
THE LANGLANDS PROGRAM: NOTES, DAY I

SOLOMON FRIEDBERG

Abstract. These are notes for the first of a two-day series of lectures introducing
graduate students to (parts of) the Langlands Program, delivered in the Building
Bridges: 2nd EU/US Summer School on Automorphic Forms and Related Topics,
July 2014.

Introduction: The Big Picture

There are two different kinds of number theoretic L-functions that have been stud-
ied extensively. The first are Artin L-functions. Let F be a number field, and GF be
the Galois group of an algebraic closure F̄ of F over F . A Galois representation is a
continuous homomorphism ρ : GF → Aut(V ) where V is a finite dimensional complex
vector space. Here continuous means there exists a finite Galois extension K/F such
that ρ factors through the finite Galois group Gal(K/F ). For each unramified prime
ideal p of F , there is a conjugacy class Frp, the Frobenius class, in Gal(K/F ) that
determines how p factors in K. (If p is ramified then one gets a class modulo the
inertia subgroup Ip.) Then Artin defined the L-function, given as an infinite product
absolutely convergent for <(s) > 1:

L(s, ρ) =
∏
p

det
(
IV − ρ(Frp)|V Ip N(p)−s

)−1
.

Here V Ip is the subspace of V fixed by the inertia subgroup; for an unramified place
Ip is trivial so V Ip = V . Also N(p) denotes the absolute norm of p. Artin’s Conjecture
states that if ρ does not contain a copy of the trivial representation then L(s, ρ) is
entire.

The second class of L-functions is that of automorphic L-functions. These are
functions attached to harmonic analysis on groups modulo discrete subgroups in
a way that we shall make precise (in certain cases) today. The first examples of
these functions are Dirichlet L-functions (and more generally Hecke L-functions with
Grossencharacter) and the L-functions attached to modular forms. Notice that for
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Hecke L-functions almost all Euler factors have degree one in N(p)−s while for mod-
ular forms almost all Euler factors have degree two in p−s. They are known to be
entire in “most” cases (non-trivial Dirichlet character, cusp forms).

Artin reciprocity is a precise formulation of statement that in the abelian case, these
two classes of L-functions are related. Namely, every L(s, ρ), ρ one-dimensional, is
in fact a Hecke L-function. This is a key part of class field theory. But what about
the non-abelian case? Then there are irreducible representations of Gal(K/F ) of
dimension greater than 1.

Langlands envisions a strong generalization. Namely, he conjectures that every
Artin L-function is an automorphic L-function. If true, then Artin’s Conjecture would
follow. Moreover, he conjectures that operations in linear algebra that are natural
for Artin L-functions should have analogues for all automorphic L-functions (and for
automorphic representations, as will be explained in this mini-course). For example,
given a second complex vector space W and a complex analytic representation σ :
Aut(V ) → Aut(W ), one may compose to make a new Galois representation σ ◦ ρ :
Gal(K/F ) → Aut(W ). Finding an analogue of this on the automorphic side turns
out to be a deep problem.

We mention that other connections also fall under the rubric of the Langlands
program. The above relations are global, but there are also Local Langlands Conjec-
tures describing the representations of local analogues of the absolute Galois group,
namely representations of the Weil-Deligne group, in terms of representations of p-
adic groups. And one may replace Galois representations by representations of the
fundamental group of an algebraic curve and relate them to automorphic sheaves, a
program known as the geometric Langlands program. (For a gentle but far reaching
introduction to this program written for a general audience which also explains the
way that the Langlands program connects to physics, see Edward Frenkel’s charming
book “Love and Math.”)

1. Lecture 1: Automorphic Forms

1.1. The General Set Up. Suppose that G is a topological group. That is, G is a
group and also a topological space, and the product and inverse maps

p : G×G→ G p(g1, g2) = g1g2, i : G→ G i(g) = g−1

are continuous. (Here G × G is endowed with the product topology.) Let Γ be a
discrete subgroup of G which is not too small. Then experience suggests that: the
study of left Γ-invariant functions on G is of interest. As a slight generalization, one
may study functions that satisfy

f(γg) = χ(γ) f(g) for all γ ∈ Γ, g ∈ G
where χ is a character of Γ.
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The two examples of automorphic L-functions mentioned above both arise from
functions of this type. Recall that a number field F embeds discretely in its ring
of adeles AF by the diagonal embedding f 7→ (f, f, . . . ). Similarly Γ = F× embeds
discretely in G = A×F . (The topology on A×F is the relative topology after embedding
A×F into AF×AF by a 7→ (a, a−1).) Classical Hecke characters turn out to be equivalent
to continuous functions ξ on G that are Γ-invariant. We will make the correspondence
explicit when F = Q later in this lecture.

