The conditional law of the Bacry-Muzy and Riemann-Liouville log correlated Gaussian fields and their GMC, via Gaussian Hilbert and fractional Sobolev spaces

Martin Forde Benjamin Smith^{*}

February 7, 2023

Abstract

We compute $\mathbb{E}(X_t|(X_s)_{0\leq s\leq L})$ for the standard Bacry-Muzy log-correlated Gaussian field X with covariance $\log^+ \frac{T}{t-s}$, which corrects the finite-horizon prediction formula in Vargas et al.[DRV12]. The problem can be viewed as a linear filtering problem, and we solve the problem by showing that the $L^2(\mathbb{P})$ closure of $\{\int_{[0,L]} \phi(s)X_s ds : \phi \in S, \operatorname{supp}(\phi) \subseteq [0,L]\}$ is equal to $\{X(\phi) : \phi \in H^{-\frac{1}{2}}, \operatorname{supp}(\phi) \subseteq [0,L]\}$, where $X(\phi)$ is defined as a continuous linear extension of X acting on $S \subset H^s$, H^s denotes the fractional Sobolev space of order s and \mathbb{P} is the law of the field X on the space of tempered distributions. The explicit formula for the filter is obtained as the solution to a Fredholm integral equation of the first kind with logarithmic kernel. From this we characterize the conditional law of the Gaussian multiplicative chaos (GMC) M_{γ} generated by X, using that M_{γ} is measurable with respect to X. We also outline how one can adapt this result for the Riemann-Liouville GMC introduced in [FFGS19], which has a natural application to the Rough Bergomi volatility model in the $H \to 0$ limit.¹

1 Introduction

Originally pioneered by Kahane[Kah85], Gaussian multiplicative chaos (GMC) is a random measure on a domain of \mathbb{R}^d that can be formally written as

$$M_{\gamma}(dx) = e^{\gamma X_x - \frac{1}{2}\gamma^2 \mathbb{E}(X_x^2)} dx \tag{1}$$

where X is a Gaussian field with zero mean and covariance $K(x, y) := \mathbb{E}(X_x X_y) = \log^+ \frac{1}{|y-x|} + g(x, y)$ for some bounded continuous function g. X is not defined pointwise because there is a singularity in its covariance, rather X is a random tempered distribution, i.e. an element of the dual of the Schwartz space S under the locally convex topology induced by the Schwartz space semi-norms. For this reason, making rigorous sense of (1) requires a regularizing sequence X^{ε} of Gaussian processes (with the singularity removed, see e.g. [BBM13] and [BM03] for a description of such a regularization in 1d based on integrating a Gaussian white noise over truncated triangular region, which is summarized in Section 2.3 in [FFGS19], or page 17 in [RV10] and section 3.4 in [Sha16] for a general method in \mathbb{R}^d using a convolution to smooth X). In most of the literature on GMC, the choice of X^{ε} is a martingale in ε , from which we can then easily verify that $M^{\varepsilon}_{\gamma}(A) = \int_A e^{\gamma X_x^{\varepsilon} - \frac{1}{2}\gamma^2 \operatorname{Var}(X_x^{\varepsilon})} dx$ is a martingale, and then obtain a.s. convergence of $M^{\varepsilon}_{\gamma}(A)$ using the martingale convergence to a random variable $M_{\gamma}(A)$ with $\mathbb{E}(M_{\gamma}(A)) = \operatorname{Leb}(A)$, and with a bit more work we can verify that $M_{\gamma}(.)$ defines a random measure (see the end of Section 4 on page 18 in [RV10]).

If $\gamma^2 < 2d$, $M_{\gamma}^{\varepsilon}(dx) = e^{\gamma X_x^{\varepsilon} - \frac{1}{2}\gamma^2 \mathbb{E}((X_x^{\varepsilon})^2)} dx$ tends weakly to a multifractal random measure M_{γ} with full support a.s. which satisfies the multifractal property

$$\mathbb{E}(M_{\gamma}([0,t])^q) = c_q t^{\zeta(q)} \tag{2}$$

for $q \in (1, q^*)$ for some constant $c_q = \mathbb{E}(M_{\gamma}([0, 1])^q)$, where $q^* = \frac{2}{\gamma^2} {}^2$ and

$$\zeta(q) = q - \frac{1}{2}\gamma^2(q^2 - q)$$

^{*}Dept. Mathematics, King's College London, Strand, London, WC2R 2LS (Benjamin.Smith@kcl.ac.uk)

¹We would like to thank Juhan Aru, Janne Junilla, Vincent Vargas and Lauri Vitasaari for helpful discussions.

 $^{^2 \}mathrm{see}$ Lemma 3 in [BM03] to see why the critical q value is q^*

and $\mathbb{E}(M_{\gamma}([0,t])) = \infty$ if $q > \frac{2}{\gamma^2}$, see Theorem 2.13 in [RV14] and Lemma 3 in [BM03]). Moreover, we can show that the support of M_{γ} is a so-called γ -thick points of X, i.e. points such that $\lim_{\varepsilon \to 0} \frac{X^{\varepsilon}}{\log \frac{1}{\varepsilon}} = \gamma$ (see e.g. section 2 in [Aru17], [Ber17] and page 7 in [RV16] for more on this), and for $g \equiv 0$, explicit expressions are known for the Mellin transform of the law of $M_{\gamma}([0,1])$ (see e.g. [Ost09], [Ost13], [Ost18]), which show that $\log M_{\gamma}([0,1])$ has an infinitely divisible law, and an explicit formula for sampling the law of the total mass of the GMC on the interval is given in [RZ17].

 M_{γ} is the zero measure for $\gamma^2 = 2d$ and $\gamma^2 > 2d$; in these cases a different re-normalization is required to obtain a non-trivial limit. Specifically, for $\gamma^2 = 2d$, we obtain a non-trivial limit by considering $\sqrt{\log \frac{1}{\varepsilon}} \cdot M_{\varepsilon}^{\gamma=2}$ as $\varepsilon \to 0$ or the "derivative measure" $\frac{d}{d\gamma} e^{\gamma X^{\varepsilon} - \frac{1}{2}\gamma^2 \operatorname{Var}(X_{\varepsilon})}|_{\gamma=\sqrt{2d}}$. [DRSV14] show that both these objects tend weakly to the same measure μ' as $\varepsilon \to 0$, and in 2d Aru et al.[APS19] have shown that $\frac{M_{\gamma}}{2-\gamma} \to 2\mu'$ in probability as γ tends to the critical value of 2, and the critical γ -value is particularly important in Liouville quantum gravity (again see [DRSV14] for further discussion). One can also construct a GMC for the super-critical phase $\gamma > \sqrt{2}$, using an independent stable subordinator time-changed by a sub-critical GMC (see section 3 in [BJRV14]) to construct an atomic GMC with the correct (locally) multifractal exponent for γ -values greater than $\sqrt{2}$, which is closely related to the non-standard branch of gravity in conformal field theory.

In the sub-critical case, using a limiting argument it can be shown that M_{γ} satisfies the "master equations": $M(X+f, dz) = e^{\gamma f(z)}M(X, dz)$ and $\mathbb{E}(\int_D F(X, z)M_{\gamma}(dz)) = \mathbb{E}(\int_D F(X+\gamma^2 K(z, .), z)dz)$ for any measurable function F and any interval D, which comes from the Cameron-Martin theorem for Gaussian measures and the notion of *rooted measures* and the disintegration theorem (see section 2.1 in [Aru17] for a nice discussion on this). Moreover, either of these two can equations can be taken as the definition of GMC, and they uniquely determine M_{γ} as a measurable function of X, and hence also uniquely fix its law (see also Theorem 6 in Shamov[Sha16].

