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Abstract

We characterize the optimal signal-adaptive liquidation strategy for an agent subject to power-
law resilience and zero temporary price impact with a Gaussian signal, which can include e.g an OU
process or fractional Brownian motion. We show that the optimal selling speed u∗

t is a Gaussian
Volterra process of the form u∗(t) = u0(t)+ū(t)+

∫ t

0
k(u, t)dWu on [0, T ), where k(., .) and ū satisfy

a family of (linear) Fredholm integral equations of the first kind which can be solved in terms of
fractional derivatives. u0(t) is the (deterministic) solution for the no-signal case given in Gatheral
et al.[GSS12], and we give an explicit formula for k(u, t) for the case of a Riemann-Liouville price
process as a canonical example of a rough signal. With non-zero linear temporary price impact,
the integral equation for k(u, t) becomes a Fredholm equation of the second kind, and in this case
we also outline how to compute k(u, t) for the case of exponential resilience. These results build on
the earlier work of Gatheral et al.[GSS12] for the no-signal case, and complement the recent work
of Neuman&Voß[NV22]. Finally we show how to re-express the trading speed in terms of the price
history using a new inversion formula for Gaussian Volterra processes of the form

∫ t

0
g(t− s)dWs,

and we calibrate the model to high frequency limit order book data for various NASDAQ stocks.1

1 Introduction

A critical problem for algorithmic traders is how to optimally split a large trade so as to minimize
trading costs and market impact. The seminal article of Almgren&Chriss[AC01] formulates this prob-
lem as trade-off between expected execution cost and risk; more specifically, they assume the stock
price is a martingale and execution costs are linear in the trading rate and the choice of risk criterion
is variance. Under these assumptions, there is a well known closed-form analytical solution for the
optimal selling speed which is deterministic.

More recently, authors have begun to relax the martingale assumption of Almgren-Chriss to in-
corporate the effect of signals. In particular, [CJ16] provide empirical evidence of the impact of order
flow on NASDAQ stocks, and propose a model of order flow for an investor who executes a large order
when market order-flow from all agents, including the investor’s own trades, has a permanent price
impact (see also section 7.3 in [CJP15]). [CJ16] derive a closed-form solution for the optimal strategy
where the rate of trading depends on the expectation of future order flow. [CDJ18] show that volume
imbalance is an effective predictor of the sign of future market orders, and how trading signals arising
from order flow can be used to execute large orders and make markets. More recently [KLA20] and
[CPS20] use signals as inputs to the signature of the market to devise trading algorithms.

For the case of zero signal with a general impact function G, the optimal trading strategy is

deterministic and satisfies
∫ T

0
G(|t − v|)dXv = λ, which is a Fredholm integral equation of the first

kind. The constant λ has to be chosen so as to enforce the liqudation condition XT = 0, and [GSS12]
prove existence in this case if G is non-constant, non-decreasing, convex and integrable at zero. The
Fredholm equation can be solved explicitly for the case of exponential and power law impact. For the
former, the solution is well known from [OW13] and consists of a block (i.e. an impulse response)
sell trade at time zero and at the final maturity, with continuous selling in between proportional to
the resilience parameter ρ (see also example 2.12 in [GSS12]). For the case of power law impact, the
integral equation reduces to the well known Abel integral equation which also has an explicit solution
which is U-shaped and symmetric, c.f. section 2.2 in [CGL17]. The Fredholm equation becomes a
weakly singular Urysohn equation of the first kind if the temporary price impact component is non-
linear, i.e. the price paid per unit stock is St+

∫ t
0
G(t− s)f(Ẋs)dt for some non-linear impact function

f , and X is assumed to be absolutely continuous (see [Dan14] and [CGL17] for more on this, and
numerical schemes for solving such non-linear integral equations).
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[BMO20] derive the optimal trading strategy for a linear price impact model with a partial liquida-
tion penalty of the form ΓX2

T for Γ > 0, when the stock price is a general unspecified semimartingale.
Using a similar variational argument to [BSV17], they show that (Xt, Ẋt) satisfies a coupled linear
FBSDE, which can be re-written in a matrix form and solved explicitly using the same trick that is
used to compute the solution for a standard OU process. The [BMO20] argument can be very easily
adapted to deal with the infinite penalty case Γ = ∞ by simply replacing the vector (Γ

λ ,−1) with
(1, 0), but one would need to verify admissibility of the solution.

More recently, [NV22] consider the problem of optimal trade execution under exponential resilience
i.e. G(t− s) = const.× e−ρ(t−s), with a general square integrable semi-martingale price process and (i)
non-zero temporary price impact and a (ii) finite quadratic penalty for non-liquidation. The solution

is shown to satisfy a system of four coupled linear FBSDEs (in Xt, ut, Yt =
∫ t

0
e−ρ(t−s)usds and

an auxiliary process Zt) which can solved explicitly in terms of the matrix exponential function using
similar arguments to [BMO20], and they find that the optimal selling speed (in feedback form) is affine-
linear in the current inventoryXt and Yt. The approach in [NV22] exploits the semimartingale structure
of the price process and the fact that for the special case of exponential resilience, dYt = −ρYtdt+utdt
and thus is a Markov (OU) process driven by u. One can easily adapt the [NV22] solution to deal with
the full liquidation case by just dividing the (%/λ,−κ/(2λ),−1, 0) vector in their Eq 3.3 by a factor
% (see also Eq 5.14 in [NV22] to see why we can do this) and then letting % → ∞ so the G vector in
their Eq 3.3 is replaced with (1, 0, 0, 0)S(t) (with the S(t) = eAt matrix unchanged), but one would
still need to check admissibility of the proposed optimal strategy for this % =∞ case.

Lorenz&Schied[LS13] show that for exponential resilience with zero temporary price impact and
semimartingale price process, optimal trading strategies (Xt)t∈[0,T ] with bounded variation do not exist
in general, hence one has to enlarge the space of admissible strategies to the class of all semimartingales,
which includes processes with non-zero quadratic variation. In this setting, Theorem 2.6 in [LS13]
computes the optimal Xt (with the surprising result that if the drift is not absolutely continuous then
the expected profit/loss is infinite, although such trading strategies with infinite variation will of course
incur infinite transaction costs in the real world). For the well behaved case when the drift is absolutely
continuous, they give an explicit formula for Xt which includes martingale terms, which minimizes the
modified cost functional in Lemma 2.5 in [LS13] which involves quadratic variation terms. Moreover,
the process X is Gaussian if the stock price process is Gaussian. Theorem 2.6 in [LS13] extends the
classical [OW13] solution for the no-signal case (see above).

In this article we compute an explicit solution for the optimal signal-adaptive liquidation strategy
for a trader subject to power-law resilience and a Gaussian signal with zero temporary price impact,
which is obtained as the solution to a Forward-Backward Stochastic Integral Equation (FBSIE). The
natural choice for the admissible space of strategies turns out to be intimately related to the Fractional
Gaussian Field (FGF) with covariance equal to G which lives in the space of tempered distributions,

and the optimal trading speed is a Gaussian Volterra process of the form u0(t) + ū(t) +
∫ t

0
k(u, t)dWt,

where u0(t) is the (deterministic) solution for the non-signal case and k satisfies a family of Fredholm
integral equations of the first kind (and ū(t) also satisfies a single Fredholm equation of the first kind)
all of which can be solved explicitly using the known solution given in e.g. [CG94], or more symbolically
in terms of the adjoint of the square root of the linear operator associated with G. This generalizes
the earlier work of Gatheral et al.[GSS12] for the no-signal case, and complements the recent work of
Neuman et al.[NV22] and has the advantage over [NV22] that we impose the full liquidation constraint
XT = 0. We also outline how to adapt our arguments for the case of exponential resilience with
non-zero temporary impact, and we look at the unconstrained problem with zero resilience with and
without transaction costs (for the latter we show the existence of a no-trade region for the optimal
policy).

