Large deviations for the boundary local time of doubly reflected Brownian motion

Martin Fordea, Rohini Kumarb, Hongzhong Zhangc

aDept. Mathematics, King's College London, London WC2R 2LS
bDept. Mathematics, Wayne State University, Detroit, MI 48202.
cDept. Statistics, Columbia University, New York, NY 10027.

Abstract
We compute a closed-form expression for the moment generating function \(\hat{f}(x; \lambda, \alpha) = \frac{1}{\lambda} \mathbb{E}_x(e^{\alpha L_t}) \), where \(L_t \) is the local time at zero for standard Brownian motion with reflecting barriers at 0 and \(b \), and \(\tau \sim \text{Exp}(\lambda) \) is independent of \(W \). By analyzing how and where \(\hat{f}(x; \cdot, \alpha) \) blows up in \(\lambda \), a large-time large deviation principle (LDP) for \(L_t/t \) is established using a Tauberian result and the Gärtner-Ellis Theorem.

Keywords: Brownian motion, Large deviation, Local time.

1. Introduction

Diffusion processes with reflecting barriers have found many applications in finance, economics, biology, queueing theory, and electrical engineering. In a financial context, we recall the currency exchange rate target-zone models in [KRU91] (see also [SVE91, BER92, DJ94], and [BAL98]), where the exchange rate is allowed the float within two barriers; asset pricing models with price caps (see [HAN99]); interest rate models with targeting by the monetary authority (e.g.[FAR03]); short rate models with reflection at zero (e.g. [GOL97, GOR04]); and stochastic volatility models (most notably the Heston and Schöbel-Zhu models). In queueing theory, diffusions with reflecting barriers arise as heavy-traffic approximations of queueing systems and reflected Brownian motions is ubiquitous in queueing models [HAR85, ABA87a, ABA87b]. More recently, reflected Ornstein-Uhlenbeck(OU) and reflected affine processes have been studied as approximations of queueing systems with reneging or balking [WAR03a, WAR03b]. Applications of reflected OU processes in mathematical biology are discussed in [RIC87]. Doubly reflected Brownian motion also arises naturally in the solution for the optimal trading strategy in the large-time limit for an investor who is permitted to trade a safe and a risky asset under the Black-Scholes model, subject to proportional transaction costs with exponential or power utility (see [GM13] and [GGMS12] respectively).

The asymptotics in this article are obtained using a Tauberian theorem. Tauberian results typically allow us to deduce the large-time or tail behavior of a quantity of interest based on the behavior of its Laplace transform (see Feller[FE71] or the excellent monograph of Bingham et al.[BGT87] for details or [BF08] for applications to tail asymptotics for time-changed exponential Lévy models). In this article, we compute a closed-form expression for the moment generating function (mgf) \(\hat{f}(x; \lambda, \alpha) = \frac{1}{\lambda} \mathbb{E}_x(e^{\alpha L_t}) \), where \(L_t \) is the local time at zero for standard Brownian motion with reflecting barriers at 0 and \(b \), and \(\tau \) is an independent exponential random variable with parameter \(\lambda \). We do this by first deriving the relevant ODE and boundary conditions for \(\hat{f}(x; \lambda, \alpha) \) using an augmented filtration and computing the optional projection, and we then solve this ODE in closed form. \(\hat{f}(x; \lambda, \alpha) \) does not appear amenable to Laplace inversion; however from an analysis of the location of the pole of \(\hat{f}(x; \cdot, \alpha) \), we can compute the re-scaled log mgf limit \(V(\alpha) = \lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}_x(e^{\alpha L_t}) \) for \(\alpha \in \mathbb{R} \) using the Tauberian result in Proposition 4.3 in [KOR02] via the so-called Fejér kernel. From this we then establish a large deviation principle for \(L_t/t \) as \(t \to \infty \) using the Gärtner-Ellis Theorem from large deviations theory.