Similarly, if G = SL(2,R), then Γ = SL(2,Z) is discrete. Classical modular forms
are functions on the upper half plane but they are related to functions on the group
G, as we now explain.

1.2. Modular Forms. Classical modular forms (including Maass forms) are func-
tions on the complex upper half plane h = {x + iy ∈ C | y > 0}. Our first step is to
view them as functions on the group G = SL(2,R). To do so, suppose that f : h→ C
transforms by the equation

(1.1) f(γ ◦ z) = χ(γ)j(γ, z)f(z) for all γ ∈ Γ,

where Γ is a congruence subgroup of SL(2,Z), χ is a character of Γ, and where
j : G× h→ C satisfies the cocycle equation

j(γ1γ2, z) = j(γ1, γ2 ◦ z) j(γ2, z).

For example, if f is a classical modular form of weight k with character χ one may
take j(( a bc d ) , z) = (cz + d)k. Define F : G → C by F (g) = j(g, i)−1f(g ◦ i). Recall
that the group K = SO(2,R) is the stabilizer of i in G.

Exercise 1. The function F satisfies the properties

(1) F (gκ) = j(κ, i)−1F (g) for all κ ∈ K.
(2) F (γg) = χ(γ)F (g) for all γ ∈ Γ.

Moreover, the map f 7→ F is a one-to-one correspondence between functions on h
satisfying (1.1) and functions F on G satisfying Properties 1, 2 above.

Note that if j(( a bc d ) , z) = (cz + d)k, then we have

j(
(

cos θ sin θ
− sin θ cos θ

)
, i)−1 = eikθ,

that is F transforms on the right by a character of K.

Observe that in particular the function G transforms under the center by a char-
acter, and indeed if −I2 ∈ Γ, then comparing (1),(2) above we arrive at the familiar
requisite parity condition χ(−1) = (−1)k. Also, since every matrix in GL(2,R) of
positive determinant can be adjusted by a positive scalar to give one of determi-
nant 1, we may canonically extend F to a function on GL+(2,R), the subgroup of
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g ∈ GL(2,R) such that det g > 0, that is invariant under the subgroup of scalar
matrices rI2, r > 0.

To work on the group, we must also translate the analytic conditions (that is,
the property that f is either holomorphic or more generally an eigenfunction of the
Laplacian) and the growth conditions. The differential operator on the group that
is needed is one described Lie-theoretically, namely it generates the center of the
universal enveloping algebra of the associated Lie algebra. (Recall that vectors X in
the Lie algebra act on differentiable functions by g 7→ d

dt
f(g exp(tX)) |t=0, and this

extends to the universal enveloping algebra.) The growth condition may be taken to
be the condition that F (g) grows by at most a power of ||g|| where ||g|| is the length
of the vector given by the entries of g together with det(g).

Our goal is to pass from a function on GL+(2,R) to a function on the adelic group
GL(2,A) (where A = AQ). First, though, let us handle the analogous problem on
GL1. Given a Dirichlet character χ, we attach a character ω of the idele class group
Q×\A×. Suppose first that χ is a Dirichlet character modulo pf with p a prime and
f > 0. If v is a finite place prime to p (we regard v as both a place and a prime integer),
let ωv : F×v → C× be the character which is trivial on units and whose value on a local
uniformizer $v is given by χ(v). If v = p, define ωv by ωv(p

k(j + pfZp)) = χ(j)−1

when j, k ∈ Z and (j, p) = 1. And define ω∞(r) = −1 if χ is odd and r < 0 and 1
otherwise. Then define ω =

∏
v ωv. Finally, if χ has conductor N which is expressed

in terms of distinct prime powers as N =
∏
pfii , to lift χ to an idele class character

first factor χ as a product of characters of conductors pfii and then lift each factor to
an idele class character as above.

Exercise 2. (1) Confirm that the ω so-obtained is an idele class character.
(2) Let Sf (N) = {v ∈ Sf | ordv(N) 6= 0}. Show that

χ(d) =
∏

v 6∈Sf (N)

ωv(d) =
∏

v∈Sf (N)

ωv(d)−1.