The layout of the article is as follows: Section 2.1 derives the first order optimality condition for a
general signal ξt, Section 2.2 contains the main Theorem 2.2 which specializes Section 2.1 to the case of
Gaussian signals, Section 2.3 recalls the known solution for the special case of zero signal, and section
2.4 computes the expected P&L for Theorem 2.2. Section 3.1 gives the most important/interesting
special case to consider for Theorem 2.2 (namely the Riemann-Liouville process) with numerical sim-
ulations, section 3.2 makes a minor addition to the setup in Section 2.2 with the addition of the usual
temporary price impact term, Section 3.3 re-writes the optimal solution in Theorem 2.2 in a more
natural/practical way in terms of the observable price process itself, Section 3.4 shows in principle how
one can compute G from the trading history for Theorem 2.2, Section 3.5 considers the same problem
but with exponential not power resilience as in [NV22] but with full liquidation constraint, Section
3.6 looks at the unconstrained version of the problem in Section 2.2 and Section 3.7 adds transactions
costs to this unconstrained problem. Finally Section 4 calibrates the original model to real limit order
book data for Apple, Cisco and Vodafone stocks using a discretized version of the model with difference
equations.
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2 The model setup

We work on a probability space (Ω,F ,P) throughout, with a filtration (Ft)t≥0 which satisfies the usual
conditions, and Et(.) will denote E(.|Ft). We consider an agent subject to transient price impact where
the execution price for an asset at time t is

St = Pt +

∫ t

0

G(t− s)dXs , (1)

where Xt = X0 −
∫ t

0
usds is the number of shares held at time t, which we assume is absolutely

continuous in t so ut is the selling speed, and P is some Ft-progressively measurable process P with
E(P 2

t ) < ∞ for all t ∈ [0, T ] (which we refer to as the unaffected price process).
∫ t

0
G(t − s)dXs

represents the cumulative effect of our trading activities on the current stock price, and G is the decay
kernel, which characterizes resilience of price impact between trades.

From here on we assume that G(t) = ct−γ for γ ∈ (0, 1) for some constant c > 0.

We set

ξt := Et(PT − Pt) .

Then a natural criterion is to maximize the agent’s expected profit/loss at T :

V (u) = E(

∫ T

0

(Pt −
∫ t

0

G(t− s)usds)utdt + PTXT )

= E(

∫ T

0

(Pt −
∫ t

0

G(t− s)usds)utdt + PT (X0 −
∫ T

0

utdt))

= E(PTX0) + E(

∫ T

0

(Pt − PT −
∫ t

0

G(t− s)usds)utdt)

over UX0
0 , where Ux0 denote the space of Ft-progressively measurable processes u such that XT =

x−
∫ T

0
utdt = 0 (i.e. we must liquidate all inventory by time T ) such that E(

∫ T
0
|ut(Pt − PT )|dt) <∞

and E(
∫ T

0

∫ t
0
|G(t− s)usut|dsdt) <∞.

One can in principle add additional penalty terms to our performance criterion (the most common

being a quadratic inventory penalty of the form const. ×
∫ T

0
X2
t dt to penalize large positions before

T ) but our optimal solution is already rather complicated to compute, so we leave the details of this
for future works. We also remind the reader that since we are imposing full liquidation, we implicitly
already have an infinite penalty here for non-liquidation.

Remark 2.1 From Fubini’s theorem, we know that u ∈ Ux0 also implies that
∫ T

0
E(|ut(Pt−PT )|)dsdt <

∞ and
∫ T

0

∫ t
0
E(|G(t− s)usut|)dsdt <∞.

From Fubini’s theorem and the definition of UX0
0 , we can re-write V (u) as

V (u) = E(PTX0) +

∫ T

0

E((Pt − PT )ut)dt − E(

∫ t

0

G(t− s)usdsutdt)

= E(PTX0) −
∫ T

0

E(utξt)dt − E(

∫ t

0

G(t− s)usds utdt)

(using the optional projection for the second term, see also [BSV17] and [NV22] for similar arguments)

= X0E(PT ) − E(

∫ T

0

(ξt +

∫ t

0

G(t− s)usds)utdt) , (2)

where we have used Fubini again in the final line, since∫ T

0

E(|utξt|)dt =

∫ T

0

E(|utEt(PT − Pt)|)dt =

∫ T

0

E(|Et(ut(PT − Pt))|)dt

(by conditional Jensen)

≤
∫ T

0

E(Et(|ut(PT − Pt)|))dt

=

∫ T

0

E(|ut(PT − Pt)|)dt ,
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which is finite for u ∈ UX0
0 (see Remark 2.1). Since X0E(PT ) is independent of u, for convenience we

henceforth work with the modified functional:

Ṽ (u) = −E(

∫ T

0

(ξt +

∫ t

0

G(t− s)usds)utdt) . (3)

Note that we do not assume that S is a semimartingale (as is usually assumed in the literature).

2.1 The first order condition for the optimizer

We now establish the first order optimality condition for an optimal trading strategy using variational
and convexity arguments, similar to section 5 in [BSV17].

Theorem 2.1 A sufficient condition for u ∈ UX0
0 to be an optimal trading strategy is that u satisfies

the Forward-Backward Stochastic Integral equation (FBSIE):

ξt + Et(
∫ T

0

G(|t− v|)uvdv) = Mt a.s. (4)

for t ∈ [0, T ] for some martingale M such that XT = 0.

0 +

∫ T

0

G(|T − v|)uvdv = MT a.s.,

Remark 2.2 Note that (4) by itself does not uniquely determine the optimal u, we need the additional
terminal condition XT = 0 as well (see e.g. Lemma 5.2 ii) in [BSV17] and Eq 3.5 in [BMO20] for
qualitatively similar results for different problems).

Proof. Let L = {u ∈ A : 〈u, u〉G < ∞}, where 〈u, v〉G := E(
∫ T

0
ut
∫ T

0
vsG(|t − s|)dsdt) and A is the

space of Ft-progressively measurable processes.

Perturbing u to u+ εu1 with u1 ∈ U0
0 (i.e. a round trip so

∫ T
0
u1
tdt = 0) we find that

Ṽ (u+ εu1) = −E(

∫ T

0

(ξt +

∫ t

0

(us + εu1
s)G(t− s)ds) (ut + εu1

t )dt)

= Ṽ (u) − εE
( ∫ T

0

ξtu
1
tdt +

∫ T

0

u1
t

∫ t

0

usG(t− s)dsdt +

∫ T

0

ut

∫ t

0

u1
sG(t− s)dsdt)

)
− ε2E(

∫ T

0

u1
t

∫ t

0

u1
sG(t− s)dsdt)

= Ṽ (u) + Ṽ (εu1) − εE(

∫ T

0

u1
t

∫ t

0

usG(t− s)dsdt) − εE(

∫ T

0

ut

∫ t

0

u1
sG(t− s)dsdt)

= Ṽ (u) + Ṽ (εu1) − εE(

∫ T

0

u1
t

∫ t

0

usG(t− s)dsdt) − εE(

∫ T

0

us

∫ s

0

u1
tG(s− t)dsdt)

= Ṽ (u) + Ṽ (εu1) − εE(

∫ T

0

u1
t

∫ t

0

usG(t− s)dsdt) − εE(

∫ T

0

u1
t

∫ T

t

usG(s− t)dsdt)

= Ṽ (u) + Ṽ (εu1) − εE(

∫ T

0

u1
t

∫ T

0

usG(|t− s|)dsdt)

= Ṽ (u) + Ṽ (εu1) − ε〈u1, u〉G . (5)

From the definition of UX0
0 above, we know that u ∈ UX0

0 implies that E(
∫ T

0

∫ t
0
G(t − s)usutdsdt) =

‖u‖2G <∞.

