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Abstract

We compute E(Xt|(Xs)0≤s≤L) for the standard Bacry-Muzy log-correlated Gaussian field
X with covariance log+ T

t−s , which corrects the finite-horizon prediction formula in Vargas et
al.[DRV12]. The problem can be viewed as a linear filtering problem, and we solve the prob-
lem by showing that the L2(P) closure of {

∫
[0,L]

φ(s)Xsds : φ ∈ S, supp(φ) ⊆ [0, L]} is equal to

{X(φ) : φ ∈ H− 1
2 , supp(φ) ⊆ [0, L]}, where X(φ) is defined as a continuous linear extension of

X acting on S ⊂ Hs, Hs denotes the fractional Sobolev space of order s and P is the law of the
field X on the space of tempered distributions. The explicit formula for the filter is obtained as
the solution to a Fredholm integral equation of the first kind with logarithmic kernel. From this
we characterize the conditional law of the Gaussian multiplicative chaos (GMC) Mγ generated by
X, using that Mγ is measurable with respect to X. We also outline how one can adapt this result
for the Riemann-Liouville GMC introduced in [FFGS19], which has a natural application to the
Rough Bergomi volatility model in the H → 0 limit.1

1 Introduction

Originally pioneered by Kahane[Kah85], Gaussian multiplicative chaos (GMC) is a random measure
on a domain of Rd that can be formally written as

Mγ(dx) = eγXx−
1
2γ

2E(X2
x)dx (1)

where X is a Gaussian field with zero mean and covariance K(x, y) := E(XxXy) = log+ 1
|y−x| + g(x, y)

for some bounded continuous function g. X is not defined pointwise because there is a singularity in
its covariance, rather X is a random tempered distribution, i.e. an element of the dual of the Schwartz
space S under the locally convex topology induced by the Schwartz space semi-norms. For this reason,
making rigorous sense of (1) requires a regularizing sequence Xε of Gaussian processes (with the
singularity removed, see e.g. [BBM13] and [BM03] for a description of such a regularization in 1d
based on integrating a Gaussian white noise over truncated triangular region, which is summarized in
Section 2.3 in [FFGS19], or page 17 in [RV10] and section 3.4 in [Sha16] for a general method in Rd
using a convolution to smooth X). In most of the literature on GMC, the choice of Xε is a martingale

in ε, from which we can then easily verify that Mε
γ (A) =

∫
A
eγX

ε
x− 1

2γ
2Var(Xεx)dx is a martingale, and

then obtain a.s. convergence of Mε
γ (A) using the martingale convergence to a random variable Mγ(A)

with E(Mγ(A)) = Leb(A), and with a bit more work we can verify that Mγ(.) defines a random
measure (see the end of Section 4 on page 18 in [RV10]).

If γ2 < 2d, Mε
γ (dx) = eγX

ε
x− 1

2γ
2E((Xεx)2)dx tends weakly to a multifractal random measure Mγ with

full support a.s. which satisfies the multifractal property

E(Mγ([0, t])q) = cqt
ζ(q) (2)

for q ∈ (1, q∗) for some constant cq = E(Mγ([0, 1])q), where q∗ = 2
γ2

2 and

ζ(q) = q − 1

2
γ2(q2 − q)
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and E(Mγ([0, t])) =∞ if q > 2
γ2 , see Theorem 2.13 in [RV14] and Lemma 3 in [BM03]). Moreover, we

can show that the support of Mγ is a so-called γ-thick points of X, i.e. points such that limε→0
Xε

log 1
ε

= γ

(see e.g. section 2 in [Aru17], [Ber17] and page 7 in [RV16] for more on this), and for g ≡ 0, explicit
expressions are known for the Mellin transform of the law of Mγ([0, 1]) (see e.g. [Ost09], [Ost13],
[Ost18]), which show that logMγ([0, 1]) has an infinitely divisible law, and an explicit formula for
sampling the law of the total mass of the GMC on the interval is given in [RZ17].

Mγ is the zero measure for γ2 = 2d and γ2 > 2d; in these cases a different re-normalization
is required to obtain a non-trivial limit. Specifically, for γ2 = 2d, we obtain a non-trivial limit by

considering
√

log 1
ε ·M

γ=2
ε as ε→ 0 or the “derivative measure” d

dγ e
γXε− 1

2γ
2Var(Xε)|γ=

√
2d. [DRSV14]

show that both these objects tend weakly to the same measure µ′ as ε→ 0, and in 2d Aru et al.[APS19]

have shown that
Mγ

2−γ → 2µ′ in probability as γ tends to the critical value of 2, and the critical γ-value

is particularly important in Liouville quantum gravity (again see [DRSV14] for further discussion).
One can also construct a GMC for the super-critical phase γ >

√
2, using an independent stable

subordinator time-changed by a sub-critical GMC (see section 3 in [BJRV14]) to construct an atomic
GMC with the correct (locally) multifractal exponent for γ-values greater than

√
2, which is closely

related to the non-standard branch of gravity in conformal field theory.