GMC also has a natural and important application in Liouville Quantum Field Theory; LQFT is is a 2d model of random surfaces, which (formally) we can view as a random metric in the context of quantum gravity, where we weight the classical free field action with an interaction term given by the exponential of a GMC and can be viewed as a toy model to understand in quantum gravity how the interaction with matter influences the geometry of space-time.

2 Construction of the standard Bacry-Muzy GMC on the line

Define the Gaussian process $\omega_{\varepsilon}(t)$ as in Eq 7 in [BBM13] with $\lambda = 1$ (except here use ε instead of l), and set $X_t^{\varepsilon} := \omega_{\varepsilon}(t) - \mathbb{E}(\omega_{\varepsilon}(t))$, so

$$X_t^{\varepsilon} = \int_{(u,s)\in\mathcal{A}_{\varepsilon}(t)} dW(u,s)$$
(3)

where dW(u, s) is 2-dimensional Gaussian white noise with variance $s^{-2}duds$, and $\mathcal{A}_{\varepsilon}(t)$ is triangular region defined in Eq.8 (and Figure 1) in [BBM13]. Then

$$R_{\varepsilon}(s,t) := \mathbb{E}(X_s^{\varepsilon} X_t^{\varepsilon}) = \begin{cases} \log \frac{T}{\tau} & \varepsilon \le \tau \le T \\ \log \frac{T}{\varepsilon} + 1 - \frac{\tau}{\varepsilon} & \tau \le \varepsilon \\ 0 & \tau > T \end{cases}$$
(4)

where $\tau = |t - s|$ (see Eq 10 in [BBM13]), and one can easily verify that

$$R_{\varepsilon}(s,t) \leq \log \frac{T}{\tau} = R(s,t)$$
 (5)

for $s, t \in [0, T]$ (see Eq 25 in [BM03]). Using (3), we also see that

$$\mathbb{E}(X_t^{\varepsilon}X_s^{\varepsilon'}) = \mathbb{E}(\int_{(u,v)\in\mathcal{A}_{\varepsilon}(t)} dW(u,v) \int_{(u,v)\in\mathcal{A}_{\varepsilon'}(s)} dW(u,v)) = \int_{\mathcal{A}_{\varepsilon}(t)\cap\mathcal{A}_{\varepsilon}(s)} \frac{1}{v^2} du dv = \mathbb{E}(X_s^{\varepsilon}X_t^{\varepsilon})$$

for $0 < \varepsilon' \leq \varepsilon$ (i.e. the answer does not depend on ε'). We now define the measure

$$M_{\gamma}^{\varepsilon}(dt) = e^{\gamma X_t^{\varepsilon} - \frac{1}{2}\gamma^2 \operatorname{Var}(X_t^{\varepsilon})} dt.$$

One can easily verify that $M^{\varepsilon}_{\gamma}(A)$ is a backwards martingale with respect to the filtration $\mathcal{F}_{\varepsilon} := \sigma(W(A, B) : A \subset \mathbb{R}^+, B \subseteq [\varepsilon, \infty])$ (see e.g. subsection 5.1 in [BM03] and page 17 in [RV10]) and

$$\sup_{\varepsilon>0} \mathbb{E}(M^{\varepsilon}_{\gamma}(A)^q) < \infty \tag{6}$$

(Lemma 3 i) in [BM03]), so from the martingale convergence theorem, $M^{\varepsilon}_{\gamma}(A)$ converges to some random variable $M_{\gamma}(A)$ in L^q for $q \in (1, q^*)$, and from the reverse triangle inequality this implies that

$$\lim_{\varepsilon \to 0} \mathbb{E}((M_{\gamma}^{\varepsilon}(A))^{q}) = \mathbb{E}(M_{\gamma}(A)^{q})$$
(7)

Moreover, one can show that $M_{\gamma}(.)$ defines measure (see e.g. end of Section 4 on page 18 in [RV10]), and since $M_{\gamma}^{\varepsilon}(A) \to M_{\gamma}(A)$ a.s. for any Borel set A this implies weak convergence of M_{γ}^{ε} to M_{γ} a.s. (from e.g. Theorem 3.1 parts a) and f) in Ethier&Kurtz[EK86]).

Moreover M_{γ} is multifractal, i.e. $\mathbb{E}(|M_{\gamma}([0,t])|^q) = c_{q,T} t^{\zeta(q)}$ (see e.g. Lemma 4 in [BM03]) for some finite constant $c_{q,T} > 0$, depending only on q and T. For integer $q \ge 1$, we also note that

$$\mathbb{E}(M_{\gamma}(A)^{q}) = \int_{A} \dots \int_{A} e^{\gamma^{2} \sum_{1 \leq i < j \leq q} \log \frac{T}{|u_{i} - u_{j}|}} du_{i} \dots du_{q} \\
= \int_{A} \dots \int_{A} e^{\gamma^{2} q(q-1) \log T + \sum_{1 \leq i < j \leq q} \log \frac{1}{|u_{i} - u_{j}|}} du_{i} \dots du_{q} = T^{\gamma^{2} q(q-1)} \mathbb{E}(M_{\gamma}(A)^{q})$$

so we see that

$$c_{q,T} = c_q T^{\gamma^2 q(q-1)}$$

where $c_q := c_{q,1}$, and this also holds for non-integer q (see e.g. Theorem 3.16 in [Koz06]).

3 The conditional law of the standard log correlated Gaussian field

Consider a standard log-correlated Gaussian field Z on \mathbb{R} with covariance $R(s,t) = \log^+ \frac{T}{|t-s|}$. From the Minlos-Bochner theorem, we know that the law of Z is a Gaussian measure on the space S' of *tempered distributions* (see e.g. [DRSV17] and Appendix A in [FFGS19] for more details on tempered distributions) which is the dual of the Schwartz space S (see e.g. section 2.2 in [DRSV14] and Theorem 2.1 in [BDW17]). Moreover, S is a Montel space and thus is reflexive, i.e. (S')' is isomorphic to Susing the canonical embedding of S into its bi-dual (S')'. From here on, we are only concerned with the restriction of Z to [0, T] (on which the covariance of Z is just $\log \frac{T}{|t-s|}$, so we set Z equal to zero outside this interval for simplicity.

Proposition 3.1 X^{ε} tends to X in distribution with respect to the strong and weak topology (see page 2 in [BDW17] for definitions), where X has the same law as the field Z defined above.

Proof. $0 \leq R_{\varepsilon}(s,t) \leq R(s,t)$ for $s,t \in [0,T]$ (see (5)), so from the dominated convergence theorem, we have

$$\lim_{\varepsilon \to 0} \int_{[0,T]^2} \phi_1(s)\phi_2(t)R_{\varepsilon}(s,t)dsdt = \int_{[0,T]^2} \phi_1(s)\phi_2(t)R(s,t)dsdt$$
(8)

for any $\phi_1, \phi_2 \in \mathcal{S}$, where $R_{\varepsilon}(s,t)$ is defined as in (4). Similarly, for any sequence $\phi_k \in \mathcal{S}$ with $\|\phi_k\|_{m,j} \to 0$ for all $m, j \in \mathbb{N}_0^n$ for any $n \in \mathbb{N}$ (i.e. under the Schwartz space semi-norm defined in Eq 1 in [BDW17])

$$\lim_{k \to \infty} \int_{[0,T]^2} \phi_k(s) \phi_k(t) R(s,t) ds dt = 0$$
(9)