Throughout the paper, we let \(P_x(\cdot) = P(\cdot|X_0 = x) \) denote the law of \(X \) given its initial value at time 0 for any \(x \in [0, b] \), and by \(\mathbb{E}_x(\cdot) \) the expectation under \(P_x \). Further, we let \(\mathbb{E} \equiv \mathbb{E}_0 \).

9The authors would like to thank Chris Rogers for his initial suggestions on how to approach this problem and Paavo Salmi.
Email addresses: martin.forde@kcl.ac.uk (Martin Forde), rkumar@math.wayne.edu (Rohini Kumar), hzhang@stat.columbia.edu (Hongzhong Zhang)
2. The modelling set up

We begin by defining the Brownian motion \(X \) with two reflecting boundaries. Let \(W_t \) be standard Brownian motion starting at 0. Then for any \(x \in [0, b] \), there is a unique pair of non-decreasing, continuous adapted processes \((L, U)\), starting at 0, such that

\[
X_t = x + W_t + L_t - U_t \quad \in \quad [0, b], \quad \forall t \geq 0.
\]

such that \(L \) can only increase when \(X = 0 \) and \(U \) can only increase when \(X = b \). Existence and uniqueness follow easily from the more general work of Lions&Sznitman [LS84] the earlier work of Skorokhod [SKO62], or a bare-hands proof can be given by successive applications of the standard one-sided reflection mapping using a sequence of stopping times (see [WIL92].)

It can be shown that

\[
\lim_{t \to \infty} L_t/t = \mathbb{E}(L_{\tau^b+\tau^U})/\mathbb{E}(\tau^b + \tau^U), \quad \text{and} \quad \lim_{t \to \infty} U_t/t = \mathbb{E}(U_{\tau^b+\tau^U})/\mathbb{E}(\tau^b + \tau^U),
\]

\[
\lim_{t \to \infty} \frac{1}{t} \text{Var}(L_t) = \sigma_L^2, \quad \lim_{t \to \infty} \frac{1}{t} \text{Var}(U_t) = \sigma_U^2,
\]

where \(\tau^b = \inf\{ t : X_t = b \} \), \(\tau^U = \inf\{ t \geq \tau^b : X_t = 0 \} \) (see [WIL92]) for some non-negative constants \(\sigma_L, \sigma_U \).

Proposition 2.1. Let \(\tau \) denote an independent exponential random variable with parameter \(\lambda \). Then for \(\alpha < 0 \),

\[
\hat{f}(x) \equiv \hat{f}(x; \lambda, \alpha) := \frac{1}{\lambda} \mathbb{E}_x(e^{\alpha L_{\tau}}) = \int_0^\infty e^{-\lambda t} \mathbb{E}_x(e^{\alpha L_t}) dt
\]

is smooth on \((0, b)\) and satisfies the following ODE

\[
\frac{1}{2} \hat{f}_{xx} = \lambda \hat{f} - 1, \quad \hat{f}_x(0) + \alpha \hat{f}(0) = \hat{f}_x(b) = 0.
\]

Proof. We first show that \(\hat{f} \in C^\infty(0, b) \). To this end, note that for \(x \in [0, b] \),

\[
\mathbb{E}_x(e^{\alpha L_{\tau}}) = \mathbb{P}_x(\tau > H_0) \mathbb{E}_0(e^{\alpha L_{\tau}}) + \mathbb{P}_x(\tau \leq H_0)
\]

where \(H_x = \inf\{ t : X_t = x \} \) is the first hitting time to \(x \). The law of \((b - X_t; t \in [0, H_0])\) given \(X_t = x \) is the same as that of \((|W_t|; t \in [0, H_0])\) given \(|W_0| = b - x \). Thus by Eq. 2.0.1 on page 355 of [BS02] we have

\[
\mathbb{P}_x(\tau > H_0) = \mathbb{E}_x(e^{-\lambda H_0}) = \frac{\cosh((b - x)\sqrt{2\lambda})}{\cosh(\sqrt{2\lambda})}.
\]