In the sub-critical case, using a limiting argument it can be shown that Mγ satisfies the “master
equations”: M(X+f, dz) = eγf(z)M(X, dz) and E(

∫
D
F (X, z)Mγ(dz)) = E(

∫
D
F (X+γ2K(z, .), z)dz)

for any measurable function F and any interval D, which comes from the Cameron-Martin theorem
for Gaussian measures and the notion of rooted measures and the disintegration theorem (see section
2.1 in [Aru17] for a nice discussion on this). Moreover, either of these two can equations can be taken
as the definition of GMC, and they uniquely determine Mγ as a measurable function of X, and hence
also uniquely fix its law (see also Theorem 6 in Shamov[Sha16].

GMC also has a natural and important application in Liouville Quantum Field Theory; LQFT is
is a 2d model of random surfaces, which (formally) we can view as a random metric in the context of
quantum gravity, where we weight the classical free field action with an interaction term given by the
exponential of a GMC and can be viewed as a toy model to understand in quantum gravity how the
interaction with matter influences the geometry of space-time.

2 Construction of the standard Bacry-Muzy GMC on the line

Define the Gaussian process ωε(t) as in Eq 7 in [BBM13] with λ = 1 (except here use ε instead of l),
and set Xε

t := ωε(t)− E(ωε(t)), so

Xε
t =

∫
(u,s)∈Aε(t)

dW (u, s) (3)

where dW (u, s) is 2-dimensional Gaussian white noise with variance s−2duds, and Aε(t) is triangular
region defined in Eq 8 (and Figure 1) in [BBM13]. Then

Rε(s, t) := E(Xε
sX

ε
t ) =


log T

τ ε ≤ τ ≤ T
log T

ε + 1− τ
ε τ ≤ ε

0 τ > T

(4)

where τ = |t− s| (see Eq 10 in [BBM13]), and one can easily verify that

Rε(s, t) ≤ log
T

τ
= R(s, t) (5)

for s, t ∈ [0, T ] (see Eq 25 in [BM03]). Using (3), we also see that

E(Xε
tX

ε′

s ) = E(

∫
(u,v)∈Aε(t)

dW (u, v)

∫
(u,v)∈Aε′ (s)

dW (u, v)) =

∫
Aε(t)∩Aε(s)

1

v2
dudv = E(Xε

sX
ε
t )

for 0 < ε′ ≤ ε (i.e. the answer does not depend on ε′). We now define the measure

Mε
γ (dt) = eγX

ε
t− 1

2γ
2Var(Xεt )dt .

One can easily verify that Mε
γ (A) is a backwards martingale with respect to the filtration Fε :=

σ(W (A,B) : A ⊂ R+, B ⊆ [ε,∞]) (see e.g. subsection 5.1 in [BM03] and page 17 in [RV10]) and

sup
ε>0

E(Mε
γ (A)q) <∞ (6)
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(Lemma 3 i) in [BM03]), so from the martingale convergence theorem, Mε
γ (A) converges to some

random variable Mγ(A) in Lq for q ∈ (1, q∗), and from the reverse triangle inequality this implies that

lim
ε→0

E((Mε
γ (A))q) = E(Mγ(A)q) (7)

Moreover, one can show that Mγ(.) defines measure (see e.g. end of Section 4 on page 18 in [RV10]),
and since Mε

γ (A) → Mγ(A) a.s. for any Borel set A this implies weak convergence of Mε
γ to Mγ a.s.

(from e.g. Theorem 3.1 parts a) and f) in Ethier&Kurtz[EK86]).

Moreover Mγ is multifractal, i.e. E(|Mγ([0, t])|q) = cq,T t
ζ(q) (see e.g. Lemma 4 in [BM03]) for

some finite constant cq,T > 0, depending only on q and T . For integer q ≥ 1, we also note that

E(Mγ(A)q) =

∫
A

...

∫
A

e
γ2 ∑

1≤i<j≤q log T
|ui−uj | dui...duq

=

∫
A

...

∫
A

e
γ2q(q−1) log T +

∑
1≤i<j≤q log 1

|ui−uj | dui...duq = T γ
2q(q−1)E(Mγ(A)q)

so we see that

cq,T = cqT
γ2q(q−1)

where cq := cq,1, and this also holds for non-integer q (see e.g. Theorem 3.16 in [Koz06]).

3 The conditional law of the standard log correlated Gaussian
field

Consider a standard log-correlated Gaussian field Z on R with covariance R(s, t) = log+ T
|t−s| . From

the Minlos-Bochner theorem, we know that the law of Z is a Gaussian measure on the space S ′ of
tempered distributions (see e.g. [DRSV17] and Appendix A in [FFGS19] for more details on tempered
distributions) which is the dual of the Schwartz space S (see e.g. section 2.2 in [DRSV14] and Theorem
2.1 in [BDW17]). Moreover, S is a Montel space and thus is reflexive, i.e. (S ′)′ is isomorphic to S
using the canonical embedding of S into its bi-dual (S′)′. From here on, we are only concerned with
the restriction of Z to [0, T ] (on which the covariance of Z is just log T

|t−s| , so we set Z equal to zero

outside this interval for simplicity.

