2}{a(1 - \bar{\pi}) + \bar{\pi} g(s)} - \frac{2g'(s) s \mu(s)}{\sigma^2 s^2}
\]

\[
= \frac{2\bar{\pi} g'(s)^2}{a(1 - \bar{\pi}) + \bar{\pi} g(s)} - \frac{2g'(s) \theta(s)}{s}
\]

where \(\theta(s) = \frac{\mu(s)}{\sigma^2} \).
Solution for the shadow price

- General solution to ODE in (4) with $g(a) = a, g'(a) = 1$:

\[
g(s) = g(s; a, \bar{\pi}) = a \frac{ah(a) + (1 - \bar{\pi})H(a, s)}{ah(a) - \bar{\pi}H(a, s)}
\]

where $H(a, s) = \int_a^s h(u)du$, $h(s) = \exp\left[\frac{\kappa}{\sigma^2} (\log(s) - \bar{x} - \frac{\sigma^2}{2\kappa})^2\right]$.

- Plugging this into $g(b) = (1 - \lambda)b, g'(b) = 1 - \lambda$ we obtain:

\[
\bar{\pi} = \frac{a(H(a, b) + \lambda bh(a) - bh(a) + ah(a))}{(a + \lambda b - b)H(a, b)}
\]

and $F(a, b, \lambda) = H(a, b)^2(\lambda - 1) + (a + b(\lambda - 1))^2h(a)h(b) = 0$.

- Solving the quadratic for λ we find the physically meaningful solution is given by

\[
\lambda(a, b) = 1 - \frac{a}{b} - \frac{1}{2} \frac{H(a, b)^2}{b^2h(a)h(b)} - \frac{H(a, b)}{2b} \sqrt{\frac{H(a, b)^2}{b^2h(a)^2h(b)^2} + \frac{4a}{bh(a)h(b)}}.
\]

- For λ fixed, eq has 2 solNs $b = b_{1/2}(a, \lambda)$ with $b_1 < a < b_2$. To choose the physically meaningful solution, it turns out there is a critical $a = a_0(\lambda)$ such that $b = b_2(a, \lambda)$ for $a \geq a_0$ and $b = b_1(a, \lambda)$ for $a < a_0$.
Asymptotics

- Since λ is smooth, we can expand it in a Taylor series around the point $b = a$:

$$\lambda(a, b) = \frac{\Gamma(a)}{6a^3}(b - a)^3 + O((b - a)^4), \quad (6)$$

where $\Gamma(s) = \theta(s)(1 - \theta(s)) - \theta'(s)s$.

- Inverting (6), for $a \notin \{a^*, b^*\}$, we obtain

$$b(a, \lambda) = a + a\left(\frac{6}{\Gamma(a)}\right)^{1/3}\lambda^{1/3} + O(\lambda^{2/3}).$$

- For the risky fraction $\bar{\pi}$, plugging this expansion into (5) we get:

$$\bar{\pi} = \theta(a) - \left(\frac{3}{4}\frac{\Gamma(a)^2}{\Gamma(a)}\right)^{1/3}\lambda^{1/3} + O(\lambda^{2/3}).$$

- For $a = a_0(\lambda)$ there are two b-values, and

$$b_{1,2}(a, \lambda) = a^* \pm a^*\sqrt{2}\left(\frac{3\sigma^4}{\kappa\sigma\sqrt{(4\kappa + \sigma^2)}}\right)^{1/4}\lambda^{1/4} + O(\sqrt{\lambda}),$$

$$\bar{\pi} = \theta(a) - \frac{\sqrt{\kappa}(4\kappa + \sigma^2)^{1/4}}{\sqrt{3\sigma^{3/2}}}\lambda^{1/2} + O(\sqrt{\lambda}),$$
The special value $a_0(\lambda)$ does show up for the Black-Scholes model where we do not see the $\lambda^{1/4}$ asymptotic behaviour.

In general $\tilde{S}_t = g(S_t; a_t, \bar{\pi}(a_t, b(a_t, \lambda), \lambda)$ for some continuous process a_t with finite variation, which only increases/decreases when \tilde{S}_t is on boundaries of the bid-ask cone.