It follows that

\[
\mathbb{E}_x(e^{\alpha L_{\tau}}) = \frac{\cosh((b - x)\sqrt{2\lambda})}{\cosh(\sqrt{2\lambda})} \left[\mathbb{E}_0(e^{\alpha L_{\tau}}) - 1 \right] + 1.
\]

That is,

\[
\hat{f}(x) = \frac{\cosh((b - x)\sqrt{2\lambda})}{\cosh(\sqrt{2\lambda})} (\hat{f}(0) - \frac{1}{\lambda}) + \frac{1}{\lambda}, \quad \forall x \in [0, b].
\]

It can then be easily seen from (2) that \(\hat{f} \in C^\infty(0, b) \).

To show that \(\hat{f} \) satisfies (1) and the boundary conditions, we construct a martingale that is adapted to the filtration generated by \(X \). More specifically, we introduce the natural filtration \(\mathcal{F}_t = \sigma(X_s; s \leq t) \) and the augmented filtration \(\mathcal{F}_t = \mathcal{F}_t \vee \sigma(1_{\{t < \tau\}}) \), where \(\sigma(1_{\{t < \tau\}}) \) is the sigma algebra generated by \(1_{\{t < \tau\}} \). Then we have a uniformly bounded, and hence uniformly integrable \(\mathcal{F}_t \)-martingale:

\[
\overline{M}_t := \mathbb{E}(e^{\alpha L_{\tau}}|\mathcal{F}_t) = 1_{\{t < \tau\}}e^{\alpha L_t} + 1_{\{t \geq \tau\}}e^{\alpha L_t}X_t(e^{\alpha L_{\tau}}) = 1_{\{t < \tau\}}e^{\alpha L_t} + 1_{\{t \geq \tau\}}e^{\alpha L_t} \lambda \hat{f}(X_t).
\]

We now define the optional projection of \(\overline{M}_t \): using the fact that \(X \) and \(\tau \) are independent, we have

\[
M_t = \mathbb{E}(\overline{M}_t|\mathcal{F}_t) = \lambda \int_0^t e^{\alpha L_s - \lambda s} ds + e^{\alpha L_t - \lambda t} \lambda \hat{f}(X_t).
\]
Further, \(M_t \) is a \(\mathcal{F}_t \)-martingale, in that for all \(t > s \) we have
\[
\mathbb{E}(M_t|\mathcal{F}_s) = \mathbb{E}(\mathbb{E}(M_t|\mathcal{F}_t)|\mathcal{F}_s) = \mathbb{E}(\mathbb{E}(M_t|\mathcal{F}_s)|\mathcal{F}_s) = \mathbb{E}(M_s|\mathcal{F}_s) = M_s.
\]

Applying Itô’s lemma to \(M_t \), we have that
\[
dM_t = e^{\alpha L_t - \lambda t} \left[\lambda dt + \lambda \dot{f}(X_t)(\alpha dL_t - \lambda dt) + \frac{1}{2} \lambda f_{xx}(X_t) dt + \lambda f_x(X_t)(dW_t + dL_t - dU_t) \right].
\]
But for \(M_t \) to be a martingale, we must have
\[
\frac{1}{2} f_{xx}(x) - \lambda \dot{f}(x) + 1 = 0, \quad \dot{f}(0) + \alpha \dot{f}(0) = 0, \quad \dot{f}(b) = 0.
\]
This completes the proof. \(\square \)

Solving the ODE in Proposition 2.1 we obtain the following result:

Proposition 2.2.
\[
\dot{f}(x; \lambda, \alpha) = \frac{1}{\lambda} + e^{x\sqrt{2\lambda}} A_\lambda(\alpha) + e^{-x\sqrt{2\lambda}} B_\lambda(\alpha)
\]
for \(\lambda > 0, \alpha < 0 \), where
\[
A_\lambda(\alpha) = \frac{\alpha e^{-b\sqrt{2\lambda}} / \cosh(b\sqrt{2\lambda})}{2\lambda |\alpha^*(\lambda) - \alpha|}, \quad B_\lambda(\alpha) = e^{2\sqrt{2\lambda} b} A_\lambda(\alpha), \quad \alpha^*(\lambda) = \sqrt{2\lambda} \tanh(b\sqrt{2\lambda}).
\]