Proposition 3.1 Xε tends to X in distribution with respect to the strong and weak topology (see page
2 in [BDW17] for definitions), where X has the same law as the field Z defined above.

Proof. 0 ≤ Rε(s, t) ≤ R(s, t) for s, t ∈ [0, T ] (see (5)), so from the dominated convergence theorem,
we have

lim
ε→0

∫
[0,T ]2

φ1(s)φ2(t)Rε(s, t)dsdt =

∫
[0,T ]2

φ1(s)φ2(t)R(s, t)dsdt (8)

for any φ1, φ2 ∈ S, where Rε(s, t) is defined as in (4). Similarly, for any sequence φk ∈ S with
‖φk‖m,j → 0 for all m, j ∈ Nn0 for any n ∈ N (i.e. under the Schwartz space semi-norm defined in Eq
1 in [BDW17])

lim
k→∞

∫
[0,T ]2

φk(s)φk(t)R(s, t)dsdt = 0 (9)

since ν(A) :=
∫
A
R(s, t)dsdt is a bounded non-negative measure (since

∫ T
0

∫ t
0
R(s, t)dsdt < ∞), and

the convergence here implies in particular that φk tends to φ pointwise, so we can use the bounded
convergence theorem. Thus if we define

LXε(f) := E(ei(f,X
ε)) = e−

1
2

∫
[0,T ]2

f(s)f(t)Rε(s,t)dsdt

L(f) := e−
1
2

∫
[0,T ]2

f(s)f(t)R(s,t)dsdt

for f ∈ S, then from (8) and (9) and Lévy’s continuity theorem for generalized random fields in the
space of tempered distributions (see Theorem 2.3 and Corollary 2.4 in [BDW17]), we see that LXε(f)
tends to L(f) pointwise and L(.) is continuous at zero, then there exists a generalized random field
X (i.e. a random tempered distribution, such that LX = L and Xε tends to X in distribution with
respect to the strong and weak topology (see page 2 in [BDW17] for definition).

3



In general, the conditional expectation of a random variable is equal to its projection onto the
Gaussian Hilbert space (sub-Hilbert space of L2(Ω,F ,P)) generated by the variables on which we are
conditioning. To this end, we let F̄ denote the Hilbert space given by the L2(S,FL,P) closure of

F = {X(φ) : φ ∈ S, supp(φ) ⊆ [0, L]}

where FL = σ((Xu)0≤u≤L). The closure here is necessary because the notion of orthogonal projec-
tion requires the Hilbert space structure, and there is no guarantee that the conditional expectation
E(X(ψ)|FL) will be a random variable of the form

∫
[0,L]

Xsφ(s)ds with φ ∈ S.

In order to characterize F̄ , we first note that

E[(

∫
Xsφ(s)ds)2] =

∫ ∫
R(s, t)φ(s)φ(t)dsdt .

From Eqs 2.1 in [DRV12], we also know that

c‖φ‖
H−

1
2
≤

∫ ∫
R(s, t)φ(s)φ(t)dsdt ≤ C‖φ‖

H−
1
2

(10)

where 0 < c < C < ∞. Let Hs denotes the fractional Sobolev space of order s (see e.g. Section 2.2
in [JSW18] for definitions). Then we can put two inner products on the linear space S of Schwarz
functions:

1. 〈φ, ψ〉
H−

1
2

:=
∫∞
−∞(1 + |k|2)−

1
2 φ̂(k)

¯̂
ψ(k)dk (i.e. the standard inner product on H−

1
2 )

2. 〈φ, ψ〉 := E[X(φ)X(ψ)] =
∫ ∫

φ(s)ψ(t)R(s, t)dsdt

Eq 2.2 in [DRV12] shows that these two inner products are equivalent and thus generate the same
topologies on S.

We now make the following observations:

• Let φ ∈ H− 1
2 , with supp(φ) ⊆ [0, L]. S is dense in H−

1
2 , so there exists a sequence φn ∈ S with

supp(φn) ⊆ [0, L] such that ‖φn − φ‖
H−

1
2
→ 0, and φ is a Cauchy sequence in H−

1
2 so (by the

equivalence of norms) X(φn) is a Cauchy sequence in F̄ , and thus converges to some Y in F̄ .

This defines X(φ) := Y as a continuous linear extension of X from S to the larger space H−
1
2 ,

which we will also often write as
∫
φ(t)Xtdt. To check that X(φ) is uniquely specified, consider

two such sequences φn and φ′n. Then from the triangle inequality

‖φn − φ′n‖H− 1
2
≤ ‖φn − φ‖

H−
1
2

+ ‖φ− φ′n‖H− 1
2
→ 0

and thus (by the equivalence of norms) we have ‖X(φn) − X(φ′n)‖L2(S,FL,P) = ‖X(φn) −
X(φ′n)‖F̄ → 0 .

