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Abstract: For a general class of FXt -adapted path-dependent functionals Yt of the canonical
sample path (Xt)t∈[0,T ] and a given family of marginals µt(dx, dy) for t ∈ [0, T ], we identify the

process which maximizes (resp. minimizes) E(
∫ T
0 f(σ2

t )g(Xt, Yt)ν(dt)) over the space of contin-
uous martingale Itô processes X such that (Xt, Yt) ∼ µt for all t ∈ [0, T ] for a concave (convex)
function f , a non-negative function g and a non-negative Borel measure ν. Using a simple con-
ditional Jensen argument we show that the extremal model is a Brunick-Shreve[BS13] diffusion-

type process of the form dX̂t = σ̂(X̂t, Ŷt, t)dŴt, where σ̂(x, y, t)2 = E(σ2
t |Xt = x, Yt = y) and

Ŵt is a Brownian motion on some filtered probability space (and this model is clearly complete).
As a special case this includes discrete and continuously monitored volatility swap-type payoffs

of the form
∫ T1
0 |σt|ν(dt) for any maturity T1 ∈ [0, T ]. Similarly, the process which maximizes or

minimizes E(
∫ T
0 f(σ2

t )g(Xt)ν(dt)) over continuous martingale Itô processes X such that Xt ∼ µt
for all t ∈ [0, T ] is the associated Dupire local volatility model, and we construct the appropriate
super(sub)-hedge using dynamic trading in X and European-type contracts on X. We also give
a positive answer to the problem discussed in Acciaio&Guyon[AG20], namely that an ε-optimal
model for the largest price of a VIX future with maturity T given marginals for S at all maturities
in [0, T + ∆] (or a finite set of tradeable options) is given by a Brunick-Shreve type-mimicking
model of the form dSt = Stσloc(St, t)dWt for t ∈ [0, T ] and dSt = Stσloc(St, St/ST , t)dWt for
t ∈ (T, T + ∆], where T is the maturity of the VIX future (and similarly for forward-starting op-
tions). This sheds further light on some long-standing questions about when a calibrated Dupire
local volatility model gives rise to extremal prices for certain types of volatility derivatives, and
complements the counterexample result in [AG20] which shows that the usual Dupire model does
not maximize the price of a VIX future.∗

1. Background and literature review

The mimicking problem involves constructing a process that mimics certain properties of a given Itô
process, but is simpler in the sense that the mimicking process solves a stochastic differential equation,
or more generally a stochastic functional differential equation, while the original Itô process may have
drift and diffusion terms that are themselves adapted stochastic processes. The classical [Gyö86] article
considers a multi-dimensional Itô process, and constructs a weak solution to an SDE which mimics
the marginals of the original Itô process at each fixed time. The drift and covariance coefficient for the
mimicking process can be interpreted as the expected value of the instantaneous drift and covariance
of original Itô process, conditioned on its terminal level.

Brunick&Shreve[BS13] relax the conditions of non-degeneracy and boundedness on the covariance
of the Itô process imposed in [Gyö86], and they also significantly extend the Gyöngy result. More
specifically, the main result Theorem 3.6 in [BS13] proves that we can match the joint distribution
at each fixed time of various functionals of the Itô process, including the maximum-to-date or the
running average of one component of the Itô process. The mimicking process now takes the form of a
stochastic functional differential equation (SFDE) and the diffusion coefficient for the SFDE is given
by the so-called Markovian projection; in the case when we are mimicking the law of the terminal value
of the process Xt and another path-dependent functional Yt, the Markovian projection is given by the
conditional expectation E(σ2

t |Xt, Yt). If in addition σ̂(x, y)2 is continuous and strictly positive, then
Corollary 3.13 in [BS13] shows that all weak solutions to the SFDE have the same law.

[BS13] do not provide a constructive method for computing σ̂(x, y, t)2; however, for the standard
problem of just mimicking the law of the terminal value of the process, this can be computed from
the well known Dupire forward equation for continuous semimartingales, in terms of infinitesimal
calendar and butterfly spreads of put or call options. This equation was derived heuristically in [Dup96]
and can be proved rigorously using the Tanaka-Meyer formula for continuous semimartingales, see
Klebaner[Kle02].