The O(ε) component of (5) can be re-written as

−E(

∫ T

0

ξtu
1
tdt +

∫ T

0

u1
t

∫ t

0

usG(t− s)ds dt +

∫ T

0

ut

∫ t

0

u1
sG(t− s)dsdt)

= −E(

∫ T

0

ξtu
1
tdt +

∫ T

0

u1
t

∫ t

0

usG(t− s)ds dt +

∫ T

0

u1
s

∫ T

s

G(t− s)utdtds)

= −E(

∫ T

0

ξtu
1
tdt +

∫ T

0

u1
t [

∫ t

0

usG(t− s)ds dt +

∫ T

t

usG(s− t)ds]dt)

= −E(

∫ T

0

u1
t (ξt +

∫ T

0

usG(|t− s|)ds)dt)

= −E(

∫ T

0

u1
t [ξt + Et(

∫ T

0

usG(|t− s|)ds)]dt) . (6)
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Now assume that (4) is satisfied which implies Mt := ξt + Et(
∫ T

0
G(|t − s|)usds) = Et(

∫ T
0
G(|T −

v|)uvdv). Then we see that

E(

∫ T

0

u1
tMtdt) = E(

∫ T

0

u1
t (ξt + Et(

∫ T

0

usG(|t− s|)ds))dt) . (7)

The second term on the right in (7) is just 〈u, u1〉G, which we know is finite from Lemma A.1, and
the first term on the right is also finite from the definition of U0

0 . The following observations will be
needed in what follows:

•
∫ T

0
E(|u1

t ξt|)dt =
∫ T

0
E(|Et(u1

t (PT−Pt))|)dt ≤
∫ T

0
E(Et(|u1

t (PT−Pt)|))dt =
∫ T

0
E(|u1

t (PT−Pt)|)dt,
which is finite for u1 ∈ U0

0 (see the definition of Ux0 and Remark 2.1)

• Similarly
∫ T

0
E(|u1

tEt(
∫ T

0
G(|t−v|)uvdv)|)dt =

∫ T
0
E(|Et(u1

t (
∫ T

0
G(|t−v|)uvdv))|)dt ≤

∫ T
0
E(Et(|u1

t (
∫ T

0
G(|t−

v|)uvdv)|))dt =
∫ T

0
E(|u1

t (
∫ T

0
G(|t−v|)uvdv)|)dt ≤ 〈|u1|, |u|〉G, which is finite by Lemma A.1 since

|u| and |u1| are in UX0
0 and U0

0 respectively, which implies they are also in L.

Then using that Mt = ξt +Et(
∫ T

0
usG(|t− s|)ds) and the two bullet points immediately above, we

can apply Fubini and the tower property to say that

E(

∫ T

0

u1
tMtdt) = E(

∫ T

0

u1
tEt(MT )dt) = E(

∫ T

0

Et(u1
tMT )dt) =

∫ T

0

E(Et(u1
tMT ))dt

=

∫ T

0

E(u1
tMT )dt

= E(MT

∫ T

0

u1
tdt)

= 0 ,

since u1 is a round trip. Thus (6) is zero, so (4) is a sufficient condition for u to be a local optimizer.

Moreover, using the Plancherel identity, we can re-write the expectation in the O(ε2) term in (5) (up
to a minus sign) as

E(

∫ T

0

u1
t

∫ T

0

u1
s G(|t− s|)dsdt) = E(

∫ ∞
−∞

u1
t

∫ ∞
−∞

u1
s G(|t− s|)dsdt)

= E(

∫ ∞
−∞

û1(k)û1(k)Ĝ(k)dk)

= E(

∫ ∞
−∞
|û1(k)|2Ĝ(k)dk) ≥ 0 ,

where we are setting u1 ≡ 0 outside [0, T ], and Ĝ(k) = cγ |k|γ−1 for some constant cγ ; hence Ṽ (u+εu1)
is concave in ε, so any local optimizer is a global optimizer.

2.2 Gaussian signals

We now assume that ξt is a Gaussian Volterra process of the form

ξt = ξ̄(t) +

∫ t

0

Kξ(u, t)dWu (8)

for some deterministic function ξ̄(t), where W is a standard Brownian motion and
∫ t

0
Kξ(u, t)

2du <∞
for all t ∈ [0, T ] and Ft = FWt . Given that ξT = ET (PT − PT ) = 0 is a Normal random variable with
zero mean and zero variance, we see that

ξ̄(T ) = Kξ(u, T ) = 0 (9)

for all u ∈ [0, T ]. Let

k(u, t) =
1

c|T − u|1−γ
G−1

1 (−Kξ(u, u+ (T − u)(.))− λ1(u))(
t− u
T − u

)

and λ1(u) = − 1

c̄γ

∫ 1

0

G−1
1 (Kξ(u, u+ (T − u)(.)))(s)ds (10)
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where c̄γ =
2

1
2

(3−Γ)π
5
4 (T−u)Γ( 1

2 (3+γ)) sec( 1
2πγ)

(1+γ)Γ( 1
2 (1−γ))

3
2
√

Γ( 1
2γ) Γ(1+γ)

, and the operator G1 is defined by

(G1φ)(t) :=

∫ 1

0

φ(s)G(t− s)ds . (11)

G−1
1 (f) for a general function f has an explicit form which is stated and used in the proof of Theorem

2.2.

We let X0(t) = X0 −
∫ t

0
u0(s)ds denote the (deterministic) solution to the same problem but with

no signal (see Subsection 2.3 for the explicit solution for X0).

We now state the main result of the article:

Theorem 2.2 If Kξ is such that
∫ .

0
k(v, .)dWv ∈ U0

0 , then the optimal trading strategy X∗ is given by

dX∗t = dX0(t) − û(t)dt, where û(t) = ū(t) +
∫ t

0
k(v, t)dWv is a Gaussian Volterra process on [0, T )

and k(u, .) and ū(t) are the unique solutions to the following Fredholm integral equations of the first
kind:

−Kξ(u, t) =

∫ T

u

G(|t− v|)k(u, v)dv + λ(u) (12)

−ξ̄(t) =

∫ T

0

G(|t− v|)ū(v)dv + λ2 (13)

where the first equation holds for each u ∈ [0, T ] fixed and all t ∈ [u, T ], and the function λ(u) and the
constant λ2 are chosen (uniquely) to ensure that E(X2

T ) = 0, for which the following two conditions
are necessary and sufficient:∫ T

u

k(u, t)dt = 0 for all u ∈ [0, T ] ,

∫ T

0

ū(v)dv = 0 . (14)

dX̂(t) = −û(t)dt is the optimal solution to the round trip problem, i.e. for the case X0 = 0.

