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Abstract

For a generalized rough Bergomi-type model, we formally show how to replicate a VIX option with
dynamic trading in a VIX future, and a European option with dynamic trading in the underlying and a VIX
future, using the Clark-Ocone formula from Malliavin calculus. As a by-product we also compute the minimal
variance hedge for a European call when we can only dynamically hedge with the underlying which is relevant
in practice since dynamic trading with a VIX future will incur a larger bid-offer spread, and these results are
easily extended to mixed/two-factor rough Bergomi models which give better fits to VIX smiles in practice.
This builds on the work of Keller-Ressel[KR22] who derives asymptotic approximations for the latter, and
as a by-product we obtain a variant of the classical Bass martingale (in this case a path-dependent rough
local-stochastic volatility model) with an exact fit to target laws p1, pz2, ... at multiple maturities Ty < Ta < ..
(with g1, p2, .. in convex order) where the volatility process can be characterized explicitly using the Clark-
Ocone formula. We also explain how to adapt the well known Renault-Touzi[RT'96] conditioning trick to
reduce the sample variance of Monte Carlo estimates for the European call hedge at each time instant.’

1 Introduction

The Rough Bergomi (rBergomi) model introduced in [BFG16] has been a popular, tractable and much cited
rough volatility model. For the rBergomi model and the original Rough Fractional Stochastic Volatility (RFSV)
model driven by fBM in [GJR18], the log of the instantaneous variance process V' is Gaussian so the VIX
index is approximately log-normally distributed and hence produces VIX smiles which are almost flat, not
the concave upward-sloping smiles that we typically see in practice. A skewed Rough Bergomi model with a
linear combination of exponential terms with two different v-values as discussed in [Guy21] (see also [JMP21]
for extensions/variations e.g. using two different H-values and [AX24]) can often fit a single-maturity short-
maturity VIX smile very well but if we do this it typically struggles to achieve sufficient at-the-money skew for
options on the SPX itself with the same maturity (see [Guy21] and we have also seen this phenomenon first
hand in testing).

Asymmetric GARCH(1,1) (also known as QGARCH) models with i.i.d. symmetric or skewed t-distributed
residuals typically fit daily historical returns data much better than standard rough volatility models across
a wide range of assets when we apply goodness of fit tests (Kolmogorov-Smirnov, Shapiro-Wilks etc) to the
residuals implied by daily returns using maximum likelihood estimates for the model parameters which are easily
computed (see e.g. [F231I], [NPP14]). These techniques are well known in the econometrics literature, but aside
from [F23] we have not seen any articles which examine maximum likelihood estimates and p-values for rough
models. Unfortunately the distribution of the MLEs when we run synthetic simulations of the QGARCH(1,1)
model with the fitted MLE parameters are typically much wider than we would ideally like. The solution to
this issue in principle is just to use decades of data to reduce the sample variance of the MLEs (assuming
the MLEs are consistent estimators) but obviously the further we go back in time in practice the more likely
that the dynamics of the asset will have changed, and using intraday data is too time-inhomogenous due to
markets opening/closing, lunch etc. For many assets an excellent fit is obtained just using the usual symmetric
t-distribution for the residuals but for the SPX we typically need the non-symmetric t-distribution which has
an additional asymmetry parameter.

Rough volatility models are typically much better than the aforementioned 1-day timestep GARCH(1,1)
models at fitting observed option prices, specifically the steep short-maturity implied volatility skews we observe
in practice at e.g. 1 month maturity and VIX option smiles, so there appears to be something of a disparity
between option prices and historical behaviour of the assets they are written which may lead to statistical
arbitrage opportunities.

The quadratic rough Heston model introduced in [GR20] is complete as it is driven by a single Brownian
motion, and there is an explicit formula for sampling the VIX (cf. chapter 6.2 in [Rom22b]), which is obtained
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via the solution to a linear VIE in terms of the resolvent of the fractional kernel of the Z process. Using the
Gamma kernel K (t) = e %~ the model often has an uncanny ability to fit close-to-1-month and 2 month
SPX and lmonth VIX smiles simultaneously very well with only 5 parameters (a, a, ¢, A and 6, setting b = 0
W.L.0.G.) and also fitting Zy, but calibrated H = o — % values can bounce around from as high as 0.14 to as
low as 0.04 between Jan 2023 to Jan 2024 so out-of-sample fits typically do not work well.

Section 2.2 in Keller-Ressel[KR22] gives a concise background on the mean-variance hedge so we do not
repeat this here, and derives asymptotic approximations for the mean variance hedge using the original SABR
formula for the SABR model with 5 = 1 and the recent rough SABR formula from [FG22] for the rough Bergomi
case (see also section 4.1 in [Schw95] for the original formulation of the discrete-time variance optimal hedge).
For the QGARCH(1,1) model discussed above, we can also use deep learning to approximate the mean-variance
hedge by exploiting the Markov nature of the model, essentially just adding an extra dimension to existing code
which uses deep hedging to approximate the classical Black-Scholes hedging strategy. One can also attempt to
price options with transaction costs using deep hedging with exponential indifference pricing but for this we
need to keep track of the agent’s risky wealth as additional state variable (see many articles by Buehler et al.
on this theme).