• Conversely, for any Z ∈ F̄ , there exists a sequence φn ∈ S such that X(φn) converges to
Z ∈ L2(S,FL,P), so φn is a Cauchy sequence with respect to the second norm defined above,

and hence also a Cauchy sequence with respect to the H−
1
2 norm (by the equivalence of the two

norms). H−
1
2 is a Hilbert space so Cauchy sequences in H−

1
2 converge i.e. there exists a φ in

H−
1
2 such that φn → φ ∈ H− 1

2 .

Thus we have shown that

F̄ = {X(φ) : φ ∈ H− 1
2 , supp(φ) ⊆ [0, L]}

where we are using the extension of X to H−
1
2 on the right hand side here as defined in the first bullet

point above.

Moreover (since E(X(ψ)|FL) ∈ F̄ ) we see that for any ψ ∈ S

E(X(ψ)|FL) =

∫
[0,L]

Xskψ(s)ds := X(kψ)

for some kψ(s) ∈ H− 1
2 ([0, L]), where X(.) in the final expression is the linear extension we have just

defined. This analysis shows that F̄ is isometrically isomorphic to the set of functions in H−
1
2 with

support in [0, L].

Moreover, we can now extend the inner product to H−
1
2 as

〈φ, ψ〉 = lim
n→∞

E[X(φn)X(ψn)] = lim
n→∞

∫ ∫
φn(s)ψn(t)R(s, t)dsdt

where φn, φn ∈ S and φn → φ in H−
1
2 and ψn → ψ in H−

1
2 .
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Proposition 3.2 X ∈ H− 1
2−δ a.s. for any δ > 0.

Proof. The proof is almost identical to Proposition 2.1 in [FFGS19], but since some of its arguments
are needed for the next Proposition as well, we have put a proof in Appendix A.

Remark 3.1 One can actually show the stronger result that X ∈ H−δ ⊂ H− 1
2 a.s. for any δ > 0, but

we will not need this here (see also [BDW17]).

Proposition 3.3 Xε → X in H−
1
2−δ in probability for any δ > 0, where Xε is defined as in (3).

Proof. See Appendix B.

We know that for any ψ ∈ S with supp(ψ) ⊆ [L, T ], the conditional expectation E(X(ψ)|FL) =
X(kψ) minimizes

E((X(ψ)− Y )2)

over all Y ∈ L2(S,FL,P), and E((
∫

[L,T ]
Xtψ(t)dt − E(

∫
[L,T ]

Xtψ(t)dt | FL))Z) = 0 for all Z ∈ FL, so

in particular setting Z =
∫

[0,L]
ψ2(s)Xsds for ψ2 ∈ S with supp(ψ2) ⊆ [0, L], we see that

0 = E((X(ψ)−X(kψ))X(ψ2))

= E((

∫
[L,T ]

ψ(t)Xtdt−
∫

[0,L]

kψ(u)Xudu)

∫
[0,L]

ψ2(s)Xsds)

=

∫
[L,T ]

∫
[0,L]

ψ(t)ψ2(s)R(t− s)dsdt −
∫

[L,T ]

∫
[0,L]

R(s− u)kψ(u)ψ2(s)duds . (11)

In (13) below we construct an explicit solution kt(.) to

0 = E((Xt −
∫

[0,L]

k(u)Xudu)Xs) = R(s, t) −
∫

[0,L]

R(u, s)kt(u)du (12)

for s ∈ [0, L], with kt ∈ supp(ψ) ⊆ [t, T ], which implies that (11) holds if we set kψ(u) =
∫

[L,T ]
ψ(t)kt(u)dt.

Proposition 3.4 The covariance operator Rφ =
∫ T

0
R(s, t)φ(s)ds acting on H−

1
2 is positive definite,

and
∫ T

0
R(s, t)φ(s)ds = 0 if and only if φ ≡ 0 Lebesgue a.e.

Proof. From the discussion on page 4, we know that bilinear form R is (up to an equivalence) the

inner product on H−
1
2 so it has to be positive definite (from the definition of a norm), and thus∫ T

0
R(s, t)φ(s)ds 6= 0 if φ 6= 0, since otherwise R(φ, φ) =

∫ T
0

∫ T
0
R(s, t)φ(s)dsφ(t)dt = 0.

The integral equation in (12) (with t fixed) is the well known Wiener-Hopf equation. We refer the
reader to [Poor94] for more details on the Wiener-Hopf equation in the context of ordinary Gaussian
processes.

Corollary 3.5 Proposition 3.4 shows that the Wiener-Hopf equation in (12) has a unique solution.