Remark 2.3. Observe that the expression for \(\dot{f}(x) \) involves \(\sqrt{\lambda} \), which has a branch point at \(\lambda = 0 \). However, \(\dot{f} \) remains a continuous function across the branch cut at \(\lambda = 0 \); thus \(\dot{f} \) is an analytic function of \(\lambda \) in some punctured disc about \(\lambda = 0 \). As \(\lim_{\lambda \to 0} \lambda \cdot \dot{f}(\lambda) = 0 \), we conclude that \(\lambda = 0 \) is a removable singularity.

Remark 2.4. It can be verified that \(\alpha^*(\cdot) \) in (4) is a strictly increasing mapping from \([0, \infty)\) onto \([0, \infty)\). Further, we may analytically extend \(\alpha^*(\cdot) \) to get a strictly increasing, strictly concave, smooth real-valued function that maps \((\frac{\pi^2}{8b^2}, \infty)\) onto \(\mathbb{R} \).

3. Large-time asymptotics

In this section, we characterize the large-time behaviour of \(L_t \). To this end, let us consider the inverse of \(\alpha^* \), \(V(\alpha) := (\alpha^*)^{-1}(\alpha) \) for \(\alpha \in \mathbb{R} \). From Remark 2.4, we know that \(V \) is a strictly increasing, strictly convex smooth function, with range \((\frac{\pi^2}{8b^2}, \infty)\).

Lemma 3.1. The equality (3) also holds for all \(\alpha \in \mathbb{R}, \lambda \in \mathbb{C} \) such that \(\Re(\lambda) > V(\alpha) \).

Proof. See Appendix A. \(\square \)

Proposition 3.2. We have the following large-time behaviour for the moment generating function of \(L_t \):
\[
\lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}_x(e^{\alpha L_t}) = V(\alpha) < \infty \quad \forall \alpha \in \mathbb{R}.
\]

Proof. See Appendix B. \(\square \)

Remark 3.3. Note that \(V(\cdot) \) does not depend on the starting value \(x \), due to the ergodicity of \(X \).

The following lemma will be needed in the statement of the large deviation principle in the theorem that follows.

Lemma 3.4. (a) Define \(V^*(x) := \sup_{\alpha \in \mathbb{R}} [\alpha x - V(\alpha)] \) for all \(x \geq 0 \). Then we have
\[
V^*(x) = \begin{cases}
\alpha^*(\lambda^*) - \lambda^* & \text{for } x > 0 \\
\pi^2/(8b^2) & \text{for } x = 0
\end{cases}
\]
where \(\lambda^* = \lambda^*(x) \) is the unique solution of \(\alpha^*(\cdot)|'(\lambda) = 1/x \) for fixed \(x > 0 \).
(b) \(V^* \in C([0, \infty)) \cap C^1((0, \infty)) \) and \(V^* \) is a strictly convex function on \((0, \infty)\).
(c) \(V^* \) attains its minimum value of zero uniquely at \(x^* = \frac{1}{2\pi} \).
Proof. See Appendix C. \hfill \Box

Theorem 3.5. L_t/t satisfies a large deviation principle on $[0, \infty)$ as $t \to \infty$ with a strictly convex rate function $V^*(x)$.