[CL21] shows how to calibrate a (one-dimensional) Bass[Bass83] martingale to given marginals at two different
maturities; fitting a single maturity is elementary, but jointly fitting to two maturities requires an iterative fixed
point scheme of the form F"*! = AF™ for some non-linear integral operator A (see Theorem 2.1 in [CL21])
where A is a map from the space of distribution functions on R to itself. The aforementioned fixed point scheme
just requires numerically computing two Gaussian convolution integrals, inverting a cdf and then iterating the
procedure, for which [AMP23] establish existence and uniqueness (and linear convergence) results, and (in our
experience) the scheme converges very quickly in practice.

The one-dimensional Bass martingale is also the solution to the martingale optimization problem
ianeMC:Xt:X0+f()t UdeS:XTN“E(fOT(Ut — 1)2dt), (where M¢ is the space of continuous martingales) which is
clearly also the solution to supye e x,—x,1 f! USde:XTN#]E(fOT oudt) (see e.g. introduction of [BST23] and
section 1.3 in [BBHK20]); hence the Bass martingale is a stretched Brownian motion?, which (formally at least)

can also be dualized as sup s, g (— [ fdp+infoea(E(f(X1) —|—f0T(Ut —1)2dt)) (for a suitable space of adapted
processes A) in the spirit of [GLOW22],[GLW22], which leads to a HIB equation for the inner inf. The [GLOW22]
methodology can in principle be generalized to work with a simple rough reference model using a variational
approach, but one ends up with seemingly intractable non-standard FBSDE.

2 Hedging VIX options

Let W denote a standard Brownian motion and F; = F}V, and consider a generalized Rough Bergomi model
for a log stock price process X; = log .S; for which the squared spot volatility V; process satisfies

Vi = Go(t)e eV (1)

under a risk-neutral measure Q, where Z; = fo k(t—s)dWy for some x € L%([0,T]), so Var(Z;) = fo k(t—s)?ds =

Zy— Ec Var(Zt

fg k(s)%ds. We can easily extend the results in this paper to the case when V; = &(t)e ). A popular

choice is the Gamma kernel: «(t) = t#~2¢=% for H € (0, 3] and @ > 0, where the roughness and ergodicity of
Z are controlled by H and 6 respectively. Then we can easﬂy verify that & (u) := E(V,|F;) satisfies

Gi(w) = golu)eld HumnIIWe —4 [{ )
and
di(u) = r(u—t)&(u)dW, (2)

s0 & (u) is a driftless time-inhomogenous Geometric Brownian motion for each u and & (u) is an Fi-martingale.
The VIX index is a well known estimator of future volatility, which is quoted in the market. Theoretically

the value of the VIX index time is t < T is given by VIX; = t+A
consider an option on the VIX which pays

& (u)du for some A > 0. Then we can

F = ¢(VIXr)

at time 7' (and we assume interest rates are zero for simplicity). For the specific case of a VIX call option,
¢(z) = (z — K)T and ¢/'(z) = 1,>, even though ¢’ is not Lipshitz, we can compute Malliavin derivatives using
a suitable approximation procedure (see e.g. end of page 333 in Nualart[Nua06]).

2See [BST23], [BBST23] and [BBHK20] for more on this, and extension to higher dimensions and randomized Xo



From the Clark-Ocone formula, we have
T
F = E(F) + / E(D}Y F|F;)dW, (3)
0

where D}V F is the Malliavin derivative of F with respect to W.

Recall that we compute D}V F by perturbing W by a function H(t), such that fo t)2dt < oo where
h(t) = H'(t) and h € L?*([0,T]). We denote the perturbed value of F' by F(W + cH). Then D}V'F is the (in
general) random function such that

;%%(F(W—l—aH)—F(W)) = /OTDtWF-h(t)dt

if such a function exists. For our F = ¢(VIXr) payoff here, formally using the chain rule, we see that

1 .
DVF = ¢ (VIXp)DVVIXy = ¢ (VIXy)D}V\/VIX: = ¢’(VIXT)§(VIX%)—5DXV (VIX%)

¢ (VIX7) 1 /T+A

wixy Pra ), Srlwd

(;s/ VIX 1 T+A

N ACCIED

Using that & (u) = &o(u )efo wu=r)dW, =5 fg s(u=r)’dr o see that

T
lim — (§T( YW +eH) = &r(w)(W)) = &r(u)- / k(u—r)h(r)dr.
0
Then we can just read off D!V ¢r(u) as whatever function is in front of h(r); in this case