We are now ready to pass from modular forms f to functions on the adele group
GL(2,A). So let f(z) be a holomorphic modular form of weight k, level N , and
character χ. That is,

f(γ ◦ z) = χ(d) (cz + d)kf(z) for all γ = ( a bc d ) .

Let F (g) be the associated function on GL+
2 (R). The passage from the real points to

the adelic points is accomplished by the strong approximation theorem.

Let us state this result more generally and then apply it in our case. Fix F a number
field with archimedean places S∞ and finite places Sf , and let A now denote the adeles
of F . The finite adeles of F is the restricted direct product of the completions of F
at places in Sf : Af =

∏
v∈Sf

Fv. Similarly we set F∞ =
∏

v∈S∞ Fv. Both Af and
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F∞ canonically embed in the full ring of adeles. If v ∈ Sf , let Ov denote the ring of
integers of Fv and O×v the subgroup of units. Then we have

Theorem 1. Let n ≥ 1. Let K0 be a compact open subgroup of GLn(Af ) such that
det : K0 → A×f has image

∏
v∈Sf

O×v . Then the quotient

GLn(F )GLn(F∞)\GLn(A)/K0

has cardinality equal to the class number of F .

Exercise 3. Confirm the theorem above when n = 1.

We return to the case of a modular form, so once again A denotes the adeles of
Q. Let us introduce the compact open subgroup K0(N) of GL2(Af ) consisting of
matrices gv =

(
av bv
cv dv

)
such that at each v, gv ∈ GL2(Ov) and ordv(cv) ≥ ordv(N).

(This last condition is that cv ≡ 0 mod NOv for all finite places.) Then as a Corollary
of the Theorem above, we see that GL2(A) = GL2(Q)GL2(R)K0(N).

Let λ : K0(N)→ C× be given by

λ((gv)) =
∏

v 6∈Sf (N)

ωv(dv).

Let K∞ = SO2(R). Then we note that a full maximal compact subgroup of GL2(A)
is given by K := K0(1)K∞.

Suppose that f is a modular form as above, and F is the corresponding function
on GL+(2,R). Define φ : GL2(A)→ C by writing g ∈ GL2(A) in the form g = γg∞k0

with γ ∈ GL2(Q), g ∈ GL(2,R)+, and k0 ∈ K0(N). Such a factorization of g exists
by the Strong Approximation Theorem. Then we define φ(g) = F (g∞)λ(k0).

Proposition 1.1. (1) The function φ : GL2(A)→ C is well-defined.
(2) φ(γg) = φ(g) for all γ ∈ GL2(F ).
(3) φ (( z z ) g) = ω(z)φ(g) for all z ∈ A×.
(4) For each gf ∈ GL2(Af ), the function g∞ 7→ φ(gfg∞) is smooth.
(5) The span of the right translates of K∞ on φ is a finite dimensional space of

functions. (That is, φ is right K∞-finite.)
(6) There is a compact open subgroup K ′ of GL2(Af ) such that φ is invariant

under right translation by K ′.
(7) Let Z denote the center of the universal enveloping algebra of gl(2,R), realized

as differential operators that act on φ through their action g∞. Then φ is Z-
finite.

(8) φ is of moderate growth.

Exercise 4. Confirm this Proposition.
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In view of Property 3, ω is called the central character of φ.

Note that Property 2 above shows that φ is indeed a function on a group invariant
under a discrete subgroup, as described in subsection 1.1. Also, since the subgroup
K ′ above necessarily satisfies [K0(1) : K0(1)∩K ′] <∞, Property 6 is equivalent to φ
being right K0(1)-finite. Thus Properties 5 and 6 are equivalent to the property that
φ is right K-finite for the maximal compact group K.

To be sure, if φ arose from a holomorphic modular form, then a stronger property
(which may be phrased in terms of the complexification of the universial enveloping
algebra of gl(2,R)) holds. However, we shall focus on the properties above.

Definition . A function φ : GL(2,A)→ C satisfying the properties above is called a
(K-finite) automorphic form on GL2(A).

1.3. Automorphic Forms on More General Groups. Proposition 1.1 suggests
directly the definition of automorphic form for other groups. If G is a reductive
algebraic group defined over the number (or function) field F and A denotes the adeles
of F , an automorphic form is a function φ : G(A) → C satisfying the properties of
Proposition 1.1 above. Here K is taken to be a maximal compact subgroup of G(A)
and Z is in general a finitely generated algebra.