since $\nu(A) := \int_A R(s,t) ds dt$ is a bounded non-negative measure (since $\int_0^T \int_0^t R(s,t) ds dt < \infty$), and the convergence here implies in particular that ϕ_k tends to ϕ pointwise, so we can use the bounded convergence theorem. Thus if we define

$$\begin{aligned} \mathcal{L}_{X^{\varepsilon}}(f) &:= & \mathbb{E}(e^{i(f,X^{\varepsilon})}) &= & e^{-\frac{1}{2}\int_{[0,T]^2} f(s)f(t)R_{\varepsilon}(s,t)dsdt} \\ \mathcal{L}(f) &:= & e^{-\frac{1}{2}\int_{[0,T]^2} f(s)f(t)R(s,t)dsdt} \end{aligned}$$

for $f \in S$, then from (8) and (9) and Lévy's continuity theorem for generalized random fields in the space of tempered distributions (see Theorem 2.3 and Corollary 2.4 in [BDW17]), we see that $\mathcal{L}_{X^{\varepsilon}}(f)$ tends to $\mathcal{L}(f)$ pointwise and $\mathcal{L}(.)$ is continuous at zero, then there exists a generalized random field X (i.e. a random tempered distribution, such that $L_X = L$ and X^{ε} tends to X in distribution with respect to the strong and weak topology (see page 2 in [BDW17] for definition).

In general, the conditional expectation of a random variable is equal to its projection onto the Gaussian Hilbert space (sub-Hilbert space of $L^2(\Omega, \mathcal{F}, \mathbb{P})$) generated by the variables on which we are conditioning. To this end, we let \overline{F} denote the Hilbert space given by the $L^2(\mathcal{S}, \mathcal{F}_L, \mathbb{P})$ closure of

$$F = \{X(\phi) : \phi \in \mathcal{S}, \operatorname{supp}(\phi) \subseteq [0, L]\}$$

where $\mathcal{F}_L = \sigma((X_u)_{0 \le u \le L})$. The closure here is necessary because the notion of orthogonal projection requires the Hilbert space structure, and there is no guarantee that the conditional expectation $\mathbb{E}(X(\psi)|\mathcal{F}_L)$ will be a random variable of the form $\int_{[0,L]} X_s \phi(s) ds$ with $\phi \in \mathcal{S}$.

In order to characterize \overline{F} , we first note that

$$\mathbb{E}[(\int X_s \phi(s) ds)^2] = \int \int R(s,t) \phi(s) \phi(t) ds dt$$

From Eqs 2.1 in [DRV12], we also know that

$$c\|\phi\|_{H^{-\frac{1}{2}}} \leq \int \int R(s,t)\phi(s)\phi(t)dsdt \leq C\|\phi\|_{H^{-\frac{1}{2}}}$$
 (10)

where $0 < c < C < \infty$. Let H^s denotes the fractional Sobolev space of order s (see e.g. Section 2.2 in [JSW18] for definitions). Then we can put two inner products on the linear space S of Schwarz functions:

- 1. $\langle \phi, \psi \rangle_{H^{-\frac{1}{2}}} := \int_{-\infty}^{\infty} (1+|k|^2)^{-\frac{1}{2}} \hat{\phi}(k) \overline{\hat{\psi}}(k) dk$ (i.e. the standard inner product on $H^{-\frac{1}{2}}$)
- 2. $\langle \phi, \psi \rangle := \mathbb{E}[X(\phi)X(\psi)] = \int \int \phi(s)\psi(t)R(s,t)dsdt$

Eq 2.2 in [DRV12] shows that these two inner products are equivalent and thus generate the same topologies on S.

We now make the following observations:

• Let $\phi \in H^{-\frac{1}{2}}$, with $\operatorname{supp}(\phi) \subseteq [0, L]$. S is dense in $H^{-\frac{1}{2}}$, so there exists a sequence $\phi_n \in S$ with $\operatorname{supp}(\phi_n) \subseteq [0, L]$ such that $\|\phi_n - \phi\|_{H^{-\frac{1}{2}}} \to 0$, and ϕ is a Cauchy sequence in $H^{-\frac{1}{2}}$ so (by the equivalence of norms) $X(\phi_n)$ is a Cauchy sequence in \overline{F} , and thus converges to some Y in \overline{F} . This defines $X(\phi) := Y$ as a continuous linear extension of X from S to the larger space $H^{-\frac{1}{2}}$, which we will also often write as $\int \phi(t) X_t dt$. To check that $X(\phi)$ is uniquely specified, consider two such sequences ϕ_n and ϕ'_n . Then from the triangle inequality

$$\|\phi_n - \phi'_n\|_{H^{-\frac{1}{2}}} \leq \|\phi_n - \phi\|_{H^{-\frac{1}{2}}} + \|\phi - \phi'_n\|_{H^{-\frac{1}{2}}} \to 0$$

and thus (by the equivalence of norms) we have $||X(\phi_n) - X(\phi'_n)||_{L^2(\mathcal{S},\mathcal{F}_L,\mathbb{P})} = ||X(\phi_n) - X(\phi'_n)||_{\bar{F}} \to 0$.

• Conversely, for any $Z \in \overline{F}$, there exists a sequence $\phi_n \in S$ such that $X(\phi_n)$ converges to $Z \in L^2(S, \mathcal{F}_L, \mathbb{P})$, so ϕ_n is a Cauchy sequence with respect to the second norm defined above, and hence also a Cauchy sequence with respect to the $H^{-\frac{1}{2}}$ norm (by the equivalence of the two norms). $H^{-\frac{1}{2}}$ is a Hilbert space so Cauchy sequences in $H^{-\frac{1}{2}}$ converge i.e. there exists a ϕ in $H^{-\frac{1}{2}}$ such that $\phi_n \to \phi \in H^{-\frac{1}{2}}$.

Thus we have shown that

$$\bar{F} = \{X(\phi) : \phi \in H^{-\frac{1}{2}}, \operatorname{supp}(\phi) \subseteq [0, L]\}$$

where we are using the extension of X to $H^{-\frac{1}{2}}$ on the right hand side here as defined in the first bullet point above.

Moreover (since $\mathbb{E}(X(\psi)|\mathcal{F}_L) \in \overline{F}$) we see that for any $\psi \in \mathcal{S}$

$$\mathbb{E}(X(\psi)|\mathcal{F}_L) = \int_{[0,L]} X_s k_{\psi}(s) ds := X(k_{\psi})$$

for some $k_{\psi}(s) \in H^{-\frac{1}{2}}([0, L])$, where X(.) in the final expression is the linear extension we have just defined. This analysis shows that \overline{F} is isometrically isomorphic to the set of functions in $H^{-\frac{1}{2}}$ with support in [0, L].

Moreover, we can now extend the inner product to $H^{-\frac{1}{2}}$ as

$$\langle \phi, \psi \rangle = \lim_{n \to \infty} \mathbb{E}[X(\phi_n)X(\psi_n)] = \lim_{n \to \infty} \int \int \phi_n(s)\psi_n(t)R(s,t)dsdt$$

where $\phi_n, \phi_n \in \mathcal{S}$ and $\phi_n \to \phi$ in $H^{-\frac{1}{2}}$ and $\psi_n \to \psi$ in $H^{-\frac{1}{2}}$.

Proposition 3.2 $X \in H^{-\frac{1}{2}-\delta}$ a.s. for any $\delta > 0$.

Proof. The proof is almost identical to Proposition 2.1 in [FFGS19], but since some of its arguments are needed for the next Proposition as well, we have put a proof in Appendix A. \blacksquare

Remark 3.1 One can actually show the stronger result that $X \in H^{-\delta} \subset H^{-\frac{1}{2}}$ a.s. for any $\delta > 0$, but we will not need this here (see also [BDW17]).