DY ép(u) = &r(u)r(u—t)

hence

pvp - ¢WVIXr) 1

/ T+A
S 1 [ ertwntu— 5)

T

and recall that VIX2 = i T+A ér(u)du. In practice the two integrals in this formula can be computed using
Gauss-Legendre quadrature specifically we need to jointly sample {r(u) at the n-point Gaussian-Legendre
quadrature abcissae values (ul)?; values for the interval [T,T + A] and logér(u) are jointly Gaussian, so
in principle we can use the Cholesky decomposition for this although in practice this often fails because the

covariance matrix for this is close to singular, so we resort to short time steps instead.

If ¢(x) = z, then a VIX call is just a VIX future, so theoretically we can replicate a VIX option using a VIX
future, by holding

/ - T A

E(Ser) L [ e (uw)s(u — t)dul FV)
T A

E(gv%xT % * §T( ) (U—t)duu:tw)

VIX futures at each time instant ¢t. This may be desirable in practice since the bid-offer spread on VIX futures
(in percentage terms) may be lower than for VIX options or a variance swap synthetically replicated with a finite
number of Europeans. As of 22 Dec 2023, the bid-ask spread on VIX futures was $0.05 with the VIX index itself
at 13.50, and the spread on close-to-the-money VIX options was $0.03 to $0.04.3

3 Hedging European options
Now consider the standard Rough Bergomi model for a log stock price process X;:

1t !
x, = L / V,ds + / VVi(pdW, + pdB,)

Vv, = efo k(t—s)dWs—3 [} k(s)>ds (6)

3Data obtained from CBOE data services and Charles Schwab.



where p = y/1 — p? and B is another Brownian motion independent of W, and we now define F; := ]-"tW ’B, and
we assume p € [—1,0] which ensures that S is a true Fi-martingale (see Gassiat|Gass19] for details). Now let
®(W, B) := ¢(Xr), i.e. the payoff of a general European-type option. Then

1 T
lim g(<I>(W, B+eH)-®(W,B)) = ﬁ/ V Vih(t)dt
E—r 0
so we can read off that
DEXy = pJV,. (7)
Similarly
t
lim — (Vt(W +eH) -V, (W)) = Vt/ k(t — r)h(r)dr
e—=0 € 0

so DV, = k(t —r)l,</V; and DV\/V, = %V;_%n(t — 1)<V = 36(t — r)1,<4v/V;. Thus

1 T T
DYXr = - / DY Vids + / DY (p\/VedWs + p\/VadB,)
0 0
e 1 (T 1 (T —
= —5/ n(s — ’r’)lTSSngS + 5[3/ /f(s - T)lrgs\/ VsdBs + 5,0/ R(S - T)L“SS V VsdW, + P Ve
0 0 0
SO

1 (T 1T 1 /7
DXVXT = 75/ k(s —r)Vsds + 5[)/ k(s —t)\/VsdBs + §p/ k(s —t)\/VsdWs + p/ V. (8)
t t t

Then from the two-dimensional Clark-Ocone formula, we have

T T

F = E(F)+ p+dB; + P dWy (9)
0

where F = ¢(Xr), ¢y = E(DPF|F;) and ¢, = E(D}Y F|F;), and hence
C, = E(F|F) = / ¢$sdBs + / PsdWs (10)

and recall that F; := ftW ‘B From the chain rule, we know that
DPF = ¢ (X7r)DEXr , DVF = ¢ (Xp)D)¥Xr (11)

and we derived explicit expressions for DF X7 and DE X7 in (7) and (8) above.
Then using that

ds;, = S/ Vi(pdW, + pdB,)
dCt Y dWy + ¢dBy

we see that

d{C,S) = Sev/'Vilphr + poy)dt
so the minimal variance stock holding at time ¢ is
d(C,S)  _ pYu + P
d(St) SVVi

(see also section 10.4 in [CT04] for general background on mean variance hedging and application to exponential
Lévy models).

0 =

3.1 Variance reduction for computing the hedge amount using Monte Carlo

A European call option corresponds to ¢(z) = (e® — €F)*, and from the tower property we can reduce the
sample variance of the numerical estimation of E(D}" F|F;) with Monte Carlo by conditioning on B (similar to
the classic Renault-Touzi[RT96] conditioning trick) as

E(D)F|F) = EEDFIFY)F) = EE@Q (Xr)D}Xr)|F,)

and we can use that X7 and D}V Xt are bivariate Normal conditioned on F)¥ to compute this expectation
explicitly in terms of the Erf function in e.g. Mathematica (we omit the details here for the sake of brevity).
As usual this trick is more effective when |p| is smaller, and we gain no benefit when |p| = 1. We can also use
antithetic sampling, even if |p| = 1. It does not appear trivial to adapt this to the two-maturity case as in [CL21]
since the proof of the main result their relies heavily on the Markov structure of the problem.