We note that this general definition includes many other classical kinds of modular
forms. If F is a totally real number field, then it includes the adelizations of Hilbert
modular forms (and Hilbert modular forms of Maass type). If G is a symplectic group,
it includes adelizations of Siegel modular forms. But we should emphasize what is
not included. For GL2, modular forms transforming under non-congruence subgroups
are not included (the Strong Approximation Theorem may not be applied). Modular
forms of half-integral weight and their generalizations are not included; these can be
included by passing to covers of G(A), the so-called metaplectic groups. And mock
modular forms violate the requisite growth properties.

Before going farther, let us ask: what’s the point? To be sure, working with Hilbert
modular forms when the class number is not one is very technical. But why go to
the adeles? There are several advantages. One is that cusps are easier to work with;
essentially we need only worry about one cusp. But this is minor. The key advantage
is that it allows us to break global problems into local problems, and apply methods
and facts from the representation theory of p-adic groups. We shall see this below.

In working with classical modular forms, one often focuses on cusp forms, identified
by their growth properties as one approaches the cusps. It then develops that cusp
forms have Fourier expansions with constant term zero. For more general groups, the
notion of Fourier expansion is more difficult, and it turns out to be better to define a
cusp form by the vanishing of its constant terms. For simplicity we give the definition
for GLn but it applies to other groups with obvious minor modifications.
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For 1 ≤ r ≤ n−1 let Ur ⊂ GLn be the subgroup of block upper-triangular unipotent
matrices

Ur =

{(
Ir X
0 In−r

)}
.

Definition . A function φ on GLn(F )\GLn(A) is cuspidal if for each r, 1 ≤ r ≤ n−1,∫
Ur(F )\Ur(A)

φ (ug) du = 0

for almost all g.

A classical cusp form is rapidly decreasing as one approaches all cusps. More
generally, Gelfand and Piatetski-Shapiro proved that a cuspidal automorphic form on
GLn(A), defined as above, is rapidly decreasing. We won’t formulate this precisely
but it is this property that makes integrals involving cusp forms that arise in the
theory converge.

1.4. Eisenstein series. Let us return momentarily to the classical language of the
upper half plane. Suppose that φ is a Maass cusp form on h for Γ = SL(2,Z).
Then one may check that φ is square-integrable with respect to the natural invariant
measure y−2dx dy on h: ∫

Γ\h
|φ(z)|2 dx dy

y2
<∞.

It is then natural to consider the entire space L2(Γ\h). One can try to decompose an
arbitrary function in this space by writing it as a sum of cusp forms (and the trivial
function, say), but this does not turn out to fill up the entire space. The missing piece
is given by integrals of Eisenstein series. To illustrate, we next develop the simplest
non-holomorphic Eisenstein series and compute its Fourier expansion. This will turn
out to give a hint of a far larger picture.

For each fixed s ∈ C with <(s) sufficiently large, define the Eisenstein series

E(z, s) =
∑

γ∈Γ∞\Γ

=(γz)s =
∑

(c,d)=1,
(c,d) mod ±1

ys

|cz + d|2s
.

(The conditon <(s) sufficiently large guarantees convergence.) Then

E(γz, s) = E(z, s)

for any γ ∈ Γ. In particular, since

E(z + 1, s) = E (( 1 1
0 1 ) z, s) = E(z, s),

we see E(z, s) is periodic so it has a Fourier expansion.

How can we find the Fourier coefficients of E(z, s)? One approach is to pass to the
“normalized Eisenstein series”
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E∗(z, s) = π−sΓ(s)ζ(2s)E(z, s),

where

ζ(2s)E(z, s) =
∑

(m,n)∈Z2,
(m,n)6=(0,0) mod ±1

ys

|mz + n|2s

= ysζ(2s)︸ ︷︷ ︸
m=0

+
∞∑
m=1

∞∑
n=−∞

ys

((mx+ n)2 + (my)2)s
.

The m = 0 term above does not depend on x and so does not contribute to the
non-zero Fourier coefficients. To compute the r-th Fourier coefficient of E∗(z, s),
r 6= 0:

π−sΓ(s)ys
∞∑
m=1

∞∑
n=−∞

∫ 1

0

e−2πirx

((mx+ n)2 + (my)2)s
dx

= π−sΓ(s)ys
∞∑
m=1

∑
n mod m

∫ ∞
−∞

e−2πirx

((mx+ n)2 + (my)2)s
dx.