Proof. From Lemma 3.4, we know that V^* is a strictly convex function on $(0, \infty)$. Hence the set of exposed points of V^* is $(0, \infty)$ (see Definition 2.3.3 in [DZ98]), and since $D_V^0 = (-\infty, \infty)$, the exposing hyperplane will always lie in D_V^0. Therefore, by the Gärtner-Ellis Theorem (see Theorem 2.3.6 in [DZ98]), L_t/t satisfies the LDP with convex rate function $V^*(x)$. \hfill \Box

Appendix A. Proof of Lemma 3.1

Recall from Propositions 2.1 and 2.2 that, for $\alpha < 0$ and $\lambda > 0$,

$$
\int_0^\infty e^{-\lambda t} \mathbb{E}_x(e^{\alpha L_t})dt = \hat{f}(x; \lambda, \alpha) = \frac{1}{\lambda} + e^{x \sqrt{\lambda}} A_\lambda(\alpha) + e^{-x \sqrt{\lambda}} B_\lambda(\alpha)
$$

(B-1)

where $A_\lambda(\alpha) = \frac{\alpha e^{-b_1 \lambda^{1/2}}/\cosh(b_1 \sqrt{\lambda})}{2\lambda(\alpha^*(\lambda) - \alpha)}$ and $B_\lambda(\alpha) = e^{2 \sqrt{\lambda} b_2} A_\lambda(\alpha)$. We wish to show that (B-1) still holds for a wider range of α and λ values using analytic continuation. We first note that \hat{f} has a singularity when $\alpha = \alpha^*(\lambda)$, and by Theorems 5a and 5b on page 57 in [WID46], we know that the abscissa of convergence for a Laplace transform is a point of singularity and the Laplace transform is analytic in its region of convergence.

We are interested in the values of $\alpha \in \mathbb{R}$ and $\lambda \in \mathbb{C}$ such that the Laplace transform $\hat{f}(x; \lambda, \alpha) = \int_0^\infty e^{-\lambda t} \mathbb{E}_x(e^{\alpha L_t})dt$ is finite. We recall the following fact: for any fixed $x \in [0, b]$,

(ï) $f(x; \lambda, \alpha) < \infty$ for $\alpha < 0$ and $\lambda > 0$.

We now proceed in three stages:

- **Fix $\lambda > 0$ (so $\lambda \in \mathbb{R}$).** We apply the Widder results with α as the Laplace variable, i.e. we consider

$$
\mathbb{E}(e^{\alpha L_t}) = \int_0^\infty e^{\alpha y} dF(y),
$$

where $F(y)$ is the distribution function of L_t. By (ï), the region of convergence is non-empty. We can then extend the region of convergence up to $\alpha^*(\lambda) > 0$, as $\alpha^*(\lambda)$ is the point of singularity.

- **Fix $\alpha < 0$.** We apply the Widder results again, but we now take λ as the Laplace variable. By (ï), the region of convergence is non-empty. According to Widder, the abscissa of convergence (say λ_c) is a point of singularity and $\hat{f}(x; \lambda, \alpha)$ is analytic in λ when $\Re(\lambda) > \lambda_c$. So we are looking at a point of singularity on the real line, and this is the value of λ_c that satisfies $\alpha^*(\lambda_c) = \alpha$. Or, in other words, $\lambda_c = (\alpha^*)^{-1}(\alpha) = V(\alpha)$. Thus, by Widder, $\hat{f}(x; \lambda, \alpha)$ is finite when $\Re(\lambda) > V(\alpha)$.

- **Fix $\alpha > 0$.** We apply Widder’s theorem using λ as the Laplace variable. By the first bullet point, we know that there exists some $\lambda \in \mathbb{R}$ (such that $\alpha < \alpha^*(\lambda)$), for which $\hat{f}(x; \lambda, \alpha)$ is finite. Hence, the region of convergence of $\hat{f}(x; \lambda, \alpha)$ is non-empty for this α. Then, by Widder, the abscissa of convergence λ_c is a point of singularity and $\hat{f}(x; \lambda, \alpha)$ is analytic for $\Re(\lambda) > \lambda_c$. The singularity is at $\alpha = \alpha^*(\lambda_c)$. Solving for points of singularity on the real line i.e. solving for λ_c in $\alpha = \alpha^*(\lambda_c)$, gives us $\lambda_c = V(\alpha)$ and so $\hat{f}(x; \lambda, \alpha)$ converges when $\Re(\lambda) > \lambda_c = V(\alpha)$.