Remark 2.3 Note that ū ≡ 0 if ξ̄ ≡ 0, since from the uniqueness part at the end of the proof, we
know the solution to the Fredholm equation is unique.

Proof. We break up the proof into multiple parts.

• Deriving the Fredholm equation. We first assume X0 = 0 (at the end of the proof we show
how to extend to the general case with case X0 6= 0). Since û has to be adapted, we guess that

ût = ū(t) +
∫ t

0
k(v, t)dWv, so Et(ûv) = ū(v) +

∫ t∧v
0

k(u, v)dWu. Then from (4) we see that

0 = ξt + Et(
∫ T

0

(G(|t− v|)−G(|T − v|))ûvdv)

= ξ̄(t) +

∫ t

0

Kξ(u, t)dWu +

∫ T

0

(G(|t− v|)−G(|T − v|))ū(v)dv

+

∫ T

0

(G(|t− v|)−G(T − v))

∫ t∧v

0

k(u, v)dWu)dv

=

∫ t

0

[Kξ(u, t) +

∫ T

u

k(u, v)(G(|t− v|)−G(T − v))dv]dWu

+ ξ̄(t) +

∫ T

0

(G(|t− v|)−G(|T − v|))ū(v)dv .

Then we see that this is zero for all t ∈ [0, T ] a.s. if and only if

−Kξ(u, t) =

∫ T

u

k(u, v)(G(|t− v|)−G(T − v))dv (15)

−ξ̄(t) =

∫ T

0

(G(|t− v|)−G(|T − v|))ū(v)dv (16)

are satisfied for all u, t with 0 ≤ u ≤ t ≤ T .
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• Enforcing the liquidation condition. Now consider a solution k(u, .) to (12) for all u ∈ [0, T ],

where λ(u) will be chosen to ensure that E(X2
T ) = 0, and we will see that this implies that k(u, .)

satisfies (15) and (16) for all u ∈ [0, T ] as well. Setting û(t) = ū(t) +
∫ t

0
k(v, t)dWv we see that

Xt = −
∫ t

0

ū(v)dv −
∫ t

0

∫ s

0

k(v, s)dWvds = −
∫ t

0

ū(v)dv −
∫ t

0

∫ t

v

k(v, s)dsdWv

so in particular

XT = −
∫ T

0

ū(v)dv −
∫ T

0

∫ t

0

k(v, t)dWvdt = −
∫ T

0

ū(v)dv −
∫ T

0

∫ T

v

k(v, t)dtdWv . (17)

Consequently, to impose that E(X2
T ) = 0, we see that both equations in (14) must hold, the

first of which determines λ(u) and second determines the constant λ2 (below we will show that
λ(u) and λ2 are uniquely determined using operator formalism and we give an explicit formula
in (21)). Then setting t = T in (12) and using that Kξ(u, T ) = 0 (from (9)), we see that

0 =

∫ T

u

G(|T − v|)k(u, v)dv + λ(u)

so (15) is indeed satisfied. Similarly using that ξ̄(T ) = 0 (from (9)) we find that
∫ T

0
G(|T −

v|)ū(v)dv + λ2 = 0, so (12) implies (16).

• Explicit computation of λ(u) and λ2. We now transform (12) so the range of integration is
[0, 1]. To this end, we first re-write (12) in the form

c

∫ T

u

g(v)

|x− v|γ
dv = f̃(x)

where g(v) = k(u, v) and f̃(x) = −Kξ(u, x)− λ(u) and let w = v−u
T−u , so dw = dv

T−u , then we can
re-write this as

c(T − u)

∫ 1

0

g((T − u)w + u)

|x− (T − u)w − u|γ
dw = c(T − u)

∫ 1

0

g1(w)

|x− (T − u)w − u|γ
dw = f̃(x)

where g1(w) = g((T − u)w + u), where our notation is chosen so as to be consistent with that
used in [CG94]. Now let x− u = (T − u)x′ to obtain

c(T − u)

∫ 1

0

g1(w)

|(T − u)x′ − (T − u)w|γ
dw = c|T − u|1−γ

∫ 1

0

g1(w)

|x′ − w|γ
dw = f̃(u+ (T − u)x′)

(18)

which we can re-write more succinctly as

G1g1 =
f̃(u+ (T − u)(.))

c|T − u|1−γ
, (19)

where G1 is the operator defined in (11). Then from (12) and the linearity of G−1
1 , we see that

k(u, t) = g(t) =
1

c|T − u|1−γ
G−1

1 f̃(u, u+ (T − u)(.))(
t− u
T − u

)

=
1

c|T − u|1−γ
G−1

1 (−Kξ(u, u+ (T − u)(.))− λ(u))(
t− u
T − u

) . (20)

Integrating from t = u to T and using that
∫ T
u
k(u, t)dt = 0 for all u ∈ [0, T ] and moving the

λ(u) term to the other side and cancelling terms, we see that∫ T

u

G−1
1 (−Kξ(u, u+ (T − u)(.)))(

t− u
T − u

)dt =

∫ T

u

G−1
1 (λ(u))(

t− u
T − u

)dt ,

so by the linearity of G−1
1 , we see that

λ(u) = −
∫ T
u
G−1

1 (Kξ(u, u+ (T − u)(.)))( t−uT−u )dt∫ T
u
G−1

1 (1)( t−uT−u )dt
. (21)
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Moreover, from Example 2.30 in [GSS12], we know that

G−1
1 (1)(s) =

cγ

(s(1− s)) 1
2 (1−γ)

, (22)

where cγ = [2γ−1Γ( 1
2 −

1
2γ)Γ( 1

2γ)/
√
π]−

1
2 . Then∫ T

u

G−1
1 (1)(

t− u
T − u

)dt = c̄γ(T − u)

(where c̄γ is defined in the statement of the Theorem), so λ(u) simplifies to

λ(u) = − 1

c̄γ

1

T − u

∫ T

u

G−1
1 (Kξ(u, u+ (T − u)(.)))(

t− u
T − u

)dt

= − 1

c̄γ

∫ 1

0

G−1
1 (Kξ(u, u+ (T − u)(.)))(s)ds .

Similarly we find that

λ2 = − 1

c̄γ

∫ 1

0

G−1
1 (ξ̄(T (.)))(s)ds

and

ū(t) =
1

cT 1−γG
−1
1 (−ξ̄(T (.))− λ2)(

t

T
)

and note that u = 0 in these last two formulae.

• Decomposing G1 and explicit computation of G−1
1 . From Example 9.2 (see also Example

6.2) in [PS90], setting ν = γ we know that G1 can be decomposed as G1 = T T ∗, where T is the
Volterra-type operator defined by

(T φ)(t) =

∫ t

0

κ(s, t)φ(s)ds

and κ(s, t) = cν( ts )(1−γ)/2(t − s)−
1
2 (1+γ) for some constant cν depending on ν, and T ∗ is its

adjoint given by (T ∗φ)(t) =
∫ T
s
κ(s, t)φ(t)dt (see e.g. the start of Appendix A of [FZ17] to see

why T ∗ takes this form). Then we can further re-write T as T = B−1IνB, where B is the
bounded operator on L2 which multiplies functions by t−(1−ν)/2 and Iν is the Riemann-Liouville
operator (Iνφ)(t) :=

∫ t
0
(t− s)− 1

2 (1+γ)φ(s)ds = 1
Γ(1−r)I

r where r = 1
2 −

1
2γ so I−1

ν = Γ(1− r)Dr,

where Ir and Dr are the fractional derivative operators of order r. Summing this up, we can
re-write (18) as

T T ∗g1 = h1

for some function h1, which has solution

g1 = T ∗−1(T −1h1) .