If t ≤ T (so we can replace log+ with log), we can re-write (11) as∫
[0,L]

kt(u) log
T

|s− u|
du = f(s) := log

T

t− s

and we see that this is now a Fredholm integral equation of the 1st kind with logarithmic kernel, which
can be solved explicitly by a minor extension of page 299 in [EK00] (who consider T = 1) to give

kt(u) =
1

π2

∫ L

0

√
v(L− v)√
u(L− u)

f ′(v)

u− v
dv +

ct

π
√
u(L− u)

=
(ct − 1)u+ t− ctt−

√
t(t− L)

π(u− t)
√
u(L− u)

(13)

where the integral in the second expression is understood in the principal value sense, and

ct =

∫ L

0

kt(u)du =
1

π(log( 1
4L)− log T )

∫ L

0

log t−v
T√

v(L− v)
dv < ∞ .
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We now verify that kψ(u) ∈ H− 1
2 . To this end, we first note that

π log
L

4
− π log T =

∫ L

0

log L−v
T√

v(L− v)
dv ≤

∫ L

0

log t−v
T√

v(L− v)
dv ≤

∫ L

0

log t
T√

v(L− v)
dv ≤ π log t− π log T .

(ct − 1)u+ t− ctt−
√
t(t− L)

π(u− t)
√
u(L− u)

1u∈[L,T ]1t∈[L,T ] ≤ h(u, t) =
c1

(t− u)
√
u(L− u)

1u∈[L,T ]1t∈[L,T ]

for some constant c1. We know that∫
[L,T ]

(

∫
[0,L]

|ψ(t)h(u, t)|p)du)
1
p dt ≤ ‖ψ‖L∞

∫
[L,T ]

(

∫
[0,L]

|h(u, t)|p)du)
1
p dt (14)

and setting p = 3
2 we find that∫

[0,L]

|h(u, t)|p)du = G(t) := const.× 2t− L
t(t− L)

5
4

which implies that ∫
[L,T ]

G(t)
1
p dt < ∞

so for p = 3
2 the double integral in (14) is finite, so (from the Minkowski integral inequality)

∫
[L,T ]

h(., t)dt

and thus
∫

[L,T ]
ψ(t)kt(.)dt ∈ Lp, and hence its Fourier transform is in Lq = L3 where 1/p + 1/q = 1,

and thus is O(|ξ|− 1
3−ε) for ξ � 1 and O(|ξ|− 1

3 +ε) for ξ � 1.

Hence

‖kψ‖
H−

1
2

=

∫ ∞
−∞

(1 + |ξ2|)− 1
2

∫ ∞
−∞

eiξu
∫

[L,T ]

ψ(t)kt(u)1u∈[0,L]dt du dξ

=

∫ ∞
−∞

(1 + |ξ2|)− 1
2

∫
[0,L]

eiξu
∫

[L,T ]

ψ(t)kt(u)dt du dξ < ∞

which verifies the validity of our explicit solution for ku(t).

Remark 3.2 Corollary 3.3 in [DRV12] gives the following nice prediction formula for a log-correlated
Gaussian field X with covariance log T

|t−s| :
3

E(Xt|(Xs)s≤0) =
1

π

∫ 0

−∞

√
t

(t− s)
√
−s

Xsds

which we can verify satisfies the associated Wiener-Hopf equation (and is also very similar to the
predicition formula for the Riemann-Liouville process in Proposition 2.9 in [FSV19] in the H → 0
limit). However the prediction formula for the finite history case stated in Theorem 3.5 in [DRV12]
appears to be wrong since numerical tests confirm that it does not satisfy the Wiener-Hopf equation.
Our linear filter

∫
[0,L]

kt(u)Xudu corrects this formula for the case when L+ t ≤ T .

Remark 3.3 Clearly if t − L > T , the history of X over [0, L] is of no use for prediction since in
this case E(XsXt) = 0 for s ∈ [0, L], and the conditioned process then has the same law as the
unconditioned process.

3.1 The conditional covariance

We use EL(.) as shorthand for E(.|(Xu)0≤u≤L). Then from the tower property we see that

E((Xt − EL(Xt))(Xs − EL(Xs)))

= E(EL((Xt − EL(Xt))(Xs − EL(Xs))))

= EL((Xt − EL(Xt))(Xs − EL(Xs)))

3i.e. log not log+
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and the final equality follows since the conditional covariance of a Gaussian process or field is determin-
istic, and does not depend on its history. Given kt(u), we can now compute the conditional covariance
in the final line explicitly (for s, t ∈ [L, T ]) as

RL(s, t) := EL((Xt − EL(Xt))(Xs − EL(Xs)))

= E((Xt − EL(Xt))(Xs − EL(Xs))

= E((Xt −
∫

[0,L]

kt(u)Xudu)(Xs −
∫

[0,L]

ks(v)Xvdv))

= R(s, t) −
∫

[0,L]

kt(u)R(u, s)du −
∫

[0,L]

ks(v)R(v, t)dv +

∫
[0,L]

∫
[0,L]

kt(u)ks(v)R(u, v)dudv .