∗The author would like to thank Benjamin Smith for helpful comments
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The other main technical obstacle in establishing fitting and mimicking results of this nature is
establishing uniqueness for the associated forward Kolmogorov equation (or associated partial integro-
differential equation when there is a jump component), in the sense of distributions. This can be
done when Yt is an a.s. absolutely continuous functional using standard existence and uniqueness
theorems for the forward Kolmogorov equation associated with the mimicking diffusion process, which
is degenerate when we are just mimicking the marginals of the two quantities (Xt, Yt), because there
is only one driving Brownian motion. It is less clear how to proceed for a.s. non-absolutely continuous
functionals likes the running maximum or local time, because the mimicking process now takes the
form of a non-standard stochastic functional differential equation for which the theory is less developed.

[Forde14] considers an Itô process of the form dXt = σtdWt, and a general FXt -adapted non-
decreasing process Yt (this is the path-dependent functional of interest), and first considers the case
when Yt is a.s. non absolutely continuous and Xt = g(Yt) for some continuous function g(.), on the
growth set of Yt; this condition is satisfied when for example when Y is the running maximum of X with
g(y) = y, or if Yt = Lat the local time of X at a with g(y) = a. In this setup, a general forward equation
for the Fourier-Laplace transform of the law of (Xt, Yt) is established, and the forward equation can
be inverted to compute the Markovian projection σ̂(x, y, t)2 explicitly via a Fourier-Laplace inversion,
without the a priori assumption that (Xt, Yt) has a density at (x, y) or that σ̂(t, ., .) is continuous at
(x, y). A mimicking result for the case when Y is quadratic variation is also established under more
stringent conditions on σ̂(x, y), by establishing uniqueness for the associated martingale problem (in
the Stroock-Varadhan sense).

Backhoff et al.[BBHK20] show that the simple Bass martingale maximizes the expectation of the

vol-swap type payout
∫ T

0
|σt|dt, subject to the single-marginal constraint XT ∼ µ, and one can easily

verify that the Bass martingale is particular type of local volatility model. Acciaio&Guyon[AG20] build
a continuous stochastic volatility model in which a VIX future is strictly more expensive than in its
associated local volatility model, which disproves the long-held conjecture that the latter maximizes
the price of a VIX future over all continuous martingale models consistent with the given family of
marginals (this is closely related to the final section in this article where a positive result in this
direction is established), see also Beiglböck et al.[BFS11].

Touzi et al.[RTT18] consider the full marginals limit of the multiple-marginals Root embedding
considered in Cox et al.[COT18], and they show that the family of potential functions can be char-
acterized as a viscosity solution to a variational inequality, part of which involves the heat equation.
[KTT17] consider the full marginals limit for the multi-maturity Azéma-Yor embedding, which is
constructed in Obloj&Spoida[OS17]. Hobson[Hob16] constructs a family of pure-jump martingales
consistent with a given family of univariate marginals, and within this family identifies the martingale
which minimizes the expected total variation over all martingales consistent with these marginals (see
also Madan&Yor[MY02] for another discontinuous martingale which is also consistent with marginals
at all maturities based on a family of Azema-Yor stopping times). We also mention the Local Variance
Gamma (LVG) model of Carr&Nadtochiy[CN17], which consists of a local volatility model evaluated
at an independent gamma subordinator, where the volatility function can be chosen so as to be consis-
tent with a finite number of implied volatility smiles at multiple maturities, and [GJMN16] who derive
explicit arbitrage-free SVI parametrizations for the whole implied volatility surface.

1.1. The Brunick-Shreve mimicking result

We now briefly summarize the main result in Brunick&Shreve[BS13] for the special case when the
dimension n = 1 and the process under consideration is driftless.

For an Itô process of the form in (2.1), [BS13] consider a certain class of path-dependent functionals
Y of X which can be associated with an updating function Φt(e1, e2;x), which can include Yt = X̄t

(the running maximum of X), Yt = Xt (the running minimum of X) or an additive functional of the

form Yt =
∫ t

0
g(Xs)ds, but cannot include 〈X〉t the quadratic variation of X or Lat the local time of

X at x = a because these functionals are not continuous in the sup norm topology (see [Forde14]
for mimicking theorems which deal with these two cases). For continuous functionals Y in the class
of updating functions, Theorem 3.6 in [BS13] proves that there exists a filtered probability space

(Ω̂, F̂ , F̂t, P̂) that supports a continuous adapted process X̂ on R and a one-dimensional Brownian
motion Ŵ satisfying

X̂t =

∫ t

0

σ̂(X̂s, Ŷs, s)dŴs (1.1)

where σ̂(X̂t, Ŷt, t)
2 = E(σ2

t |Xt, Yt) P-a.s. t ∈ N c for some Lebesgue null set N ⊂ [0,∞), such that the

distribution of (Xt, Yt) under P agrees with the distribution of (X̂t, Ŷt) under P̂ for all t ∈ [0, T ]. If in
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addition σ̂(x, y)2 is continuous and strictly positive, then Corollary 3.13 in [BS13] shows that all weak
solutions to (1.1) have the same law.