To compute (T ∗)−1, we note that (φ, Tψ) = (φ,B−1IνBψ) = (B−1φ, IνBψ) = (I∗νB
−1φ,Bψ) =

(BI∗νB
−1φ, ψ), so T ∗ = BI∗νB

−1, and we know how to invert B and I∗ν .

• Practical computation of k(u, t). We can read off the solution to (18) more explicitly from

[CG94], with f(x1) = f̃(x′)
|T−u|1−γ and their a = b = c, for which the explicit solution is given in

Eqs 3.14a and 3.14b in [CG94] which we can re-write in our variables as

k(u, t) = −tγ̄+µ−1 sin2(πγ̄)

π2

d

dt

∫ 1

t

1

(s− t)γ̄

∫ s

0

v−γ̄h(v)

(s− v)1−γ̄ dv

where h(t) =
t1−γ

b

d

dt

∫ t

0

f(y)

(x− y)1−γ dy

and µ = γ, α + γ = 1, −λ = π
sin(π(1−γ)) + π cot(π(1 − γ)) and γ̄ satisfies |λ| = π cot(πγ̄) with

0 < γ̄ < 1
2 (note γ̄ here is the γ parameter in [CG94] and our γ is the µ parameter in [CG94].
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Remark 2.4 For the case commonly considered where γ = 1
2 , the α-parameter in [CG94] is

1− γ = 1
2 and their λ parameter is −(aπ/(b sin(πα)− π cot(πα)− = −π so their γ parameter is

1
4 (which we call γ1 to distinguish from our γ parameter).

If two distinct solutions exist to (20), then we must have a non-zero solution φ to G1φ = 0, so
in particular

∫
[0,1]

∫
[0,1]

φ(s)φ(t)G(|t− s|)dsdt = 〈φ,G1φ〉L2 = 0. But from Plancherel’s theorem

we know this quantity is equal to∫
[0,T ]

∫
[0,T ]

φ(s)φ(t)G(|t− s|)dsdt =

∫ ∞
−∞
|φ̂(k)|2Ĝ(k)dk = const.× ‖φ‖2

H−
1
2
γ
,

where Ĝ(k) = cγ |k|γ−1 > 0 is the Fourier transform of G (see Appendix A for the exact formula)
for some constant cγ > 0, and ‖.‖H−s denotes the norm on the homogenous fractional Sobolev
space of order −s < 0 (see Appendix A for details, and references on this). Hence we cannot
have two distinct solutions to (20) in H−γ/2. Finally for the general case with X0 6= 0, we
can easily verify that X0(t) + X̂t satisfies (4), i.e. we can decompose the general solution as
the (deterministic) no-signal solution plus the round trip solution (again see next subsection for
details of how to compute X0).

Remark 2.5 If we replace W with an Itô process of the form Mt =
∫ t

0
σ2
sdWs then the stochastic inte-

gral part of (17) will be replaced by
∫ T

0

∫ T
v
k(v, t)dt σvdWv, whose variance is E(

∫ T
0

(
∫ T
v
k(v, t)dt)2 σ2

vdv) =∫ T
0

(
∫ T
v
k(v, t)dt)2 E(σ2

v)dv. Then if E(σ2
v) > 0 for all v we still require that

∫ T
v
k(v, t)dt = 0 and (for-

mally at least) Theorem 2.3 still holds if the proposed trading strategy is admissible. A potentially
interesting example which falls in this framework is an affine driftless Rough-Heston model-type pro-
cess for P of the form Pt = P0 + c

∫ t
0
(t − s)H−

1
2

√
PsdWs, which also has the advantage that P is

non-negative (we defer the details for future research).

2.3 The zero-signal case

For the case of power-law impact where G(t) = ct−γ for γ ∈ (0, 1), the optimal selling speed with
no-signal satisfies ∫ T

0

G(|t− v|)u0(v)dv = λ , (23)

where λ is the unique constant which ensures that XT = X0 −
∫ T

0
u0(t)dt = 0, and setting t = T we

see that ∫ T

0

(G(|t− v|)−G(|T − v|))u0(v)dv = 0

which is consistent with (4) for the case of zero signal. We can re-write (23) using operator formalism

as Gu0 = λ where Gφ(.) :=
∫ T

0
G(|(.)− v|)φ(v)dv, so λ satisfies

X0 − λ
∫ T

0

G−1(1)(t)dt = 0

and the solution is given by

u0(t) =
c1

(t(T − t)) 1
2 (1−γ)

for some constant c1 (see Example 2.30 in [GSS12], and [CGL17]).

2.4 Computing the expected optimal profit/loss

If ξ̄(t) ≡ 0, the expected profit/loss from the optimal trading strategy in Theorem 2.2 is

V (û) = E(PTX0) − E(

∫ T

0

(ξt +

∫ t

0

G(t− s)ûsds)ûtdt)

= E(PTX0) − E(

∫ T

0

∫ t

0

Kξ(s, t)dWs

∫ t

0

k(u, t)dWudt)

−E(

∫ T

0

∫ t

0

G(t− s)(
∫ s

0

k(u, s)dWu)(

∫ t

0

k(v, t)dWv)ds dt)

= E(PTX0) −
∫ T

0

∫ t

0

Kξ(u, t)k(u, t)dudt) −
∫ T

0

∫ t

0

G(t− s)
∫ s

0

k(u, s)k(u, t)dudsdt .(24)
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We can easily adapt this expression to include the case of a general non-zero ξ̄(t) but the expression
will be a lot messier due to the squared terms. We have found Monte Carlo to be the most efficient
way to compute this triple integral in practice, which is what was used to compute the right plot in
Figure 1.

2.5 Re-expressing the trading speed in terms of the price history

At the moment our optimal selling speed is expressed as ut =
∫ t

0
k(u, t)dWu, but it is more natural

and useful to re-express ut in terms of P itself. To this end, let Zt =
∫ t

0
g(s, t)dWs, and we seek a

function h(., .) such that h(t, t)Zt −
∫ t

0
hs(s, t)Zsds = Wt. Then we see that

h(t, t)Zt −
∫ t

0

hs(s, t)Zsds = h(t, t)

∫ t

0

g(u, t)dWu −
∫ t

0

hs(s, t)

∫ s

0

g(u, s)dWuds

= h(t, t)

∫ t

0

g(u, t)dWu −
∫ t

0

∫ t

u

hs(s, t)g(u, s)dsdWu ,

where hs(., .) denotes the partial derivative of h with respect to the first argument. Hence to find an
inversion formula, we need to solve the integral equation

h(t, t)g(u, t) −
∫ t

u

hs(s, t)g(u, s)ds = 1 .

If g(s, t) = g(t − s) with g ∈ L2 and we guess that h(s, t) = h(t − s), then the equation takes the
special form

h(0)g(t− u) +

∫ t

u

h′(t− s)g(s− u)ds = 1 .

Setting s̃ = s− u, we can re-write this as

h(0)g(t− u) +

∫ t−u

0

h′(t− (u+ s̃))g(s̃)ds̃ = 1 ,

and replacing t− u with t we can further re-write as

h(0)g(t) +

∫ t

0

h′(t− s̃)g(s̃)ds̃ = h(0)g(t) + h′ ∗ g = 1 .