Proposition 3.3 $X^{\varepsilon} \to X$ in $H^{-\frac{1}{2}-\delta}$ in probability for any $\delta > 0$, where X^{ε} is defined as in (3).

Proof. See Appendix B.

We know that for any $\psi \in S$ with $\operatorname{supp}(\psi) \subseteq [L, T]$, the conditional expectation $\mathbb{E}(X(\psi)|\mathcal{F}_L) = X(k_{\psi})$ minimizes

$$\mathbb{E}((X(\psi) - Y)^2)$$

over all $Y \in L^2(\mathcal{S}, \mathcal{F}_L, \mathbb{P})$, and $\mathbb{E}((\int_{[L,T]} X_t \psi(t) dt - \mathbb{E}(\int_{[L,T]} X_t \psi(t) dt | \mathcal{F}_L))Z) = 0$ for all $Z \in \mathcal{F}_L$, so in particular setting $Z = \int_{[0,L]} \psi_2(s) X_s ds$ for $\psi_2 \in \mathcal{S}$ with $\operatorname{supp}(\psi_2) \subseteq [0,L]$, we see that

$$\begin{aligned} \mathcal{D} &= \mathbb{E}((X(\psi) - X(k_{\psi}))X(\psi_{2})) \\ &= \mathbb{E}((\int_{[L,T]} \psi(t)X_{t}dt - \int_{[0,L]} k_{\psi}(u)X_{u}du) \int_{[0,L]} \psi_{2}(s)X_{s}ds) \\ &= \int_{[L,T]} \int_{[0,L]} \psi(t)\psi_{2}(s)R(t-s)dsdt - \int_{[L,T]} \int_{[0,L]} R(s-u)k_{\psi}(u)\psi_{2}(s)duds. \end{aligned}$$
(11)

In (13) below we construct an explicit solution $k_t(.)$ to

$$0 = \mathbb{E}((X_t - \int_{[0,L]} k(u)X_u du)X_s) = R(s,t) - \int_{[0,L]} R(u,s)k_t(u)du$$
(12)

for $s \in [0, L]$, with $k_t \in \text{supp}(\psi) \subseteq [t, T]$, which implies that (11) holds if we set $k_{\psi}(u) = \int_{[L,T]} \psi(t)k_t(u)dt$.

Proposition 3.4 The covariance operator $R\phi = \int_0^T R(s,t)\phi(s)ds$ acting on $H^{-\frac{1}{2}}$ is positive definite, and $\int_0^T R(s,t)\phi(s)ds = 0$ if and only if $\phi \equiv 0$ Lebesgue a.e.

Proof. From the discussion on page 4, we know that bilinear form R is (up to an equivalence) the inner product on $H^{-\frac{1}{2}}$ so it has to be positive definite (from the definition of a norm), and thus $\int_0^T R(s,t)\phi(s)ds \neq 0$ if $\phi \neq 0$, since otherwise $R(\phi,\phi) = \int_0^T \int_0^T R(s,t)\phi(s)ds\phi(t)dt = 0$.

The integral equation in (12) (with t fixed) is the well known Wiener-Hopf equation. We refer the reader to [Poor94] for more details on the Wiener-Hopf equation in the context of ordinary Gaussian processes.

Corollary 3.5 Proposition 3.4 shows that the Wiener-Hopf equation in (12) has a unique solution.

If $t \leq T$ (so we can replace \log^+ with \log), we can re-write (11) as

$$\int_{[0,L]} k_t(u) \log \frac{T}{|s-u|} du = f(s) := \log \frac{T}{t-s}$$

and we see that this is now a Fredholm integral equation of the 1st kind with logarithmic kernel, which can be solved explicitly by a minor extension of page 299 in [EK00] (who consider T = 1) to give

$$k_t(u) = \frac{1}{\pi^2} \int_0^L \frac{\sqrt{v(L-v)}}{\sqrt{u(L-u)}} \frac{f'(v)}{u-v} dv + \frac{c_t}{\pi\sqrt{u(L-u)}} = \frac{(c_t-1)u+t-c_tt-\sqrt{t(t-L)}}{\pi(u-t)\sqrt{u(L-u)}}$$
(13)

where the integral in the second expression is understood in the principal value sense, and

$$c_t = \int_0^L k_t(u) du = \frac{1}{\pi (\log(\frac{1}{4}L) - \log T)} \int_0^L \frac{\log \frac{t-v}{T}}{\sqrt{v(L-v)}} dv < \infty.$$

We now verify that $k_{\psi}(u) \in H^{-\frac{1}{2}}$. To this end, we first note that

$$\pi \log \frac{L}{4} - \pi \log T = \int_0^L \frac{\log \frac{L-v}{T}}{\sqrt{v(L-v)}} dv \leq \int_0^L \frac{\log \frac{t-v}{T}}{\sqrt{v(L-v)}} dv \leq \int_0^L \frac{\log \frac{t}{T}}{\sqrt{v(L-v)}} dv \leq \pi \log t - \pi \log T$$

$$\frac{(c_t - 1)u + t - c_t t - \sqrt{t(t - L)}}{\pi(u - t)\sqrt{u(L - u)}} \mathbf{1}_{u \in [L, T]} \mathbf{1}_{t \in [L, T]} \le h(u, t) = \frac{c_1}{(t - u)\sqrt{u(L - u)}} \mathbf{1}_{u \in [L, T]} \mathbf{1}_{t \in [L, T]}$$

for some constant c_1 . We know that

$$\int_{[L,T]} \left(\int_{[0,L]} |\psi(t)h(u,t)|^p \right) du \right)^{\frac{1}{p}} dt \leq \|\psi\|_{L^{\infty}} \int_{[L,T]} \left(\int_{[0,L]} |h(u,t)|^p \right) du \right)^{\frac{1}{p}} dt$$
(14)

and setting $p = \frac{3}{2}$ we find that

$$\int_{[0,L]} |h(u,t)|^p) du = G(t) := const. \times \frac{2t - L}{t(t - L)^{\frac{5}{4}}}$$

which implies that

$$\int_{[L,T]} G(t)^{\frac{1}{p}} dt \quad < \quad \infty$$

so for $p = \frac{3}{2}$ the double integral in (14) is finite, so (from the Minkowski integral inequality) $\int_{[L,T]} h(.,t) dt$ and thus $\int_{[L,T]} \psi(t) k_t(.) dt \in L^p$, and hence its Fourier transform is in $L^q = L^3$ where 1/p + 1/q = 1, and thus is $O(|\xi|^{-\frac{1}{3}-\varepsilon})$ for $\xi \gg 1$ and $O(|\xi|^{-\frac{1}{3}+\varepsilon})$ for $\xi \ll 1$.

Hence

$$\begin{aligned} \|k_{\psi}\|_{H^{-\frac{1}{2}}} &= \int_{-\infty}^{\infty} (1+|\xi^{2}|)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{i\xi u} \int_{[L,T]} \psi(t)k_{t}(u) \mathbf{1}_{u\in[0,L]} dt \, du \, d\xi \\ &= \int_{-\infty}^{\infty} (1+|\xi^{2}|)^{-\frac{1}{2}} \int_{[0,L]} e^{i\xi u} \int_{[L,T]} \psi(t)k_{t}(u) dt \, du \, d\xi \quad < \infty \end{aligned}$$

which verifies the validity of our explicit solution for $k_u(t)$.