This gives the region of λ and α for which $\hat{f}(x; \lambda, \alpha)$ converges: for every $\alpha \in \mathbb{R}$ and $\lambda \in \mathbb{C}$ such that $\Re(\lambda) > V(\alpha)$, and $\hat{f}(x; \lambda, \alpha)$ is analytic in this region.

Appendix B. Proof of Proposition 3.2

From the known large-time behaviour of the local time of standard Brownian motion, we expect that $\mathbb{E}_x(e^{\alpha L_t}) \sim \text{const.} \times e^{U(\alpha)t}$ as $t \to \infty$, for some non-decreasing function $U(\alpha)$ to be determined. Then as $t \to \infty$,

$$
\hat{f}(x; \lambda, \alpha) = \int_0^\infty e^{-\lambda t} \mathbb{E}_x(e^{\alpha L_t})dt \sim \int_0^\infty e^{-\lambda t} \text{const.} \times e^{U(\alpha)t} dt,
$$

(C-1)
and \(\hat{f}(x; \lambda, \alpha) \) blows up when \(\lambda = U(\alpha) \) (for \(\alpha \) fixed). But we know that \(\hat{f}(x; \lambda, \alpha) \) blows up at \(\alpha = \alpha^*(\lambda) \); thus we expect that \(\lambda = U(\alpha^*(\lambda)) \), i.e. \(U(\alpha) = (\alpha^*)^{-1}(\alpha) = V(\alpha) \). We now make this statement rigorous using a variant of Ikehara’s Tauberian Theorem (see e.g. Theorem 17 on page 233 in Widder[1WID46]).

We first define a positive function \(v \) on \(\mathbb{R} \):

\[
v(t) \equiv v(t; x, \alpha) := 1_{t \geq 0} e^{-V(\alpha)t} e^{x\alpha L t}.
\]

Then the Laplace transform of \(v \) is given by

\[
\hat{v}(\lambda) = \int_0^\infty e^{-\lambda t} v(t) dt = \int_0^\infty e^{-(\lambda+V(\alpha)t)} e^{x\alpha L t} dt = \hat{f}(x; \lambda + V(\alpha), \alpha),
\]

which, by Lemma 3.1 is analytic for all \(\lambda \in \mathbb{C} \) such that \(\Re(\lambda) > 0 \). We now need to characterize how \(\hat{v}(\lambda) \) blows up as \(\Re(\lambda) \downarrow 0 \). To this end, looking at the expression for \(A_2(\alpha) \), we notice that \(A_2(\alpha) \) has a pole at \(\lambda = V(\alpha) \in (-\frac{\pi^2}{a^2}, \infty) \), and is analytic elsewhere for \(\Re(\lambda) > -\frac{\pi^2}{a^2} \) (see Remarks 2.3 and 2.4). It is also easily seen that, \(\alpha^*(\lambda) > 0 \) for all \(\lambda \in (-\frac{\pi^2}{a^2}, \infty) \). Hence, by the Laurent expansion of \(\hat{v}(\lambda) \) at 0, there exists a function \(g(\lambda) \), which is analytic for all \(\lambda \in \mathbb{C} \) with \(\Re(\lambda) > -\varepsilon \) and \(|\Im(\lambda)| \leq c \) for some constants \(\varepsilon, c > 0 \), such that

\[
\hat{v}(\lambda) = \frac{C}{\lambda} + g(\lambda)
\]

for some constant \(C \) which we find to be positive (\(C \) is the residue of \(\hat{v} \) at \(\lambda = 0 \)). \(g(x + iy) \) is continuous on \(\mathcal{D} := \{(x, y) : |x| \leq \varepsilon, |y| \leq c\} \), thus \(g(x + iy) \) is uniformly continuous on \(\mathcal{D} \), so \(g(x + iy) \to g(iy) \) uniformly as \(x \downarrow 0 \) for any fixed \(y \in [-c, c] \). Moreover, for any \(x > 0 \)

\[
\int_{-c}^c |\hat{v}(x + iy) - \frac{C}{x + iy} - g(iy)| dy = \int_{-c}^c |g(x + iy) - g(iy)| dy
\]

Since \(g \) is analytic everywhere and uniformly continuous, if we take the limit as \(x \to 0 \), the above integral converges to 0, so the function \(g(x + iy) \) also converges to \(g(iy) \) in \(L^1([-c, c]) \), as \(x \downarrow 0 \).