2. The modelling set up

We will say that X is an Itô process if there exists a filtered probability space (Ω,F ,Ft,P) satisfying
the usual conditions such that

Xt =

∫ t

0

σsdWs (2.1)

where W is a standard one-dimensional Brownian motion adapted to Ft, and σt is an Ft-adapted
process with E(

∫ t
0
σ2
sds) < ∞ for all t ≤ T , so X is an Ft-martingale. Let FXt denote the natural

filtration of X, and let Y Xt be an FXt -adapted process which can be associated to an updating function
Φ(e1, e2, x) of X in the sense in section 3 in [BS13].

We henceforth use Yt as shorthand for Y Xt .

We begin with an elementary lemma:

Lemma 2.1. For each t ∈ ×(0, T ], there exist Borel functions σ̂2(., ., t) : R×R 7→ R+ and σ̄ : R×R 7→
R+ such that

E(σ2
t |Xt, Yt) = σ̂2(Xt, Yt, t) pt − a.s.

E(|σt| |Xt, Yt) = σ̄(Xt, Yt, t) pt − a.s.

where pt(dx, dy) denotes the law of (Xt, Yt), with σ̂2(., ., t) and σ̄(., ., t) unique up to a set of pt(., .)-
measure zero.

Proof. See Appendix.

Remark 2.2. σ̂2(x, y, t) is known as the Markovian projection of σ2
t on (Xt, Yt).

From the conditional Jensen inequality, we know that

E(σ2
t |Xt, Yt) ≥ E(|σt| |Xt, Yt)

2 = σ̄(Xt, Yt)
2

pt-a.s., so

σ̂(x, y, t)2 ≥ σ̄(x, y, t)2 pt-a.s. (2.2)

2.1. Extremal properties of Brunick-Shreve diffusion-type processes

Now consider a family of probability measures (µt)t∈[0,T ] on R × R such that
∫
xµt(dx, dy) = 0 and∫

|x|µt(dx, dy) <∞ and µ0(dx, dy) = δ(0,0). LetM(µ(.)) denote the collection of all Itô processes such
that (Xt, Yt) ∼ µt for all t ∈ [0, T ], and we make the following assumption throughout:

Assumption 2.3. There exists an Itô process such that (Xt, Yt) ∼ µt for all t ∈ [0, T ].

Remark 2.4. A necessary condition for this Assumption to be satisfied is that the σ̂(x, y)2 calculated
from (µt)t∈[0,T ] using the Fourier inversion method in [Forde14] is real-valued. An important open
question is what is a sufficient condition (this would require establishing uniqueness for the forward
equation which links E(eikXt−λYt) and E(σ2

t e
ikXt−λYt) = E(σ̂(Xt, Yt, t)

2eikXt−λYt) in Theorem 3.1 for
the non-absolutely continuous case in [Forde14]).

X̂ attains equality in (2.2) and from the Brunick-Shreve result we know that the left hand side
of (2.2) is constant for all X ∈ M(µ(.)) (for x, y fixed). Hence X̂ also maximizes σ̄(x, y, t)2 (and
|σ̄(x, y, t)|) over X ∈M(µ(.)) and also maximizes the measure

|σ̄(x, y, t)| pt(dx, dy) = E(|σt|1Xt∈dx,Yt∈dy)

over all X ∈ M(µ(.)) (where pt(dx, dy) denotes the law of (Xt, Yt)) because pt(dx, dy) = µt(dx, dy)

(i.e. is unchanging) for each X ∈ M(µ(.)), from the definition of M(µ(.)). Thus X̂ also maximizes

E(
∫ T

0
|σt|g(Xt, Yt, t)dt) for any non-negative Borel function g, and more generally maximizes

E(

∫ T

0

f(|σt|)g(Xt, Yt)ν(dt)) (2.3)
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for any non-negative concave function f , and non-negative Borel measure ν. By trivial modifications,
we see that X̂ minimizes (2.3) if f is convex. As a special case this includes a volatility swap-type

payoff of the form
∫ T1

0
|σt|dt for any T1 ∈ [0, T ] (note that some authors define a volatility swap as

paying (
∫ T

0
σ2
t dt)

1
2 not

∫ T
0
|σt|dt).