4 Application to Gaussian multiplicative chaos

4.1 Rooted measures

Proposition 4.1 (see also Lemma 2.1 in [Aru17] and Theorems 4 and 17 in [Sha16]). We have

the following “master equation” for any bounded continuous function F on H−
1
2−δ × [0, T ]) (under

the product topology induced by the Hilbert space norm on H−
1
2−δ and the usual Euclidean metric on

[0, T ]):

1

T
E(

∫ T

0

F (X, t)Mγ(dt)) =
1

T
E(

∫ T

0

F (X + γR(t, .), t)dt . (15)

Proof. See Appendix C. 4

Corollary 4.2 Mγ is measurable with respect to X.

Proof. H = H−
1
2−δ × [0, T ] is a metric space, so if µ and ν are two finite Borel measures on H then∫

fdµ =
∫
fdν for all f ∈ Cb(H) means that µ = ν, so the left hand hand side of (15) uniquely defines

a measure P∗ on H× [0, D] which satisfies

1

T
E(

∫ T

0

F (X, t)Mγ(dt)) =

∫ ∫
F (ω, t)P∗(dω, dt)

where

P∗(dω, dt) :=
1

T
E(1X∈dωMγ(ω, ds)) =

1

T
QX(dω)Mγ(ω, dt) =

1

T
E(1X+γR(t,.)∈dω)dt

= P(X + γR(t, .) ∈ dω)
1

T
dt

where QX denotes the law of X on H−
1
2−δ.

Moreover, if F ≡ 1, 1
T E(

∫ T
0
F (X, t)Mγ(dt)) = 1, so P∗(dω, dt) is a probability measure, known as

a rooted or Peyriére measure (see [Aru17] and [Sha16] for more on this). Moreover, using a similar
argument to the third bullet point in Appendix C, we know that the conditional law of P∗ given X is
Mγ(dt)/Mγ([0, T ]) and from the disintegration theorem, we know that this (probability) measure is a
measurable with respect to X. Then using a similar argument to the second bullet point in Appendix
C, if we take the sample space Ω to be H−

1
2−δ with σ-algebra σ(H−

1
2−δ), then the “tilted” probability

measure QXγ (dω) := 1
TMγ([0, T ])QX(dω) on (Ω,F) is the marginal law of P∗ on H−

1
2−δ (where QX

is the law of X on H−
1
2−δ) and QXγ � QX , so 1

TMγ([0, T ])(ω) is the (a.s.) unique Radon-Nikodym

derivative of QXγ with respect to QX , which is a measurable function of ω. Thus we have shown that
Mγ(dt)/Mγ([0, T ]) and Mγ([0, T ]) are measurable wrt X and thus so is Mγ .

4.2 The conditional law of Mγ

From the Corollary above, Mγ(dt) is a measurable wrt X, so Mγ given (X)0≤s≤L is just obtained as

Mγ((X)0≤s≤L ⊕X ′, dt) (16)

where ⊕ denotes concatenation, and X ′ is a Gaussian field (which is also a random element of S ′)
on [L, T ] with mean EL(Xt) and covariance RL(s, t). This then uniquely specifies the law of Mγ

conditioned on its history over [0, L].

4We thank Juhan Aru for his help with multiple parts of this proof.
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Figure 1: Here we have plotted a Monte Carlo simulation of the multifractal random measure Mγ(dt)
on [0, 1] with γ = 0.20, 0.45 and 1 using the regularized autocovariance log+ T

|t|+ε for ε = .000001, and
we see greater intermittency as γ increases.
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Figure 2: In the first three graphs we have plotted the optimal linear filter k(u) in (13) associated
with the multifractal random walk with L = 1, T = 2 for t = 2, 1.5 and 1.00001 respectively, and the
numerics confirm that the Wiener-Hopf equation is satisfied (Mathematica code available on request),
and k(u) is U-shaped and strictly positive for all u ∈ [0, L] for t sufficiently small

.
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4.3 Conditional law of the Riemann-Liouville field

Formally letting H → 0 in the prediction formula for the Riemann-Liouville process in Proposition 2.9
in [FSV19] in the H → 0 limit, we obtain the following conditional law for the Riemann-Liouville field
Z defined in section 2 in [FFGS19]:

Proposition 4.3 Z has conditional mean and covariance given by

E(Zu|(Zv)0≤v≤t) =

∫ t

0

k̄(s)Zsds (17)

Cov(Zs, Zu|(Zv)0≤v≤t) =

∫ s∧u

t

(u− v)−
1
2 (s− v)−

1
2 dv

for u ≥ t, where k̄(s) = 1
π (u−tt−s )

1
2

1
u−s .