We can now apply Proposition 4.3 in [KOR02] to obtain that for the “Fejér kernel" \(K(t) = \frac{\sin t}{\pi t} \),

\[
\lim_{t \to \infty} \int_{-\infty}^{ct} v(t - \frac{s}{c}) \cdot K(s) ds = C.
\]

(C-2)

We now proceed as in the proof of Theorem 4.2 in [KOR02] to show that \(v(t) = O(1) \) as \(t \to \infty \).

1. \(\alpha > 0 \). In this case we know that \(E_x(e^{x\alpha L t}) \) is non-decreasing, so \(v(t) \geq v(s) e^{V(\alpha)(s-t)} \) for all \(t \geq s \geq 0 \). For any fixed \(a > 0 \), using (C-2) we have that

\[
C = \lim_{t \to \infty} \int_{-\infty}^{ct} v(t - \frac{s}{c}) \cdot K(s) ds \geq \limsup_{t \to \infty} \int_{-a}^{at} v(t - \frac{s}{c}) \cdot K(s) ds \geq \limsup_{t \to \infty} v(t - \frac{a}{c}) e^{-2V(\alpha)\frac{s}{c}} \int_{-a}^{a} K(s) ds,
\]

which implies that

\[
\limsup_{t \to \infty} v(t) \leq \frac{e^{2V(\alpha)\frac{s}{c}}}{\int_{-a}^{a} K(s) ds} C < \infty.
\]

Hence, there exists a constant \(M > 0 \) such that \(v(t) \leq M \) for all \(t \). Similarly, for any fixed \(a > 0 \), we have

\[
\liminf_{t \to \infty} v(t + \frac{a}{c}) e^{2V(\alpha)\frac{s}{c}} \int_{-a}^{a} K(s) ds = \liminf_{t \to \infty} \int_{-a}^{a} v(t - \frac{s}{c}) K(s) ds
\]

\[
= \liminf_{t \to \infty} \left(\int_{-\infty}^{ct} + \int_{ct}^{\infty} - \int_{-ct}^{-\infty} - \int_{-\infty}^{-ct} \right) v(t - \frac{s}{c}) K(s) ds \geq \liminf_{t \to \infty} \left(\int_{-\infty}^{ct} + \int_{ct}^{\infty} \right) v(t - \frac{s}{c}) K(s)
\]

\[
- \limsup_{t \to \infty} \int_{-\infty}^{-ct} v(t - \frac{s}{c}) K(s) - \limsup_{t \to \infty} \int_{ct}^{\infty} v(t - \frac{s}{c}) K(s) \geq C - \frac{4M}{\pi} \int_{\frac{1}{2}}^{\infty} \frac{1}{s^2} ds = C - \frac{4M}{\pi a},
\]

where we have used (C-2) and the fact that \(0 \leq K(t) \leq \frac{2}{\pi t} \) in the last inequality. Hence, for \(a > 0 \) sufficiently large, we have

\[
\liminf_{t \to \infty} v(t) \geq \frac{e^{-2V(\alpha)\frac{s}{c}}}{\int_{-a}^{a} K(s) ds} (C - \frac{4M}{\pi a}) > 0.
\]
2. \(\alpha < 0 \). In this case we know that \(\mathbb{E}_x(e^{\alpha L_t}) \) is non-increasing, so \(v(t) \leq v(s)e^{V(\alpha)(s-t)} \) for all \(t \geq s \geq 0 \). Using the same argument as above, we have, for any fixed \(a > 0 \),

\[
Ce^{2V(\alpha)x} \geq \limsup_{t \to \infty} v(t + \frac{a}{c}) \int_{-a}^{a} K(s)ds,
\]

\[
(C - \frac{4M}{\pi a}) e^{-2V(\alpha)x} \leq \liminf_{t \to \infty} v(t - \frac{a}{c}) \int_{-a}^{a} K(s)ds.
\]