Remark 3.2 Corollary 3.3 in [DRV12] gives the following nice prediction formula for a log-correlated Gaussian field X with covariance log $\frac{T}{|t-s|}$: ³

$$\mathbb{E}(X_t|(X_s)_{s\leq 0}) \quad = \quad \frac{1}{\pi} \int_{-\infty}^0 \frac{\sqrt{t}}{(t-s)\sqrt{-s}} X_s ds$$

which we can verify satisfies the associated Wiener-Hopf equation (and is also very similar to the predicition formula for the Riemann-Liouville process in Proposition 2.9 in [FSV19] in the $H \to 0$ limit). However the prediction formula for the finite history case stated in Theorem 3.5 in [DRV12] appears to be wrong since numerical tests confirm that it does not satisfy the Wiener-Hopf equation. Our linear filter $\int_{[0,L]} k_t(u) X_u du$ corrects this formula for the case when $L + t \leq T$.

Remark 3.3 Clearly if t - L > T, the history of X over [0, L] is of no use for prediction since in this case $\mathbb{E}(X_s X_t) = 0$ for $s \in [0, L]$, and the conditioned process then has the same law as the unconditioned process.

3.1 The conditional covariance

We use $\mathbb{E}_L(.)$ as shorthand for $\mathbb{E}(.|(X_u)_{0 \le u \le L})$. Then from the tower property we see that

$$\mathbb{E}((X_t - \mathbb{E}_L(X_t))(X_s - \mathbb{E}_L(X_s)))$$

= $\mathbb{E}(\mathbb{E}_L((X_t - \mathbb{E}_L(X_t))(X_s - \mathbb{E}_L(X_s))))$
= $\mathbb{E}_L((X_t - \mathbb{E}_L(X_t))(X_s - \mathbb{E}_L(X_s)))$

³i.e. log not \log^+

and the final equality follows since the conditional covariance of a Gaussian process or field is deterministic, and does not depend on its history. Given $k_t(u)$, we can now compute the conditional covariance in the final line explicitly (for $s, t \in [L, T]$) as

$$\begin{aligned} R_L(s,t) &:= & \mathbb{E}_L((X_t - \mathbb{E}_L(X_t))(X_s - \mathbb{E}_L(X_s))) \\ &= & \mathbb{E}((X_t - \mathbb{E}_L(X_t))(X_s - \mathbb{E}_L(X_s))) \\ &= & \mathbb{E}((X_t - \int_{[0,L]} k_t(u)X_u du)(X_s - \int_{[0,L]} k_s(v)X_v dv)) \\ &= & R(s,t) - \int_{[0,L]} k_t(u)R(u,s)du - \int_{[0,L]} k_s(v)R(v,t)dv + \int_{[0,L]} \int_{[0,L]} k_t(u)k_s(v)R(u,v)dudv \end{aligned}$$

4 Application to Gaussian multiplicative chaos

4.1 Rooted measures

Proposition 4.1 (see also Lemma 2.1 in [Aru17] and Theorems 4 and 17 in [Sha16]). We have the following "master equation" for any bounded continuous function F on $H^{-\frac{1}{2}-\delta} \times [0,T]$) (under the product topology induced by the Hilbert space norm on $H^{-\frac{1}{2}-\delta}$ and the usual Euclidean metric on [0,T]):

$$\frac{1}{T}\mathbb{E}\left(\int_{0}^{T}F(X,t)M_{\gamma}(dt)\right) = \frac{1}{T}\mathbb{E}\left(\int_{0}^{T}F(X+\gamma R(t,.),t)dt\right).$$
(15)

Proof. See Appendix C. ⁴

Corollary 4.2 M_{γ} is measurable with respect to X.

Proof. $\mathcal{H} = H^{-\frac{1}{2}-\delta} \times [0,T]$ is a metric space, so if μ and ν are two finite Borel measures on \mathcal{H} then $\int f d\mu = \int f d\nu$ for all $f \in C_b(\mathcal{H})$ means that $\mu = \nu$, so the left hand hand side of (15) uniquely defines a measure \mathbb{P}^* on $\mathcal{H} \times [0, D]$ which satisfies

$$\frac{1}{T}\mathbb{E}(\int_0^T F(X,t)M_{\gamma}(dt)) = \int \int F(\omega,t)\mathbb{P}^*(d\omega,dt)$$

where

$$\mathbb{P}^*(d\omega, dt) := \frac{1}{T} \mathbb{E}(1_{X \in d\omega} M_{\gamma}(\omega, ds)) = \frac{1}{T} \mathbb{Q}^X(d\omega) M_{\gamma}(\omega, dt) = \frac{1}{T} \mathbb{E}(1_{X + \gamma R(t, .) \in d\omega}) dt$$
$$= \mathbb{P}(X + \gamma R(t, .) \in d\omega) \frac{1}{T} dt$$

where \mathbb{Q}^X denotes the law of X on $H^{-\frac{1}{2}-\delta}$.

Moreover, if $F \equiv 1$, $\frac{1}{T}\mathbb{E}(\int_0^T F(X,t)M_{\gamma}(dt)) = 1$, so $\mathbb{P}^*(d\omega, dt)$ is a probability measure, known as a rooted or Peyriére measure (see [Aru17] and [Sha16] for more on this). Moreover, using a similar argument to the third bullet point in Appendix C, we know that the conditional law of \mathbb{P}^* given X is $M_{\gamma}(dt)/M_{\gamma}([0,T])$ and from the disintegration theorem, we know that this (probability) measure is a measurable with respect to X. Then using a similar argument to the second bullet point in Appendix C, if we take the sample space Ω to be $H^{-\frac{1}{2}-\delta}$ with σ -algebra $\sigma(H^{-\frac{1}{2}-\delta})$, then the "tilted" probability measure $\mathbb{Q}^X_{\gamma}(d\omega) := \frac{1}{T}M_{\gamma}([0,T])\mathbb{Q}^X(d\omega)$ on (Ω, \mathcal{F}) is the marginal law of \mathbb{P}^* on $H^{-\frac{1}{2}-\delta}$ (where \mathbb{Q}^X is the law of X on $H^{-\frac{1}{2}-\delta}$) and $\mathbb{Q}^X_{\gamma} \ll \mathbb{Q}^X$, so $\frac{1}{T}M_{\gamma}([0,T])(\omega)$ is the (a.s.) unique Radon-Nikodym derivative of \mathbb{Q}^X_{γ} with respect to \mathbb{Q}^X , which is a measurable function of ω . Thus we have shown that $M_{\gamma}(dt)/M_{\gamma}([0,T])$ and $M_{\gamma}([0,T])$ are measurable wrt X and thus so is M_{γ} .

4.2 The conditional law of M_{γ}

From the Corollary above, $M_{\gamma}(dt)$ is a measurable wrt X, so M_{γ} given $(X)_{0 \le s \le L}$ is just obtained as

$$M_{\gamma}((X)_{0 \le s \le L} \oplus X', dt) \tag{16}$$

where \oplus denotes concatenation, and X' is a Gaussian field (which is also a random element of \mathcal{S}') on [L,T] with mean $\mathbb{E}_L(X_t)$ and covariance $R_L(s,t)$. This then uniquely specifies the law of M_{γ} conditioned on its history over [0, L].

 $^{^{4}}$ We thank Juhan Aru for his help with multiple parts of this proof.

Figure 1: Here we have plotted a Monte Carlo simulation of the multifractal random measure $M_{\gamma}(dt)$ on [0, 1] with $\gamma = 0.20, 0.45$ and 1 using the regularized autocovariance $\log^+ \frac{T}{|t|+\varepsilon}$ for $\varepsilon = .000001$, and we see greater intermittency as γ increases.