Remark 4.1 This is essentially the same type of linear filter that we have obtained in section 3 for
the Bacry-Muzry field. To make this rigorous, we can consider Yt = eZt ; then one can verify that
Y is a strictly stationary Gaussian field with covariance RY (s, t) = R(τ) := 2tanh−1(e−

1
2 |τ |) where

τ = t− s, and from Parseval’s theorem (similar to Eq 2.1 in [DRV12]) we obtain∫ ∫
φ(t)φ(s)RY (s, t)dsdt =

∫
R̂(k) |φ̂(k)|2dk

where R̂(k) =
−iH− 1

2
−ik+iH− 1

2
+ik

+2πtanh(kπ)

k
√

2π
and Hn denotes the nth harmonic number. Then R̂(|k|) is

continuous, strictly positive and decreasing with R̂(0) <∞ and R̂(|k|) ∼
√
π

|k|
√

2
∼ const.× (1 + |k|2)−

1
2

as |k| → ∞. Hence (10) still holds with R replaced by RY and we can then repeat our previous
arguments to make (17) rigorous (after transforming back from Y to Z). In [FFGS19] we define the
GMC associated with Z (which we call ξγ) and one can show that ξγ is also measurable with respect
to Z so (16) still holds with Mγ replaced by ξγ and X replaced by Z.
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A Proof of Proposition 3.2

E(‖X‖2
H−

1
2
−δ) = E(

∫ ∞
−∞

(1 + |k|2)−
1
2−δ|X̂k|2dk)

= E(

∫ ∞
−∞

(1 + |k|2)−
1
2−δX̂k

¯̂
Xkdk)

= E(

∫ ∞
−∞

(1 + |k|2)−
1
2−δ

∫ T

0

eiktXtdt

∫ T

0

e−iksXsdsdk)

= E(

∫ ∞
−∞

(1 + |k|2)−
1
2−δ

∫ T

0

∫ T

0

eik(t−s)XsXt dsdtdk)

=

∫ ∞
−∞

(1 + |k|2)−
1
2−δ

∫ T

0

∫ T

0

eik(t−s)R(s, t) dsdtdk

Using that R ∈ L1([0, T ]2), we see that
∫∞
−∞(1+ |k|2)−

1
2−δ

∫ T
0

∫ T
0
E(XsXt)dsdtdk =

∫ T
0

∫ T
0
R(s, t)dsdt ·∫∞

−∞(1 + |k|2)−
1
2−δdk <∞ iff δ > 0, so by Fubini we have

E(‖Z‖2
H−

1
2
−δ) = E(

∫ T

0

∫ T

0

R(s, t)

∫ ∞
−∞

eik(t−s)(1 + |k|2)−
1
2−δdkdsdt)

= 2cδ

∫ T

0

∫ t

0

R(s, t)(t− s)δBesselK(δ, t− s)dsdt

≤ cδ

∫
[0,T ]2

R(s, t)dsdt < ∞ (A-1)

where we have used that the Fourier transform of f̂(k) := (1 + |k|2)−
1
2−δ is f(t) = cδ|t|δBesselK(δ, |t|)

for some real constant cδ, and that tδBesselK(δ, t) is bounded on [0, T ] if δ > 0. For δ ≤ 0, the
integrand in the triple integral in the first line is not absolutely integrable.

B Proof of Proposition 3.3

Using that

χ(s, t, ε, ε2) : = E((Xε2
t −Xε

t )(Xε2
s −Xε

s )) = Rε2(s, t)− E(Xε2
s X

ε
t )− E(Xε

sX
ε2
t ) +Rε(s, t) → 0

= Rε2(s, t)− E(Xε∨ε2
s Xε∨ε2

t )− E(Xε∨ε2
s Xε∨ε2

t ) +Rε(s, t)

as ε, ε2 → 0 and that |χ(s, t, ε, ε2)| ≤ 4R(s, t), we can use a similar argument to (A-1) and the
dominated convergence theorem to show that

E(‖Xε2 −Xε‖2
H−

1
2
−δ) ≤ cε

∫
[0,T ]2

χ(s, t, ε, ε2)dsdt → 0 (B-1)

as ε, ε2 → 0, so Xε is a Cauchy sequence in the Hilbert space L2(Ω,F ,P;H−
1
2−δ) of H−

1
2−δ-valued

random variables X with E(‖X‖2
H−

1
2
−δ) <∞, and thus converges in this space. Using that

P(‖Xε2 −Xε‖
H−

1
2
−δ > k) ≤ 1

k2
E(‖Zε2 −Xε‖2

H−
1
2
−δ)

the claim is proved.

C Proof of Proposition 4.1

Similar to the analysis before Lemma 2.1 in [Aru17] with rooted measures, we let D = [0, T ] and we

can define a sequence of approximate “rooted” probability measures P∗ε on D ×H− 1
2−δ as

P∗ε(dt, dω) =
dt

Leb(D)
eγω(t)− 1

2γ
2E(X2

ε )QX
ε

(dω)

where QXε denotes the law of Xε on H−
1
2−δ, and Xε is defined as in (3). Then

• The marginal law on D is

dt

Leb(D)
EQX

ε

(eγω(t)− 1
2γ

2E(X2
ε )) =

dt

Leb(D)

i.e. the uniform probability measure on D.
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• The marginal law on H−
1
2−δ is

∫
D
eγω(t)− 1

2
γ2E(X2

ε )dt

Leb(D) QXε(dω) =
Mε
γ(D)

Leb(D)Q
Xε(dω), i.e. the law of Xε

tilted by Mε
γ (D)/Leb(D).