4 Exact calibration to single or multiple smiles - a rough Bergomi
Bass model

If |p| < 1 and ¢ is chosen so F' = ¢(Xr) has a given target law p on (0,00) with a strictly positive density
* with [;° ap(x)dz = Sy then setting S; = E(F|F;) in (10) yields a martingale price process (S;)¢ejo,r) with
St ~ p. In particular, since DEZX7p = py/V; (Eq (7)) and D}¥ X7 both include a /V; term (Eq (8)), and
DBF = ¢/(X7)DE X (see Eq (11)), we see this model has a rough volatility component if £(t) ~ const. x t2—H
(for H € (0, %)) as t — 0, because in this case log V; is a Gaussian process which is H — ¢ Hélder continuous for

€ (0, H). We can view the E(¢'(X7)|F;) term in ¢, = E(DP F|F;) as a local volatility component since it can
be re-written in terms of X;. We can then also compute exact or mean-variance hedge quantities for options on
X for this model using the same computations as Section 3.

If we wish to fit a rough Bergomi Bass model to two target densities p and v at maturities T and T (both
with mean Sy, with 0 < T < Ty and p and v in convex order), we first require a coupling 7 € Cpl(u,v) in
the martingale transport MT(u, v) of p and v, i.e. such that [ ym,(dy) = x where 7(dz,dy) = 7, (dy)p(dz), so
E(ST,|ST) = ST (see e.g. section 2.2 of [BST23] for clarification on this notation) which gives us a a conditional
distribution function Fs,, |, for St, given Sp. A viable/sensible choice for 7 could be to use the two-maturity
Bass martingale discussed in [CL21] (see also [BBHK20]), or the Carr Local Variance Gamma model[Carr09].

By adapting the approach used in [BG24], a martingale model consistent with the two marginals here then
takes the form

Sy = E(@Xp)|F"P)  (telo,T))
S = E(Fg!s, (Fr, (Xn 1), S0)IFYP)  (te (T D) (12)

where X is the log stock price for another rough Bergomi model of the form in (1) (independent of X, also
driven by two independent Brownians W and B). S is continuous on [0, 73], and in particular at t = T since
E(St,|ST) = St by construction. Note that the instantaneous variance process V for this model will not in
general be continuous at T, but this is also the case for the standard two-maturity Bass martingale in [CL21],
and we can also apply the Clark-Ocone formula to S for ¢t € (T, T5], and we can extend this construction to n
maturities using the same conditional sampling trick.

5 The SABR model

We now consider a classical SABR model with 8 = 1:
dsS; = S Yy dWy , dYy = vYidB

under a risk-neutral measure Q, where W, B are two standard Brownians with dW,;dB; = pdt. Then we know
that the mean-variance hedge for a call option is given by

d(C, S) S;YPCs(Sy, Yy, t) + pSiYivY,Cy (S, Vi, t) prCy (S, Y, t)
9 — 1) — 1) ’ Yy 9 9 _ C S Y, t Yy ) )
t dSt2 SE}/? S( ty Lt ) + St
where C(S,y,t) := EQ((Sp — K)T|S; = S,Y; = y). We can avoid directly having to estimate Cg(S;,Y;,t)
with Monte Carlo and numerical finite differences (which will lead to a noisy estimate in practice) by instead
appealing to the spatial homogeneity property of the model:

C(AS,AK) = AC(S,K)

where here C'(S, K) denotes the price of a call option as a function of the initial stock price S and strike K with
all other parameters fixed. If we differentiate this expression with respect to A and set A = 0, we get

SCs + KCx = C
and Cx = —EQ(1g,.-x) is minus the price of a digital option, so Cs = (C' — KCg)/S. We also note that

85 (w)
Y,

t
S, / e’B=3V"(pdB, + pdW,)
0

SO aiYO(St —K)t =1g,> Kg—f,; (since S; admits a density because S; is conditionally log-normal if we condition
on (Ys)o<s<t) so P(S; = K) =0, and we can (formally) use that
0 0 058,
—E((Sr - K)Y) = E(==(Sr—K)") = E(ls,sx oo
8YO (( T ) ) (a}/o( T ) ) ( St>K6}/O)

to compute the left hand side by computing the right hand side.

4we can do this by setting ¢(z) = FM_I(FXT (z)), where F), is the distribution function of u and Fx, is the distribution function
of Xr; then ¢ is strictly monotonically increasing because F), and Fx,. are strictly monotonically increasing, since u has a strictly
positive density by assumption and X has a strictly positive density when |p| < 1 because X7|Vy<¢<r is conditionally Gaussian.
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