Then taking the Laplace transform, we have

h(0)ĝ + (̂h′)ĝ = h(0)ĝ + (λĥ− h(0))ĝ =
1

λ
,

so we see that

ĥ =
1

λ2ĝ
. (25)

Hence if Pt =
∫ t

0
g(t − u)dWu for some g ∈ L2 then ξt =

∫ t
0
Kξ(u, t)dWu with Kξ(u, t) = g(T − u) −

g(t− u), and from the preceding computations we have the inversion formula

Wt = h(t, t)Pt −
∫ t

0

hs(s, t)Psds

and recall that ût =
∫ t

0
k(u, t)dWu (where k(., .) depends on Kξ via the Fredholm eq (12), and hence

on g itself) so we now see how û depends solely on the (unaffected) stock price history (Pu)0≤u≤t,
which gives us our signal-adaptive optimal selling speed.

We can compute h explicitly for the case when g(t) = tH−
1
2 e−θt for H ∈ (0, 1), θ > 0 for which we

find that

h(t) =
e−θtt−

1
2−H

[
2− etθ(1 + 2H + 2tθ)(E 3

2 +H(tθ)− (tθ)
1
2 +HΓ(− 1

2 −H))
]

2θΓ(− 1
2 −H)Γ( 1

2 +H)
. (26)

where En(z) =
∫∞

1
e−zt

tn dt. H = 1
2 corresponds to the OU process for which h(t) = 1 + θt, and θ = 0

corresponds to the Riemann-Liouville process for which h(t) = t
1
2
−H

Γ( 3
2−H)Γ( 1

2 +H)
(see next section).
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Figure 1: On the left we have plotted the optimal inventory X∗t in Theorem 2.2 when Pt = σ
∫ t

0
(t −

s)H−
1
2 dWs is a Riemann-Liouville process using (27) with H = 2

3 , σ = 1, c = 1 and γ = .5 and X0 = 0,
and in the middle we have plotted u∗t (blue) and ξt (in red). On the right, as a sanity check, we have
plotted the expected profit/loss for α times the optimal trading speed, as a function of α (which we see
is correctly maximized close to α = 1, the small numerical error is there because we have to estimate
the triple integral in (24) with Monte Carlo)
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Figure 2: Non-Round trip case: from left to right (with X0 = .25 and the same parameters as above)
we see (i) the optimal buying speed with no-signal (ii) X∗t with no signal

3 Examples and variations of the main model

3.1 Rough signals

If Pt = σ
∫ t

0
(t−s)H− 1

2 dWs (i.e. a Riemann-Liouville process) for H ∈ (0, 1) and γ = 1
2 and ξ̄(t) ≡ 0 for

simplicity, then clearly ξt = Et(PT − Pt) =
∫ t

0
((T − s)H− 1

2 − (t− s)H− 1
2 )dWs and (after some lengthy

Mathematica computations) we find that

k(u, t) = −(2cπ
3
2 τ

3
2 ū

1
4 Γ(H))−1 ·

[τ 3
2 +HσΓ( 1

4 )Γ(H 1
4
)

w
1
4 (u− t)

+ H 1
4
τ

1
2 +H ū−

3
4 +HσΓ(

1

4
)(−B(ū,−H 1

4
,

3

4
) +

Γ( 3
4 )Γ(−H 1

4
)

Γ( 1
2 −H)

) Γ(H 1
4
)

+

√
2π Γ(H)(τ

1
2 +Hσ + τλ1(u))

w
1
4

]
, (27)

where H 1
4

= H + 1
4 , τ = T − u, w = T−t

T−u , ū = t−u
T−u and B(z, a, b) =

∫ z
0
ta−1(1 − t)b−1dt denotes the

incomplete Beta function, and enforcing the liquidation condition
∫ T
u
k(u, t)dt = 0 we find that

λ(u) = −ΥτH−
1
2

where Υ is given by

σ
π2csc(θπ) + Γ(ω−)

[
2HΓ( 3

4 )2Γ(H)−H
√
πΓ(− 1

4 )Γ(θ)− π cos(Hπ)csc(θπ)Γ(ω+) +
√
πΓ(− 1

4 )Γ( 5
4 +H)

]
2HΓ( 3

4 )2Γ(ω−)Γ(H)

with θ = 1
4 +H and ω± = 1

2 ±H (see numerical simulations above and overleaf). Note that we have
not rigourously verified that this strategy is admissible which would be extremely difficult to check.
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Figure 3: On the left we see the optimal selling speed with non-zero signal (blue) and the no-signal
optimal speed (grey) and on the right we see X∗t with non-zero signal (blue) and zero signal (grey),
for the same parameters and simulated Brownian motion as Figure 2.

3.2 Computing G from the trading history

Recall that

St − Pt =

∫ t

0

G(t− s)dXs = −
∫ t

0

ut−sG(s)ds , (28)

which we can interpret as a Volterra integral equation for the unknown G, if the trading history is
known. More specifically, assume we have our trading history (Xt)t∈[0,T ) and we just set dXt = 0 for
t ≥ T . Taking the Laplace transform of (28) we get

Ŝ(λ) − P̂ (λ) = Ĝ(λ)d̂X(λ) ,

where .̂ denotes the Laplace transform operator. From this, in principle, we can then compute
(G(t))t∈[0,T ] as the inverse Laplace transform of

Ĝ(λ) =
Ŝ(λ) − P̂ (λ)

d̂X(λ)
.

Note that if the G computed in this way is complex-valued or negative, it means the true model is not
of the form in (1).

3.3 Adding Temporary price impact

If we add a temporary price impact term ηẊt = −ηut on the right hand side of (1), then we incur an
additional ηu2

t term in (3), and a standard first order variational analysis of this expression leads to
the following modified (4):

ξt + 2ηu∗t + Et(
∫ T

0

G(|t− v|)u∗vdv) = Mt

for some martingale M to be determined such that XT = 0 as before. Then using the same ansatz
ut =

∫ t
0
k(u, t)dWu, we can readily verify that (12) and (13) and change to

−Kξ(u, t) = 2ηk(u, t) +

∫ T

u

G(|t− v|)k(u, v)dv + λ(u)

−ξ̄(t) = 2ηū(t) +

∫ T

0

G(|t− v|)ū(v)dv + λ2

where λ(u) and λ2 are again chosen to ensure that XT = 0, and this is now a Fredholm equation of
the second kind, for u ∈ [0, T ] fixed.

3.4 Exponential resilience with temporary impact

In this subsection, we assume G(t) = ce−ρ|t| for ρ > 0 with ξ̄(t) = 0, and assume non-zero temporary
price impact as in the previous subsection and (unlike [NV22]) we impose full liquidation. Since

G(|t−s|) is bounded from above strictly positive [0, T ]2, for this problem L = {u : E(
∫ T

0

∫ T
0
utusdsdt) =

E((
∫ T

0
utdt)

2) <∞}. Then the integral equation for k(u, t) becomes

Kξ(u, t) + ηk(u, t) +

∫ T

u

k(u, v)G(|t− v|)dv = −λη,ρ(u)

12



for some λη,ρ(u) which has to be chosen to ensure liquidation (see below for explicit computation of
λη,ρ(u)), and setting t = T we see that

ηk(u, T ) +

∫ T

u

k(u, v)G(|T − v|)dv = −λη,ρ(u) .