Remark 2.5. If Yt = [X]t (the quadratic variation of X), then section 5 of [Forde14] gives us the
mimicking result we need, albeit under the more stringent condition that σ̂(x, y, t) is bounded and
continuous and has two bounded continuous spatial derivatives.

2.2. The univariate and multi-dimensional cases

From Theorem 3.6 in [BS13] we can also forget about the Y variable, and just maximize E(
∫ T

0
f(σ2

t )g(Xt)ν(dt))
over all Itô processes X such that Xt ∼ µt for all t ∈ [0, T ] for a given family of univariate marginals
(µt)t∈[0,T ], assuming such an Itô process exists (for which a necessary condition is that µt be be non-
decreasing in the convex order, see e.g. Lowther[Low07],[Low08], Beiglböck et al.[BHS17] and Strassen’s
theorem (Theorem 8 in [Str65]) for more on this). By an almost identical analysis to above, the ex-
tremal model is now given by a Dupire-type local volatility model of the form dX̂t = σ̂(Xt, t)dŴt,
where σ̂(Xt, t) = E(σ2

t |Xt) a.s.. Dupire’s model is still a plausible and (historically) popular model
which has been used in the industry for 25 years, unlike most extremal Skorkohod embeddings which
(despite their mathematical beauty) typically give rise to unrealistic models which stop moving before
the final maturity T and upper/lower bounds which are too wide to be of practical use. Or we can
work with a d-dimensional Y functional as in [BS13], and/or mimick marginals of an n-dimensional X
process (we do not pursue this here).

2.3. Sub/super hedging

For simplicity we concentrate on the univariate case discussed in the previous subsection, and assume
that f ∈ C1 and that ν has a density. Then using that f(x) ≤ f(x∗)+f ′(x∗)(x−x∗) with x∗ = E(σ2

t |Xt)
we get

f(σ2
t ) ≤ f(E(σ2

t |Xt)) + f ′(E(σ2
t |Xt))(σ

2
t − E(σ2

t |Xt))

= f(σ̂(Xt, t)
2) + f ′(σ̂(Xt, t)

2)(σ2
t − σ̂(Xt, t)

2)

and hence∫ T

0

f(|σt|)g(Xt)ν(t)dt ≤
∫ T

0

f(σ̂(Xt, t)
2)g(Xt)ν(t)dt +

∫ T

0

f ′(σ̂(Xt, t)
2)(σ2

t − σ̂(Xt, t)
2)g(Xt)ν(t)dt .

The first and the third terms on the right hand side are just the payoffs of European-type payoffs
over the continuum of maturities t ∈ [0, T ]. To replicate the middle term f ′(σ̂(Xt, t)

2)σ2
t , we note that

for any ψ ∈ C2,1 we have

ψ(XT , T ) −
∫ T

0

ψx(Xt, t)dXt −
∫ T

0

ψt(Xt, t)dt =
1

2

∫ T

0

σ2
tψxx(Xt, t)dt

and setting f ′(σ̂(x, t)2)g(x)ν(t) = ψxx(x, t) and solving for ψ, we can also replicate this middle term.

Thus we have a model-independent superhedge for
∫ T

0
f(|σt|)g(Xt)ν(t)dt, and clearly if we instead

assume that f is convex, then this trading strategy becomes a sub-hedge.

We can perform a similar analysis for the case when we have joint marginals for (Xt, Yt), in this
case we require bi-variate European-type contracts of the form ψ(Xt, Yt) at all maturities.