Figure 2: In the first three graphs we have plotted the optimal linear filter k(u) in (13) associated with the multifractal random walk with L = 1, T = 2 for t = 2, 1.5 and 1.00001 respectively, and the numerics confirm that the Wiener-Hopf equation is satisfied (Mathematica code available on request), and k(u) is U-shaped and strictly positive for all $u \in [0, L]$ for t sufficiently small

4.3 Conditional law of the Riemann-Liouville field

Formally letting $H \to 0$ in the prediction formula for the Riemann-Liouville process in Proposition 2.9 in [FSV19] in the $H \to 0$ limit, we obtain the following conditional law for the Riemann-Liouville field Z defined in section 2 in [FFGS19]:

Proposition 4.3 Z has conditional mean and covariance given by

$$\mathbb{E}(Z_u|(Z_v)_{0 \le v \le t}) = \int_0^t \bar{k}(s) Z_s ds$$

$$Cov(Z_s, Z_u|(Z_v)_{0 \le v \le t}) = \int_t^{s \land u} (u - v)^{-\frac{1}{2}} (s - v)^{-\frac{1}{2}} dv$$
(17)

for $u \ge t$, where $\bar{k}(s) = \frac{1}{\pi} (\frac{u-t}{t-s})^{\frac{1}{2}} \frac{1}{u-s}$.

Remark 4.1 This is essentially the same type of linear filter that we have obtained in section 3 for the Bacry-Muzry field. To make this rigorous, we can consider $Y_t = e^{Z_t}$; then one can verify that Y is a strictly stationary Gaussian field with covariance $R_Y(s,t) = R(\tau) := 2 \tanh^{-1}(e^{-\frac{1}{2}|\tau|})$ where $\tau = t - s$, and from Parseval's theorem (similar to Eq 2.1 in [DRV12]) we obtain

$$\int \int \phi(t)\phi(s)R_Y(s,t)dsdt = \int \hat{R}(k) |\hat{\phi}(k)|^2 dk$$

where $\hat{R}(k) = \frac{-iH_{-\frac{1}{2}-ik}+iH_{-\frac{1}{2}+ik}+2\pi \tanh(k\pi)}{k\sqrt{2\pi}}$ and H_n denotes the *n*th harmonic number. Then $\hat{R}(|k|)$ is continuous, strictly positive and decreasing with $\hat{R}(0) < \infty$ and $\hat{R}(|k|) \sim \frac{\sqrt{\pi}}{|k|\sqrt{2}} \sim const. \times (1+|k|^2)^{-\frac{1}{2}}$ as $|k| \to \infty$. Hence (10) still holds with R replaced by R_Y and we can then repeat our previous arguments to make (17) rigorous (after transforming back from Y to Z). In [FFGS19] we define the GMC associated with Z (which we call ξ_{γ}) and one can show that ξ_{γ} is also measurable with respect to Z so (16) still holds with M_{γ} replaced by ξ_{γ} and X replaced by Z.

References

- [APS19] Aru, J., E.Powell and A.Sepulveda, "Critical Liouville Measure as a limit of Sub-critical measures", *Electron. Commun. Probab.*, Volume 24 (2019), paper no. 18, 16 pp.
- [Aru17] Aru, J., "Gaussian Multiplicative Chaos through the lens of the 2D Gaussian Free Field", to appear in IRS 2017 special issue in *Markov. Process Relat.*
- [BDM01] Bacry, E., J.Delour, and J.Muzy, "Multifractal Random Walks", Phys. Rev. E, 64, 026103-026106, 2001.
- [BDM01b] Bacry, E., J.Delour, and J.Muzy, "Modelling Financial time series using multifractal random walks", *Physica A*, 299, 84-92, 2001.
- [BBM13] Bacry, E., Rachel Baïle, and J.Muzy, "Random cascade model in the limit of infinite integral scale as the exponential of a nonstationary 1/f noise: Application to volatility fluctuations in stock markets", PHYSICAL REVIEW E 87, 042813, 2013.
- [BM03] Bacry, E., and J.Muzy, "Log-Infinitely Divisible Multifractal Process", Commun. Math. Phys., 236, 449-475, 2003.
- [Ber17] Berestycki, N., "Introduction to the Gaussian Free Field and Liouville Quantum Gravity", draft lecture notes, updated version, Dec 2017.
- [BJRV14] Barral, J., Jin, X., R.Rhodes, SV.Vargas, "Gaussian multiplicative chaos and KPZ duality", Communications in Mathematical Physics, 2014.
- [BDW17] Bierme, H., O.Durieu, and Y.Wang, "Generalized Random Fields and Lévy's continuity Theorem on the space of Tempered Distributions", preprint, 2017.
- [DRV12] Duchon, J., R.Robert and V.Vargas, "Forecasting Volatility With The Multifractal Random Walk Model", *Mathematical Finance*, 22,1, 83-108.
- [DRSV14] Duplantier, D., R.Rhodes, S.Sheffield, and V.Vargas, "Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation", *Communications in Mathematical Physics*, August 2014, Volume 330, Issue 1, pp 283-330.

- [DRSV17] Duplantier, D., R.Rhodes, S.Sheffield, and V.Vargas, "Log-correlated Gaussian Fields: An Overview', *Geometry, Analysis and Probability*, August pp 191-216, 2017.
- [DS99] Decreusefond, L. and A.S. Ustunel, "Stochastic analysis of the fractional Brownian motion", *Potential Anal.*, 10: 177-214, 1999.
- [EK00] Estrada R., Kanwal R.P., "Integral Equations with Logarithmic Kernels", in Singular Integral Equations, Birkhauser, Boston, MA, 2000.
- [EK86] Ethier, S.N. and T.G.Kurtz, "Markov Processes: characterization and convergence", John Wiley and Sons, New York, 1986.
- [FFGS19] Forde, M., M.Fukasawa, S.Gerhold and B.Smith, "Sub and super-critical Gaussia multiplicative chaos for the Riemann-Liouville process as $H \rightarrow 0$, and skew flattening/blow up for the Rough Bergomi model", preprint, 2019.
- [FSV19] Forde, M., B.Smith and L.Viitasaari, "Rough volatility and CGMY jumps with a finite history and the Rough Heston model - small-time asymptotics in the $k\sqrt{t}$ regime,", preprint, 2019.
- [Jan09] Jost, C., "Gaussian Hilbert Spaces", Cambridge University Press, 2009.
- [Jost06] Jost, C., "Transformation formulas for fractional Brownian motion", Stochastic Processes and their Applications, 116, 1341-1357, 2006.
- [JSW18] Junnila, J., E.Saksman, C.Webb, "Imaginary multiplicative chaos: Moments, regularity and connections to the Ising model", preprint.
- [Kah85] Kahane, J.-P., "Sur le chaos multiplicatif", Ann. Sci. Math., Québec, 9 (2), 105-150, 1985.
- [Koz06] Kozhemyak, A., "Modélisation de séries financieres á l'aide de processus invariants d'echelle. Application a la prediction du risque.", thesis, Ecole Polytechnique, 2006,
- [LSSW16] Lodhia, A., S.Sheffield, X.Sun and S.S. Watson, "Fractional Gaussian fields: A survey", Probability Surveys, Vol. 13,1-56, 2016.
- [Ost09] Ostrovsky, D., "Mellin Transform of the Limit Lognormal Distribution Dmitry Ostrovsky", Commun. Math. Phys., 288, 287-310.
- [Ost13] Ostrovsky, D., "Selberg Integral as a Meromorphic Function", International Mathematics Research Notices, Vol. 2013, No. 17, pp. 3988–4028, 2013.
- [Ost18] Ostrovsky, D., "A review of conjectured laws of total mass of Bacry–Muzy GMC measures on the interval and circle and their applications", *Reviews in Mathematical Physics*, Vol. 30, No. 10, 1830003, 2018.
- [Poor94] Poor, H.V., "An Introduction to Signal Estimation and Detection", 1994, Springer.
- [RV10] Robert, R. and V.Vargas, "Gaussian Multiplicative Chaos Revisited", Annals of Probability, 38, 2, 605-631, 2010.
- [RV14] Rhodes, R. and V.Vargas, "Gaussian multiplicative chaos and applications: a review", Probab. Surveys, 11, 315-392, 2014.
- [RV16] Rhodes, R. and V.Vargas, "Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity", preprint.
- [RZ17] Remy, G. and T.Zhu, "The distribution of Gaussian multiplicative chaos on the unit interval",
- [Sha16] Shamov, A., "On Gaussian multiplicative chaos", Journal of Functional Analysis, 270(9):3224-3261, 2016.
- [Var17] Vargas, V., "Lecture notes on Liouville theory and the DOZZ formula", 2017.
- [Wil91] Williams, D., "Probability with Martingales", Cambridge Mathematical Textbooks, 1991.