We can re-write the integral equation as

Kξ(u, t) + Gρ,ηk(u, .)(t) = −λη,ρ(u) , (29)

where the operator Gρ,η is defined by Gρ,ηφ(t) := ηφ(t) +
∫ T
u
ce−ρ|t−s|φ(s)ds for η > 0.

G−1
ρ,η can be computed explicitly (see item 15, pg 324 in [PM08]) and note that the A parameter in

[PM08] will be c
η for our problem here, so we need η > 0 and their λ = −ρ < 0. More specifically, if y

satisfies

y(x) + A

∫ b

a

eλ|x−t|y(t)dt = f(x)

then

y′(x) + λA

∫ b

a

sgn(x− t)eλ|x−t|y(t)dt = f ′(x)

y′′(x) + 2λAy(x) + λ2A

∫ b

a

eλ|x−t|y(t)dt = f ′′(x)

so we see that y satisfies the ODE

y′′(x) + λ(2A− λ)y(x) = f ′′(x)− λ2f(x) (30)

and

y(a) + A

∫ b

a

eλ(t−a)y(t)dt = f(a) , y′(a) − λA

∫ b

a

eλ(t−a)y(t)dt = f ′(a)

y(b) + A

∫ b

a

eλ(b−t)y(t)dt = f(b) , y′(b) + λA

∫ b

a

eλ(t−a)y(t)dt = f ′(b)

so the boundary conditions for the ODE in (30) are given by

y′(a) + λy(a) = f ′(a) + λf(a) , y′(b)− λy(b) = f ′(b)− λf(b) .

The explicit solution for y(x) in Eq 3 on 324 in [PM08] is incorrect but can be computed (the expression
is rather long so we omit the details here for the sake of brevity).

Then from (29) we see that

k(u, t) = −G−1
ρ,η(Kξ(u, .) + λη,ρ(u))(t)

and combining this with the constraint that
∫ T
u
k(u, t)dt = 0 for all u ∈ [0, T ], we see that

∫ T
u
G−1
ρ,η(Kξ(u, .)+

λη,ρ(u))(t)dt = 0 so

λη,ρ(u) = −
∫ T
u
G−1
ρ,η(Kξ(u, .))(t)dt∫ T
u
G−1
ρ,η(1)(t)dt

and this solution is valid so long as Kξ is such that the resulting u process is in U0
0 . To compute the

non round-trip solution for the no-signal case, we have to solve

Gρ,ηu(t) = λ

for some constant λ such that X0 −
∫ T

0
u(s)ds = 0, so λ here satisfies

X0 − λ
∫ T

0

G−1
ρ,η(1)(t)dt = 0 .
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3.5 The unconstrained problem with zero resilience

We now consider the case when

St = Pt + f(φt) (31)

for some general increasing function f with f(0) = 0, where φt = −ut and we remove the restriction
that XT = 0. Then when f(x) = kx, using the optional projection argument as in (2), our performance

criterion simplifies to V (φ) = E(
∫ T

0
(ξtφt−ηφ2

t )dt), and we can then maximize the integrand ξtφt−ηφ2
t

pointwise to obtain the optimal φt as φ∗t = 1
2η ξt, and note that φ∗T = ξT = 0, as in Lemma 5.2 in

[BSV17].

Remark 3.1 For a general non-linear impact function f (as in e.g. Guasoni et al.[GNR19]) if g(x) =
xf(x) and we assume g is e.g. smooth and convex, then pointwise optimization yields that φ∗t =
(g′)−1(ξt).

3.6 Transactions costs and the no-trade region

Setting f(x) = ηx + ε sgn(x) in (31) for k, ε > 0 corresponds to linear temporary price impact plus
fixed transaction costs, i.e. a fixed bid/offer spread of ε. In this case, using that ξx − ηx2 − ε|x| is
maximized at x = ξ−ε

2η if ξ − ε ≥ 0, at x = ξ+ε
2η if ξ + ε ≤ 0 and at x = 0 otherwise (combined with a

pointwise optimization argument as above), we find that

φ∗t =
1

2η
(ξt − ε sgn(ξt)) 1|ξt|≥ε ,

and we see that there is now a no-trade region defined by |sgn(ξt)| < ε.

4 Calibrating the model to real limit order book data

To calibrate the price impact model in equation (1) we employ the order flow of all market participants,
the transaction prices weighted by volume, and the unaffected price process. We then look for param-
eters that best fit the data. In (1) we refer to Pt as the unaffected price process, and dXt = −ut dt is

the instantaneous trading of the agent. Let P̃t = Pt −
∫ t

0
G(t − s)dYs be the “observable unaffected

price”, where dYt = vtdt and Y is the cumulative instantaneous trading of all other market participants
excluding the agent. Then (1) changes to

St = P̃t +

∫ t

0

G(t− s)dZs (32)

where dZs = dXs + dYs = (us + vs) ds captures the order flow of the entire market – see [CJ16].
Given the previous decomposition, we show how to estimate the parameters that appear in the

decay kernel G. Let Θ be the parameter space associated with G. For example, in the power-law
impact case, in which θ = (c, γ), the parameter space is Θ = R+ × (0, 1). Take θ ∈ Θ and consider a
discretized version of (32) given by

Stn ≈ P̃tn−1
+

n∑
i=1

Gθ(tn − ti−1) (uti + vti) ∆

where 0 = t0 < t1 < . . . < tn, and ∆ = ti − ti−1 for i ∈ {1, 2, . . . , n}. The quantity (uti + vti) ∆
represents the volume traded in [ti−1, ti) by all market participants. The observable unaffected price
P̃tn−1

can be taken to be the mid-price of the asset at time tn−1, and Stn is the volume-weighted
average price of all transactions in [ti−1, ti).

Fix a given calibration horizon T (for example, one day of trading), let t0 < t1 < . . . < tN be a
fixed time grid, where t0 = 0 and tN = T (for example, one minute intervals throughout the day),
let (Sti)1≤i≤N be the observed volume-weighted transaction prices2, and let (Vti)0≤i≤N be the volume
traded by all market participants. For instance, for i ∈ {1, 2, . . . , N}, Vti = (uti + vti) ∆. Finally, let
(P̃ti)0≤i≤N−1 be the mid-price sampled at times t0 < t1 < . . . < tN−1. We assume our observations
have noise, that is to say

Stn = P̃tn−1
+

n∑
i=1

Gθ(tn − ti−1)Vti + εn ,

2We define S0 = P0. If there are no transactions in a given interval [ti−1, ti) for i ∈ {1, 2, . . . , N}, we define
Sti = Sti−1 . Otherwise, Sti is the volume-weighted trade price over all trading carried in [ti−1, ti).
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where (εn)n∈N is a collection of independent and identically distributed normal random variables. We

take the estimator θ̂ of θ to be the parameters that minimize the residual sum of squares, in other
words,

θ̂ = argmin
θ∈Θ

N∑
n=1

(Stn − P̃tn −
n∑
i=1

Gθ(tn − ti)Vti)2 . (33)

Next, we test the calibration method in (33). We employ limit order book (LOB) data from VOD,
AAPL, and CSCO trading in NASDAQ from 2 December 2019 to 31 January 2020. The data comprise
all of the updates in the best prices, quantities, and trades. We take the time intervals to be spaced
by one minute, and we set [0, T ] to be from 10:00am to 2:00pm. We calibrate the parameters (c, γ) in
R+ × (0, 1) for the power-law impact case Gθ(t) = ct−γ , and we refer to the estimates as ĉ and γ̂. We
observe that over the two months of data, the mean value (and standard deviation) of the estimate
γ̂ was 0.384 (0.104) for VOD, 0.440 (0.125) for AAPL, and 0.493 (0.104) for CSCO. Similarly, the
mean value (and standard deviation) of the estimate ĉ was 0.0015 (0.0004) for VOD, 0.0028 (0.0007)
for AAPL, and 0.0009 (0.0004) for CSCO. For an alternate approach to the calibration of parameters
under transient market impact, see [BL12].
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Theorem on the space of Tempered Distributions”, preprint, 2017.