3. Extremal models for VIX futures given full marginals for X

We now assume S is a strictly positive stock price process of the form

dSt = StσtdWt (3.1)

with S0 > 0 (where σ satisfies the same conditions as in Section 2.1) such that S is an Ft martingale
(for which a sufficient condition is that σ satisfies the Novikov condition). Then Xt = logSt of course
satisfies dXt = − 1

2σ
2
t dt + σtdWt. Now let Yt := Xt − XT for t > T and zero for t ∈ [0, T ]; then

from Theorem 3.6 in [BS13], there exists a filtered probability space (Ω̂, F̂ , F̂t, P̂) that supports a
continuous adapted process X̂ on R and a one-dimensional Brownian motion Ŵ satisfying dX̂t =
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− 1
2 σ̂(X̂t, Ŷt, t)

2dt + σ̂(X̂t, Ŷt, t)dŴt with Ŷt := X̂t − X̂T for t > T and zero for t ∈ [0, T ] and with

X̂0 = X0, where σ̂(X̂t, Ŷt, t)
2 = E(σ2

t |Xt, Yt) a.s. and such that (X̂t, Ŷt) ∼ (Xt, Yt) for all t ∈ [0, T+∆].
Note of course that X̂ is just a conventional Dupire-type local volatility model up to time T since Ŷt = 0
is not random on this time interval).

If we now consider a VIX future with maturity T which pays V := E(L(ST+∆/ST )|FT )
1
2 at time T

(where L(s) := − 2
∆ log s, and in practice ∆ = 30 days). Then following Proposition 4.10 in [GMN17],

using Jensen and the tower property we see that

E(V ) = E(E(V |ST )) ≤ E(
√

(E(V 2|ST )))

= E(
√

E(E(L(ST+∆/ST )|FT )|ST ))

= E(
√
E(L(ST+∆/ST )|ST ))

= E(
√
E(−2(XT+∆ −XT )|XT ))

=

∫ ∞
0

√
(

∫ ∞
0

L(y)q(dy|s)) p(ds)

(where q(dy|s) is conditional law of ST+∆/ST given ST = s and p(ds) is marginal law of ST )

= EP̂(

√
EP̂(−2(X̂T+∆ − X̂T )|X̂T ))

= EP̂(V ) (3.2)

where the penultimate equality follows since (ST1
, ST2

/ST1
and (ŜT1

, ŜT2
/ŜT1

) have the same joint laws
(from the mimicking property) and the final equality follows since X̂ is Markov in X̂ on [0, T ], and

the final line is the price of the VIX future associated with the mimicking process Ŝ = eX̂ . In practice
we would not have access to joint marginals for St and St/ST for all t ≥ T (to do so would require
tradeable bivariate call contracts with payoff (St −K)+(St/ST − L)+ for all strikes K and L and all
maturities t ∈ (T, T + ∆] which do not exist in practice), so we cannot compute σ̂(x, y, t) from market
data if we only have observed European option prices at all strikes and maturities as is often assumed.

To make further progress, we now let M denote the space of all martingale processes of the form
in (3.1) (possibly on different probability spaces) and consider a family (µt)t∈[0,T+∆] of probability
measures on (0,∞) with µ0 = δ{S0} (the dirac measure at S0) and

∫
sµt(ds) = S0 which are strictly

increasing in convex order, and assume S ∈M : St ∼ µt,∀t ∈ [0, T + ∆] is non-empty 1. Then for any
ε > 0, consider an ε-optimal process S for the problem of maximizing the price of a VIX future over
all S ∈M((µt)t∈[0,T+∆]):

P := sup
S∈M :St∼µt,∀t∈[0,T+∆]

E(
√

E(L(ST+∆/ST )|FST ))

where (with mild abuse of notation) FS here is the filtration being used for the probability space on
which each process S is defined (which may be strictly larger than the filtration generated by S). Then
using (3.2), we know that

P − ε ≤ EP̂(

√
EP̂(−2(X̂T+∆ − X̂T )|X̂T )) ≤ P

where P̂ is the probability measure for the probability space on which X̂ is defined, and the second

inequality follows since Ŝ = eX̂ is also in M : St ∼ µt,∀t ∈ [0, T + ∆]. Thus we see that Ŝ is also
ε-optimal. So essentially any extremal (or ε-extremal) model has a Markovian projection in this sense
which attains a VIX future price which is at least as large as P − ε.

Remark 3.1. Note this does not mean we can easily explicitly compute σ̂(., ., .), because we would need
to know the original extremal (or ε-extremal) model to be able to compute σ̂(x, , y, t)2 = E(σ2

t |Xt =
x, Yt = y), so in its current form this tells us the qualitative form of an extremal model rather but not
an explicit recipe for constructing it.