A Proof of Proposition 3.2

$$\begin{split} \mathbb{E}(\|X\|_{H^{-\frac{1}{2}-\delta}}^{2}) &= \mathbb{E}(\int_{-\infty}^{\infty} (1+|k|^{2})^{-\frac{1}{2}-\delta} |\hat{X}_{k}|^{2} dk) \\ &= \mathbb{E}(\int_{-\infty}^{\infty} (1+|k|^{2})^{-\frac{1}{2}-\delta} \hat{X}_{k} \bar{\hat{X}}_{k} dk) \\ &= \mathbb{E}(\int_{-\infty}^{\infty} (1+|k|^{2})^{-\frac{1}{2}-\delta} \int_{0}^{T} e^{ikt} X_{t} dt \int_{0}^{T} e^{-iks} X_{s} ds dk) \\ &= \mathbb{E}(\int_{-\infty}^{\infty} (1+|k|^{2})^{-\frac{1}{2}-\delta} \int_{0}^{T} \int_{0}^{T} e^{ik(t-s)} X_{s} X_{t} ds dt dk) \\ &= \int_{-\infty}^{\infty} (1+|k|^{2})^{-\frac{1}{2}-\delta} \int_{0}^{T} \int_{0}^{T} e^{ik(t-s)} R(s,t) ds dt dk \end{split}$$

Using that $R \in L^1([0,T]^2)$, we see that $\int_{-\infty}^{\infty} (1+|k|^2)^{-\frac{1}{2}-\delta} \int_0^T \int_0^T \mathbb{E}(X_s X_t) ds dt dk = \int_0^T \int_0^T R(s,t) ds dt \cdot \int_{-\infty}^{\infty} (1+|k|^2)^{-\frac{1}{2}-\delta} dk < \infty$ iff $\delta > 0$, so by Fubini we have

$$\mathbb{E}(\|Z\|_{H^{-\frac{1}{2}-\delta}}^{2}) = \mathbb{E}(\int_{0}^{T} \int_{0}^{T} R(s,t) \int_{-\infty}^{\infty} e^{ik(t-s)} (1+|k|^{2})^{-\frac{1}{2}-\delta} dk ds dt)$$

$$= 2c_{\delta} \int_{0}^{T} \int_{0}^{t} R(s,t) (t-s)^{\delta} \text{BesselK}(\delta,t-s) ds dt$$

$$\leq c_{\delta} \int_{[0,T]^{2}} R(s,t) ds dt < \infty$$
(A-1)

where we have used that the Fourier transform of $\hat{f}(k) := (1 + |k|^2)^{-\frac{1}{2}-\delta}$ is $f(t) = c_{\delta}|t|^{\delta}$ BesselK $(\delta, |t|)$ for some real constant c_{δ} , and that t^{δ} BesselK (δ, t) is bounded on [0, T] if $\delta > 0$. For $\delta \leq 0$, the integrand in the triple integral in the first line is not absolutely integrable.

B Proof of Proposition 3.3

Using that

$$\begin{split} \chi(s,t,\varepsilon,\varepsilon_2) &:= \mathbb{E}((X_t^{\varepsilon_2} - X_t^{\varepsilon})(X_s^{\varepsilon_2} - X_s^{\varepsilon})) &= R_{\varepsilon_2}(s,t) - \mathbb{E}(X_s^{\varepsilon_2}X_t^{\varepsilon}) - \mathbb{E}(X_s^{\varepsilon}X_t^{\varepsilon_2}) + R_{\varepsilon}(s,t) \to 0 \\ &= R_{\varepsilon_2}(s,t) - \mathbb{E}(X_s^{\varepsilon\vee\varepsilon_2}X_t^{\varepsilon\vee\varepsilon_2}) - \mathbb{E}(X_s^{\varepsilon\vee\varepsilon_2}X_t^{\varepsilon\vee\varepsilon_2}) + R_{\varepsilon}(s,t) \end{split}$$

as $\varepsilon, \varepsilon_2 \to 0$ and that $|\chi(s, t, \varepsilon, \varepsilon_2)| \leq 4R(s, t)$, we can use a similar argument to (A-1) and the dominated convergence theorem to show that

$$\mathbb{E}(\|X^{\varepsilon_2} - X^{\varepsilon}\|_{H^{-\frac{1}{2}-\delta}}^2) \leq c_{\varepsilon} \int_{[0,T]^2} \chi(s,t,\varepsilon,\varepsilon_2) ds dt \to 0$$
(B-1)

as $\varepsilon, \varepsilon_2 \to 0$, so X^{ε} is a Cauchy sequence in the Hilbert space $L^2(\Omega, \mathcal{F}, \mathbb{P}; H^{-\frac{1}{2}-\delta})$ of $H^{-\frac{1}{2}-\delta}$ -valued random variables X with $\mathbb{E}(\|X\|^2_{H^{-\frac{1}{2}-\delta}}) < \infty$, and thus converges in this space. Using that

$$\mathbb{P}(\|X^{\varepsilon_2} - X^{\varepsilon}\|_{H^{-\frac{1}{2}-\delta}} > k) \leq \frac{1}{k^2} \mathbb{E}(\|Z^{\varepsilon_2} - X^{\varepsilon}\|_{H^{-\frac{1}{2}-\delta}}^2)$$

the claim is proved.

C Proof of Proposition 4.1

Similar to the analysis before Lemma 2.1 in [Aru17] with rooted measures, we let D = [0, T] and we can define a sequence of approximate "rooted" probability measures $\mathbb{P}^*_{\varepsilon}$ on $D \times H^{-\frac{1}{2}-\delta}$ as

$$\mathbb{P}_{\varepsilon}^{*}(dt, d\omega) = \frac{dt}{\operatorname{Leb}(D)} e^{\gamma \omega(t) - \frac{1}{2}\gamma^{2} \mathbb{E}(X_{\varepsilon}^{2})} \mathbb{Q}^{X^{\varepsilon}}(d\omega)$$

where $\mathbb{Q}^{X^{\varepsilon}}$ denotes the law of X^{ε} on $H^{-\frac{1}{2}-\delta}$, and X^{ε} is defined as in (3). Then

• The marginal law on D is

$$\frac{dt}{\operatorname{Leb}(D)} \mathbb{E}^{\mathbb{Q}^{X^{\varepsilon}}}(e^{\gamma \omega(t) - \frac{1}{2}\gamma^{2}\mathbb{E}(X_{\varepsilon}^{2})}) = \frac{dt}{\operatorname{Leb}(D)}$$

i.e. the uniform probability measure on D.