If $S_0 = a$, then before S hits $b(a, \lambda)$ or $a_0(\lambda)$, $a_t = \min_{0 \leq u \leq t} S_u$: in words, every time S_t sets a new minimum, we need a new a-value for $g(.)$, but when S_t makes an excursion away from its minimum process, $da_t = 0$, and \tilde{S}_t just follows the g curve from left to right.

For $t \geq \tau_b$, we set $b_t = \max_{\tau_b \leq u \leq t} S_u$, and then $\tilde{S}_t = g(S_t; a(b_t, \lambda), b_t)$ until \tilde{S} returns to the buy boundary or b_t hits the critical value $b_0(\lambda)$.

The g curves change direction to the left of $a_0(\lambda)$ and to the right of $b_0(\lambda)$. At these critical values, there are two valid g curves (not one).
We can show that the optimal number of shares φ_t evolves as

$$ \frac{d\varphi_t}{\varphi_t} = -\frac{\Gamma(a_t; \lambda)}{\pi(a_t, b(a_t, \lambda), \lambda)} \frac{da_t}{a_t} $$

(7)

where $\Gamma(a; \lambda) = -a\pi'(a) + \pi(a)(1 - \pi(a))$, and here $\pi(a)$ is shorthand for $\pi(a, b(a, \lambda), \lambda)$.

Integrating (7) we get

$$ \log \frac{\varphi_t}{\varphi_0} = F(a_t) := -\int_{a_0}^{a_t} \frac{\Gamma(u; \lambda)}{\pi(u, b(u, \lambda), \lambda)u} du. $$

For \tilde{S}_t to be a genuine shadow price, we have to verify that $d\varphi_t \geq 0$ when $S_t = \tilde{S}_t$, and $d\varphi_t \leq 0$ when $S_t = (1 - \lambda)\tilde{S}_t$ (this is the so-called verification argument).
Figure: Here we have plotted various shadow price curves $g(S; a, b)$ as a function of s, for $\lambda = .3$ and $\kappa = 3, \sigma = 1, \bar{x} = 1$, for which we find that $a_0(\lambda) = 1.3914, b_0(\lambda) = 5.31052$ and, and $a_1(\lambda) = 1.95159, a_2(\lambda) = 10.5602$ and $b_1(\lambda) = 0.699707, b_2(\lambda) = 3.78616$.
Duality

Let \(\tilde{S}_t \in [(1 - \lambda)S_t, S_t] \) and \(Z^0_t \) denote the density process of an ELMM \(Q \) for \(\tilde{S}_t \), and let \(Z^1_t = Z^0_t \tilde{S}_t \).

Let \(V(y) = \sup_{x > 0}[U(x) - xy] \) denote the Fenchel-Legendre transform of \(U \), where \(U \) is a (concave) utility function.

Then (as before) trading the shadow price process is more favourable than trading the real risky asset, so for any admissible trading strategy \((\varphi^0, \varphi)\) we have

\[
\mathbb{E}[U(V_T(\varphi^0, \varphi))] \leq \mathbb{E}[U(x + \varphi_t \cdot d\tilde{S}_t)] \leq \mathbb{E}[V(yZ^0_T) + (x + \varphi_t \cdot \tilde{S}_t)yz^0_T)] \leq \mathbb{E}[V(yZ^0_T)] + xy
\]

because \(\mathbb{E}(Z^0_T) = 1 \) and \(\tilde{S}_t \) is a local martingale under \(Q \).

Taking sups and infs, we see that

\[
\sup_{(\varphi^0, \varphi)} \mathbb{E}[U(V_T(\varphi^0, \varphi))] \leq \inf_{(Z^0, Z^1, y)} \mathbb{E}[V(yZ^0_T)] + xy
\]

If the dual optimizers \((\hat{Z}^0, \hat{Z}^1, y)\) exist then we have equality, and \(U'[V_T(\varphi^0, \varphi)] = \hat{y}\hat{Z}^0_T \). For \(U(x) = \log x \), we have \(V(y) = -\log y - 1 \).