• The conditional law on D given ω is the probability measure: eγω(t)− 1
2
γ2E(X2

ε )

Mε
γ(D) dt =

Mε
γ(dt)

Mε
γ(D) .

• The conditional law on H−
1
2−δ given t is eγω(t)− 1

2γ
2E(X2

ε )QXε(dω). From Girsanov’s theorem
(see e.g. section 6.1 in [Var17]), we can re-write this as

Q(Xε + γRε(., t) ∈ dω) (C-1)

Thus we can sample from P∗ε by either (i) sampling from
Mε
γ(D)

Leb(D)Q
Xε(dω) and then sampling a point

according to Mε
γ (dt)/Mε

γ (D), or ii) sampling t from the uniform measure on [0, T ], and then sampling
Xε + γRε(., t), with Xε independent of t. Combining these two prescriptions, we see that

E(
Mε
γ (D)

Leb(D)

∫ T

0

F (Xε, t)
Mε
γ (dt)

Mε
γ (D)

) =
1

Leb(D)
E(

∫ T

0

F (Xε + γRε(t, .), t)dt)

which we can re-write as

E(

∫ T

0

F (Xε, t)Mε
γ (dt)) = E(

∫ T

0

F (Xε + γRε(t, .), t)dt) . (C-2)

We first consider the left hand side of this expression as ε→ 0. To begin with, we note that

|E(

∫ T

0

F (Xε, t)Mε
γ (dt)−

∫ T

0

F (X, t)Mγ(dt))|

≤ |E(

∫ T

0

(F (Xε, t)− F (X, t))Mε
γ (dt))| + |E(

∫ T

0

F (X, t)(Mε
γ (dt)−Mγ(dt)))| (C-3)

and we can bound the first term in the final expression using Hölder’s inequality as

E(

∫ T

0

(F (Xε, t)− F (X, t))Mε
γ (dt)) ≤ E( sup

t∈[0,T ]

|F (Xε, t)− F (X, t)| ·Mε
γ ([0, T ]))

≤ E(( sup
t∈[0,T ]

|F (Xε, t)− F (X, t)|)p)
1
p · E((Mε

γ ([0, T ])q)
1
q (C-4)

for 1/p+ 1/q = 1, and from (2) we know that

E((Mε
γ ([0, T ])q) = cqT

ζ(q) < ∞

for any q ∈ (1, q∗) = 2
γ2 .

We claim that supt∈[0,T ] |F (Xε, t) − F (X, t)| → 0 a.s. Indeed, suppose to the contrary. Let
fε(t) := F (Xε, t) and f(t) := F (X, t). If the claim is false, fε does not tend to f uniformly on [0, T ],
so there exists a sequence εn → 0, a δ > 0 and a sequence tn ∈ [0, T ] such that

|fεn(tn)− f(tn)| ≥ δ (C-5)

for all n ∈ N. But by Bolzano-Weierstrass, we can choose a convergent subsequence (tnk) of (tn) with
tnk → t∞ ∈ [0, T ]. Then fεnk (tnk) = F (Xεnk , tnk) and f(tnk) = F (X, tnk). From Proposition 3.3 we

know that Xε tends to X in H−
1
2−δ in probability, and thus almost surely along a further subsequence

εnkj , thus (by continuity of F in both arguments) F (X
εnkj , tnkj )→ F (X, t∞) a.s. and hence

|F (X
εnkj , tnkj )− F (X, tnkj )| = |fεnkj (tnkj )− f(tnkj )| → 0 (C-6)

a.s., which violates (C-5). Hence the right hand side of (C-4) tends to zero (along any subsequence)
for q ∈ (1, q∗)

The term
∫ T

0
F (X, t)(Mε

γ (dt) − Mγ(dt)) inside the expectation on the right hand side of (C-3)
converges to zero a.s. since Mε

γ tends weakly to Mγ a.s. (see top of page 3 for details) and the random
F (X, t) is continuous in t for each ω. Moreover∫ T

0

F (X, t)(Mε
γ (dt)−Mγ(dt)) ≤ ‖F‖∞(Mε

γ ([0, T ]) +Mγ([0, T ])) .

From (6) we also know that Mε
γ ([0, T ]) is uniformly integrable, so by e.g. the Theorem in section 13.7

in [Wil91], the rightermost term of (C-3) tends to zero

Finally, the right hand side of (C-2) converges by the a.s. convergence of Xε to X in Proposition
3.3 and the bounded convergence theorem.
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