- The marginal law on $H^{-\frac{1}{2}-\delta}$ is $\frac{\int_D e^{\gamma\omega(t)-\frac{1}{2}\gamma^2 \mathbb{E}(X_{\varepsilon}^2)}dt}{\operatorname{Leb}(D)} \mathbb{Q}^{X^{\varepsilon}}(d\omega) = \frac{M_{\gamma}^{\varepsilon}(D)}{\operatorname{Leb}(D)} \mathbb{Q}^{X^{\varepsilon}}(d\omega)$, i.e. the law of X^{ε} tilted by $M_{\gamma}^{\varepsilon}(D)/\operatorname{Leb}(D)$.
- The conditional law on D given ω is the probability measure: $\frac{e^{\gamma\omega(t)-\frac{1}{2}\gamma^2\mathbb{E}(X_{\varepsilon}^2)}}{M_{\gamma}^{\varepsilon}(D)} dt = \frac{M_{\gamma}^{\varepsilon}(dt)}{M_{\gamma}^{\varepsilon}(D)}$.
- The conditional law on $H^{-\frac{1}{2}-\delta}$ given t is $e^{\gamma\omega(t)-\frac{1}{2}\gamma^2\mathbb{E}(X_{\varepsilon}^2)}\mathbb{Q}^{X^{\varepsilon}}(d\omega)$. From Girsanov's theorem (see e.g. section 6.1 in [Var17]), we can re-write this as

$$\mathbb{Q}(X^{\varepsilon} + \gamma R_{\varepsilon}(., t) \in d\omega) \tag{C-1}$$

Thus we can sample from $\mathbb{P}_{\varepsilon}^{*}$ by either (i) sampling from $\frac{M_{\gamma}^{\varepsilon}(D)}{\text{Leb}(D)}\mathbb{Q}^{X^{\varepsilon}}(d\omega)$ and then sampling a point according to $M_{\gamma}^{\varepsilon}(dt)/M_{\gamma}^{\varepsilon}(D)$, or ii) sampling t from the uniform measure on [0,T], and then sampling $X^{\varepsilon} + \gamma R_{\varepsilon}(.,t)$, with X^{ε} independent of t. Combining these two prescriptions, we see that

$$\mathbb{E}(\frac{M_{\gamma}^{\varepsilon}(D)}{\operatorname{Leb}(D)}\int_{0}^{T}F(X^{\varepsilon},t)\frac{M_{\gamma}^{\varepsilon}(dt)}{M_{\gamma}^{\varepsilon}(D)}) = \frac{1}{\operatorname{Leb}(D)}\mathbb{E}(\int_{0}^{T}F(X^{\varepsilon}+\gamma R_{\varepsilon}(t,.),t)dt)$$

which we can re-write as

$$\mathbb{E}(\int_0^T F(X^{\varepsilon}, t) M_{\gamma}^{\varepsilon}(dt)) = \mathbb{E}(\int_0^T F(X^{\varepsilon} + \gamma R_{\varepsilon}(t, .), t) dt).$$
(C-2)

We first consider the left hand side of this expression as $\varepsilon \to 0$. To begin with, we note that

$$\begin{aligned} & |\mathbb{E}(\int_{0}^{T} F(X^{\varepsilon}, t) M_{\gamma}^{\varepsilon}(dt) - \int_{0}^{T} F(X, t) M_{\gamma}(dt))| \\ \leq & |\mathbb{E}(\int_{0}^{T} (F(X^{\varepsilon}, t) - F(X, t)) M_{\gamma}^{\varepsilon}(dt))| + |\mathbb{E}(\int_{0}^{T} F(X, t) (M_{\gamma}^{\varepsilon}(dt) - M_{\gamma}(dt)))| \end{aligned}$$
(C-3)

and we can bound the first term in the final expression using Hölder's inequality as

$$\mathbb{E}\left(\int_{0}^{1} \left(F(X^{\varepsilon}, t) - F(X, t)\right) M_{\gamma}^{\varepsilon}(dt)\right) \leq \mathbb{E}\left(\sup_{t \in [0, T]} |F(X^{\varepsilon}, t) - F(X, t)| \cdot M_{\gamma}^{\varepsilon}([0, T])\right) \\ \leq \mathbb{E}\left(\left(\sup_{t \in [0, T]} |F(X^{\varepsilon}, t) - F(X, t)|\right)^{p}\right)^{\frac{1}{p}} \cdot \mathbb{E}\left(\left(M_{\gamma}^{\varepsilon}([0, T])^{q}\right)^{\frac{1}{q}} (C-4)\right) \right)$$

for 1/p + 1/q = 1, and from (2) we know that

$$\mathbb{E}((M_{\gamma}^{\varepsilon}([0,T])^{q}) = c_{q}T^{\zeta(q)} < \infty$$

for any $q \in (1, q^*) = \frac{2}{\gamma^2}$.

We claim that $\sup_{t\in[0,T]} |F(X^{\varepsilon},t) - F(X,t)| \to 0$ a.s. Indeed, suppose to the contrary. Let $f_{\varepsilon}(t) := F(X^{\varepsilon},t)$ and f(t) := F(X,t). If the claim is false, f_{ε} does not tend to f uniformly on [0,T], so there exists a sequence $\varepsilon_n \to 0$, a $\delta > 0$ and a sequence $t_n \in [0,T]$ such that

$$|f_{\varepsilon_n}(t_n) - f(t_n)| \ge \delta \tag{C-5}$$

for all $n \in \mathbb{N}$. But by Bolzano-Weierstrass, we can choose a convergent subsequence (t_{n_k}) of (t_n) with $t_{n_k} \to t_\infty \in [0,T]$. Then $f_{\varepsilon_{n_k}}(t_{n_k}) = F(X^{\varepsilon_{n_k}}, t_{n_k})$ and $f(t_{n_k}) = F(X, t_{n_k})$. From Proposition 3.3 we know that X^{ε} tends to X in $H^{-\frac{1}{2}-\delta}$ in probability, and thus almost surely along a further subsequence $\varepsilon_{n_{k_j}}$, thus (by continuity of F in both arguments) $F(X^{\varepsilon_{n_{k_j}}}, t_{n_{k_j}}) \to F(X, t_\infty)$ a.s. and hence

$$|F(X^{\varepsilon_{n_{k_j}}}, t_{n_{k_j}}) - F(X, t_{n_{k_j}})| = |f_{\varepsilon_{n_{k_j}}}(t_{n_{k_j}}) - f(t_{n_{k_j}})| \to 0$$
(C-6)

a.s., which violates (C-5). Hence the right hand side of (C-4) tends to zero (along any subsequence) for $q \in (1, q^*)$

The term $\int_0^T F(X,t)(M_{\gamma}^{\varepsilon}(dt) - M_{\gamma}(dt))$ inside the expectation on the right hand side of (C-3) converges to zero a.s. since M_{γ}^{ε} tends weakly to M_{γ} a.s. (see top of page 3 for details) and the random F(X,t) is continuous in t for each ω . Moreover

$$\int_0^T F(X,t)(M_{\gamma}^{\varepsilon}(dt) - M_{\gamma}(dt)) \leq \|F\|_{\infty}(M_{\gamma}^{\varepsilon}([0,T]) + M_{\gamma}([0,T]))$$

From (6) we also know that $M^{\varepsilon}_{\gamma}([0,T])$ is uniformly integrable, so by e.g. the Theorem in section 13.7 in [Wil91], the rightermost term of (C-3) tends to zero

Finally, the right hand side of (C-2) converges by the a.s. convergence of X^{ε} to X in Proposition 3.3 and the bounded convergence theorem.