1A sufficient condition for non-emptyness is that the call option price function C(K,T ) :=
∫

(s − K)+µt(ds) is
differentiable in T and the µt’s admit densities so CKK(K,T ) = µt(K) and that the calibrated volatility function
obtained from the usual Dupire forward equation for European call options satisfies suitable Lipschitz and growth
conditions to ensure that the Dupire forward equation has a unique solution, see also Proposition 4.1 in [Fig08] and
Proposition 5.3 in [Forde14] and discussion in the introduction for more on this point. Alternatively one could take the
(weaker) approach in Proposition 3.3 in [Forde14] with ik replaced with −λ for λ > 0, and check that the candidate
U(λ, t) = E(σ2

t e
−λSt ) function is completely monotone in λ > 0 (for each t) which ensures that it is the Laplace

transform of a non-negative Borel measure q(ds, t) and then check that q(ds, t) is absolutely continuous with respect
to p(ds, t) := µt(ds), but checking the completely monotone property requires checking the sign of a countably infinite
number of derivatives, so this formulation is of more theoretical interest.
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Note we can also replace S ∈ M : St ∼ µt,∀t ∈ [0, T + ∆] with S ∈ M : E(fi(STi
, STi∨T /ST )) =

Pi), i = 1..N for n integrable payoff functions fi, so long as this set is non-empty, which corresponds
to n tradeable European and/or forward starting-type contracts.

Remark 3.2. Trivially, we also see that any ε-optimal price for a forward-starting option with payoff
(ST2 − λST1)+ given marginals for S for all t ∈ [0, T2] (with 0 < T1 < T2) can also be attained by the
mimicking model Ŝ, since (ST1 , ST2/ST1 and (ŜT1 , ŜT2/ŜT1) have the same joint laws, and in fact this
we also be true if we replace the sup with an inf in the definition of P .
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[BS13] Brunick, G. and S.Shreve, “Matching an Itô Process by a Solution of a Stochastic Differential
Equation”, 2013, Ann. Appl. Probab., Vol. 23, No. 4, 1584-1628.

[CN17] Carr, P. and S.Nadtochiy, “Local Variance Gamma and Explicit Calibration to Option Prices”,
Mathematical Finance, 27(1), 2017.

[COT18] Cox, A.M.G., J. Obloj, and N.Touzi, , “The root solution to the multi-marginal embedding
problem: an optimal stopping and time-reversal approach”, Probab. Theory Related Fields, 2018.

[Dup96] Dupire, B., “A unified theory of volatility”, Paribas working paper, 1996 (also appears in
“Derivatives Pricing: the classic collection”, pages 185-196. Risk Books, 2004).

[Fig08] Figalli, A., “Existence and uniqueness of martingale solutions for SDEs with rough or degen-
erate coefficients”, J.Funct.Anal., Vol. 254, 1, 109-153, 2008.

[Forde11] Forde, M., “A diffusion-type process with a given joint law for the terminal level and supre-
mum at an independent exponential time”, Stoch. Proc. Appl., 121, 2802-2817, 2011.

[Forde14] Forde, M., “On the Markovian projection in the Brunick-Shreve mimicking result”,
Stat.Prob.Lett., 85, 98-105, 2014.
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Appendix A: Proof of Lemma 2.1

Similar to the proof of Proposition 4.4. in [Gyö86], we now recall the definition of σ̂2(x, y, t) =
E(σ2

t |Xt = x, Yt = y) via the Radon-Nikodým theorem: we consider the measure qt defined by the
formula

qt(A) = E(1(Xt,Yt)∈A σ
2
t ) .
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for every A ∈ B(R× R+). qt is absolutely continuous with respect to pt(dx, dy). Thus, by the Radon-
Nikodým theorem, there exists a measurable function σ̂2(, ., ., t) such that

qt(A) =

∫
R×R+

1A σ̂
2(x, y, t) pt(dx, dy) .

For every t, σ̂2(., ., t) is unique up to a set of pt(., .)-measure zero. We then define E(σ2
t |Xt = x, Yt =

y) = σ̂2(x, y, t) and from the standard Kolmogorov definition of conditional expectation, E(σ2
t |Xt, Yt) =

σ̂2(Xt, Yt, t) a.s. We perform a similar analysis for E(σt|Xt, Yt).