In the above we have taken n mod m and so adjusted the region of integration. (This
is a first example of the “unfolding” technique that is common in the theory of
automorphic forms.) Next, change x 7→ x− n

m
, we have

π−sΓ(s)ys
∞∑
m=1

∑
n mod m e

2πir n
m

m2s

∫ ∞
−∞

e−2πirx

(x2 + y2)s
dx.

Now we may compute the summation over n mod m:∑
n mod m

e2πir n
m =

{
m, if m | r
0, if m 6 |r.

We recall that the K-Bessel function is given for y > 0 and s ∈ C by

(1.2) Ks(y) = 1
2

∫ ∞
0

e−y(t+t−1)/2ts
dt

t
.

(This integral is easily seen to be convergent for all s.) From this definition, it is an
exercise (or see [3], pg. 67) to check that if r 6= 0 then

(1.3) π−sΓ(s)ys
∫ ∞
−∞

e−2πirx

(x2 + y2)s
dx = 2|r|s−

1
2
√
yKs− 1

2
(2π|r|y).
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Conclusion: For n ≥ 1, let

σw(n) :=
∑

0<d|n

dw.

Then the r-th Fourier coefficient of E∗(z, s) is

2|r|s−
1
2σ1−2s(|r|)

√
yKs− 1

2
(2π|r|y)

if r 6= 0, and
π−sΓ(s)ζ(2s)ys + π1−sΓ(1− s)ζ(2− 2s)y1−s

if r = 0.

Exercise 5. Redo the Fourier expansion argument above more group theoretically
using the unnormalized Eisenstein series and the Bruhat decomposition. (To do this,
break the big Bruhat cell up into pieces such that Γ∞ acts properly on the right on
each piece.)

It is not difficult to observe that each non-zero Fourier coefficient of E∗(z, s) is
defined for all complex s and is symmetric under s 7→ 1−s (this uses the symmetry of
the K-Bessel function Ka(y) = K−a(y)). The same properties of the r = 0 coefficient
are true by the analytic continuation of the Riemann zeta function (with poles at
s = 0, 1). Moreover the Fourier series is convergent for all s. Thus we have

Corollary 1.2. E∗(z, s) has analytic continuation to all s ∈ C, except for simple
poles at s = 0 and 1, and has functional equation under s 7→ 1− s.
Remark 1.4. In fact, one can establish this continuation by spectral methods (and
this is true much more generally). Thus one can give another proof of the meromorphic
continuation and functional equation of the Riemann zeta function, a proof that
hinges on the occurrence of the Riemann zeta function in the constant term of the
Eisenstein series. Applied to higher rank groups, this leads to the Langlands-Shahidi
method for studying certain Langlands L-functions.

To conclude, we write the spectral expansion, due to Selberg, for L2(Γ\h), which
requires the integrals of the Eisenstein series E(z, s). Let ηj, j ≥ 1, be a basis for the
space of Maass cusp forms on Γ = SL(2,Z) that is orthonormal with respect to the
Petersson inner product

< f, g >=

∫
Γ\h

f(z) g(z)
dx dy

y2
.

Let η0(z) be the constant function
√

3/π. Then one has:

Theorem 2. Suppose that f(z) ∈ L2(SL(2,Z)\h). Then

f(z) =
∞∑
j=0

< f, ηj > ηj(z) +
1

4πi

∫ 1
2

+i∞

1
2
−i∞

< f,E(∗, s) > E(z, s) ds.
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2. Lecture 2: Automorphic Representations

Let us return to the more general situation that F is a number field. Let G be a
reductive group that is defined over F . This is a technical notion , but for this course
it is sufficient to think of G as being either GLn with n > 1 or else Sp2n, the group of
2n×2n symplectic matrices, with n ≥ 1. Then there is an invariant measure on G(A)
that is defined up to a constant, so we may consider square integrable functions on
G(F )\G(A). Let ω be a fixed unitary character, and let L2(G(F )\G(A), ω) denote
the space of square integrable functions that transform with central character ω.
Then G(A) acts on this space by right translation. By analogy with the spectral
decomposition above, it is natural to ask for decomposition of this right regular
representation. We shall return to this question later in this lecture.