[BL12] Busseti, E., and Lillo, F., “Calibration of optimal execution of financial transactions in the
presence of transient market impact”, Journal of Statistical Mechanics: Theory and Experiment,
P09010, 2012.

[BMO20] Belak, C., J.Muhle-Karbe and K.Ou, “Liquidation in Target Zone Models”,, Market Mi-
crostructure and Liquidity, Vol. 4 (2020), No. 03, pp. 1950010.

[BSV17] Bank, P., H.M.Soner and M.Voß, “Hedging with Temporary Price Impact”, Mathematics and
Financial Economics, 11(2), 215-239, 2017.
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A Appendix

Recall that 〈u, v〉G = E(
∫ T

0

∫ T
0
usvtG(|t− s|)dsdt).

Lemma A.1 Let u, v ∈ U such that ‖u‖G and ‖v‖G are finite. Then 〈u, v〉G <∞.

Proof. We first consider a deterministic function φ in the Schwarz space S with supp(φ) ⊆ [0, T ] (φ
will be replaced with a random u ∈ UX0

0 below once we have the required machinery in place). Using
Plancherel’s theorem, we see that

〈φ, φ〉G =

∫ T

0

φ(t)

∫ T

0

φ(s)G(|t− s|)dsdt =

∫ ∞
−∞

φ(t)

∫ ∞
−∞

φ(s)G(|t− s|)dsdt

=

∫ ∞
−∞

φ̂(k)φ̂(k)Ĝ(k)dk

=

∫ ∞
−∞
|φ̂(k)|2Ĝ(k)dk ≥ 0 ,

where Ĝ(k) = cγ |k|γ−1 is the Fourier transform of G, for some constant cγ > 0. Thus 〈., .〉G is a
positive semi-definite bilinear form on S. Using similar arguments to Eq 8 in [FS20], we can also show
〈., .〉G is continuous on the Schwarz space S(R). Hence by Minlos’s theorem,

e−
1
2 〈φ,φ〉G = E(ei〈φ,Z〉)

is the characteristic functional of the Fractional Gaussian Field (FGF) Z with covariance functionG(|t−
s|) = c|t− s|−γ which lives in the space of tempered distributions S ′ (see e.g. pg 8 of Janson[Jan09],
and [DRSV17] and Appendix A in [FFGS20] for more details) which is the dual of the Schwartz space
S (see e.g. section 2.2 in [DRSV14] and Theorem 2.1 in [BDW17]). Moreover, S is a Montel space and
thus is reflexive, i.e. (S ′)′ is isomorphic to S using the canonical embedding of S into its bi-dual (S′)′.

Proceeding as in [FS20], we now let F̄ denote the Hilbert space equal to the L2(S,FT ,P) closure
of

F = {Z(φ) : φ ∈ S, supp(φ) ⊆ [0, T ]}

where FT = σ((Zu)0≤u≤T ).

In order to characterize F̄ , we first note that

E((Z, φ)2) =

∫ T

0

∫ T

0

G(|t− s|)φ(s)φ(t)dsdt .

We also know that∫ T

0

∫ T

0

G(|t− s|)φ(s)ψ(t)dsdt = E(

∫ ∞
−∞

φ̂(k)
¯̂
ψ(k)Ĝ(k)dk) = cγ〈φ, ψ〉

H−
1
2

(1−γ)

where Ĝ(k) = cγ |k|γ−1 for some constant cγ , and Hs denotes the homogenous fractional Sobolev space
of order s (see e.g. page 5 in [DRV12] for definitions). Thus, setting s = 1

2 (1 − γ), the following two
inner products on the linear space S of Schwarz functions are equivalent and hence generate the same
topologies on S:

1. 〈φ, ψ〉H−s :=
∫∞
−∞ |k|

−2sφ̂(k)
¯̂
ψ(k)dk (i.e. the standard inner product on H−s)

2. 〈φ, ψ〉 := E[Z(φ)Z(ψ)] =
∫ T

0

∫ T
0
φ(s)ψ(t)G(|t− s|)dsdt.

We now make the following observations:

• Let φ ∈ H−s, with supp(φ) ⊆ [0, T ]. S is dense in H−s, so there exists a sequence φn ∈ S with
supp(φn) ⊆ [0, T ] such that ‖φn − φ‖H−s → 0, and φ is a Cauchy sequence in H−s so (by the
equivalence of norms) Z(φn) is a Cauchy sequence in F̄ , and thus converges to some Y in F̄ .
This defines Z(φ) := Y as a continuous linear extension of Z from S to the larger space H−s,
which we will also often write as

∫
φ(t)Ztdt. To check that Z(φ) is uniquely specified, consider

two such sequences φn and φ′n. Then from the triangle inequality

‖φn − φ′n‖H−s ≤ ‖φn − φ‖H−s + ‖φ− φ′n‖H−s → 0

and thus (by the equivalence of norms) we have ‖Z(φn)−Z(φ′n)‖L2(S,FT ,P) = ‖Z(φn)−Z(φ′n)‖F̄ →
0 .
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• Conversely, for any Z ∈ F̄ , there exists a sequence φn ∈ S such that Z(φn) converges to
Z ∈ L2(S,FT ,P), so φn is a Cauchy sequence with respect to the second norm defined above,
and hence also a Cauchy sequence with respect to the H−s norm (by the equivalence of the two
norms). H−s is a Hilbert space so Cauchy sequences in H−s converge i.e. there exists a φ in
H−s such that φn → φ ∈ H−s.

Thus we have shown that

F̄ = {Z(φ) : φ ∈ H−s, supp(φ) ⊆ [0, T ]} ,

where we are using the extension of Z to H−s on the right hand side here as defined in the first bullet
point above. Moreover, we can now extend the inner product to H−s as

〈φ, ψ〉 = lim
n→∞

E[Z(φn)Z(ψn)] = lim
n→∞

∫ T

0

∫ T

0

φn(s)ψn(t)G(|t− s|)dsdt

where φn, φn ∈ S and φn → φ in H−s and ψn → ψ in H−s.

Finally, to prove the lemma, if u ∈ UX0
0 and E(

∫ T
0

∫ T
0
usutG(|t−s|)dsdt) <∞, then

∫ T
0

∫ T
0
usutG(|t−

s|)dsdt <∞ a.s., so u ∈ H−s a.s. Then if we assume the field Z is independent of u then

〈u, v〉G = E((Z, u)(Z, v)) ≤ E((Z, u)2)
1
2 E((Z, v)2)

1
2

= E(E((Z, u)2|u))
1
2 E(E((Z, v)2)

1
2 )

= E(

∫ T

0

∫ T

0

usutG(|t− s|)dsdt) 1
2 E(

∫ T

0

∫ T

0

vsvtG(|t− s|)dsdt) 1
2

< ∞

as required.
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