Hence for \(a > 0 \) sufficiently large, we have

\[
0 \leq \frac{e^{-2V(\alpha)x}}{\int_{-a}^{a} K(s)ds} (C - 4M/\pi a) \leq \liminf_{t \to \infty} v(t) \leq \limsup_{t \to \infty} v(t) \leq \frac{e^{2V(\alpha)x}}{\int_{-a}^{a} K(s)ds} C < \infty.
\]

Hence, by Proposition 4.3 in [KOR02], the result follows.

Appendix C. Proof of Lemma 3.4

We break the proof into three parts:

(a) Computing the Legendre transform of \(V \) boils down to solving \(V'(\alpha) = x \). But this is the same as solving \((V^{-1})'(\lambda) = \frac{1}{x} \) for \(\lambda \), when \(x > 0 \). Recall that \(V^{-1}(\cdot) = \alpha^* (\cdot) \) is known in closed form. Since \((\alpha^*)''(\lambda) < 0 \) for all \(\lambda \) in the domain of \(\alpha^* \), i.e. \(\lambda > -\frac{2}{\sqrt{\pi}} \) (from Remark 2.4), by the Inverse function theorem, \(\lambda^*(x) := (\alpha^*)'^{-1}(1/x) \) is well-defined and \(\lambda^* \in C^1((0, \infty)) \). Using the fact that \(\alpha^*(\lambda^*) = V^{-1}(\lambda^*) \), we have

\[
V^*(x) = x\alpha^* - V(\alpha^*) = x\alpha^*(\lambda^*(x)) - \lambda^*(x).
\]

When \(x = 0 \), the definition of \(V^* \) in Lemma 3.4 gives us \(V^*(0) = \sup_{\alpha \in \mathbb{R}} \{-V(\alpha)\} = -\inf_{\alpha \in \mathbb{R}} \{V(\alpha)\} = -\lim_{\alpha \to -\infty} V(\alpha) = \pi^2/(8b^2) \), where the last two equalities hold because \(V \) is a monotonically increasing function with range \((-\pi^2/(8b^2), \infty)\).

(b) By the Inverse function theorem, we know that \(\lambda^* \in C^1((0, \infty)) \) and so is \(\alpha^* \), thus \(V^* \in C^1((0, \infty)) \). It is easy to check that \(\lim_{x \to 0} \{x\alpha^*(\lambda^*(x)) - \lambda^*(x)\} = \pi^2/(8b^2) = V^*(0) \), which gives continuity of \(V^* \) up to the boundary \(x = 0 \). Using (5), we obtain

\[
(V^*)'(x) = \alpha^*(\lambda^*(x)) + x \cdot (\alpha^*)'(\lambda^*(x)) \cdot (\lambda^*)'(x) - (\lambda^*)'(x) = x\alpha^*(\lambda^*(x)) + \frac{1}{x}
\]

\[(V^*)'(0) = \alpha^*(\lambda^*(0)). \] Thus we have (using again \((\alpha^*)'' < 0 \))

\[
(V^*)''(x) = (\alpha^*)'(\lambda^*(x)) \cdot (\lambda^*)'(x) = \frac{1}{x} \cdot ((\alpha^*)'^{-1})'(\frac{1}{x}) \cdot (-\frac{1}{x^2}) = \frac{1}{x^3} \cdot \frac{1}{(\alpha^*)''(\lambda^*(x))} > 0.
\]

(c) Since \(V^* \) is strictly convex, it has a unique minimum. The unique minimum of \(V^* \) occurs at \(x^* = (V^*)'^{-1}(0) = V'(0) = 1/\alpha''(0) = \frac{1}{2b^2} \).

References