2.1. Definition of Automorphic Representation. We could try to consider a
variation on this question. Fix ω and let A(G(F )\G(A), ω) denote the space of all
automorphic forms that have central character ω. Then we could hope that G(A)
acts by right translation on this space. The property of being left-G(F ) invariant is
indeed preserved by this right action. However, the property of right K-finiteness
is not preserved. It is close to being preserved: If φ ∈ A(G(F )\G(A), ω) and g0 ∈
G(Af ), then indeed the function ρ(g0)φ, that is, the function g 7→ φ(gg0), is again
in A(G(F )\G(A), ω). This is true since if K ′ ⊂ G(Af ) fixes φ then g−1

0 K ′g0 fixes
ρ(g0)φ and the subgroup g−1

0 K ′g0∩K ′ is of finite index in K ′. However, it is not true
that right translation by G(Fv) fixes A(G(F )\G(A), ω) if v is archimedean. Indeed,
in general ρ(gv)φ is not K∞-finite, where K∞ is a maximal compact subgroup of
G(F∞) =

∏
v|∞G(Fv).

There are two solutions to this problem. The first is to weaken the requirement
that φ be K∞-finite. Let g be the Lie algebra of G(F∞).

Definition . A smooth automorphic form on G is a function φ : G(A) → C such
that

(1) φ(γg) = φ(g) for all γ ∈ G(F ).
(2) For each gf ∈ G(Af ), the function g∞ 7→ φ(gfg∞) is smooth.
(3) There is a compact open subgroup K ′ of G(Af ) such that φ is invariant under

right translation by K ′.
(4) Let Z denote the center of the universal enveloping algebra U(g), realized

as differential operators that act on φ through their action g∞. Then φ is
Z-finite.

(5) φ is of uniform moderate growth: there exists a positive integer r and such that
for all X ∈ U(g) (the universal enveloping algebra of g), |Xφ(g)| ≤ CX ||g||r.

(For the general notion of norm ||g||, see Borel and Jacquet [2], pg. 189.)
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We write the space of smooth automorphic forms with central character ω as
A∞(G(F )\G(A), ω). The space A∞ has a limit Fréchet topology coming from the
uniform growth seminorms. (For the exact description, see [5].) We have

Proposition 2.1. (1) A ⊆ A∞; in fact A = {φ ∈ A∞|φ is K-finite}.
(2) A is dense in A∞.

Finally, we give one definition of an automorphic representation. Recall that in a
category, a subquotient is a quotient of a subobject.

Definition . A smooth automorphic representation (π, V ) of G(A) is a closed irre-
ducible sub-quotient of A∞(G(F )\G(A), ω).

Remark 2.1. Instead of enlarging A, we could instead have worked directly with
A and simply acknowledged that we did not have a right regular action of all of
G(A) but only of G(Af ). Though we do not have a right action of G(F∞), we have
some structure. Namely, there is an action of the Lie algebra g and also of the
maximal compact group K∞ on A, and the two actions are compatible. Thus at
the archimedean places we have a structure known as a (g, K∞) module. One can
define automorphic representations of A as subquotients in the category of objects
with these actions. This can also be rephrased in terms of the global Hecke algebra.

We may also consider the subspace A0 (resp. A∞0 ) of A (resp. of A∞) consisting
of cusp forms. Since the condition for cuspidality is the vanishing of integrals of
the form

∫
φ(ug) du while the actions we are considering are right actions, these

spaces are indeed submodules. An irreducible sub-quotient of A∞0 is called a cuspidal
automorphic representation.

In fact, there are a number of subspaces of interest in the theory, and we wish to
set them out now. First, let Z denote the center of G, and fix a unitary character
ω of Z(F )\Z(A). We write A(ω) and A∞(ω) to indicate the subspaces with central
character ω.

Second, recall that every cusp form is rapidly decreasing, hence L2, but the full
space of L2 functions is larger. Let L2(ω) = L2(G(F )\G(A), ω) denote the Hilbert
space of all measurable functions on G(F )\G(A) such that φ(zg) = ω(z)φ(g) for all
z ∈ Z(A) and such that ∫

Z(A)G(F )\G(A)

|φ(g)|2 dg <∞.

Also, let L2
0(ω) be the subspace of L2(ω) consisting of L2 functions which are cuspidal.

(Note that these functions are not required to be right Kf -finite.) Then G(A) acts
via the right regular representation on L2(ω) and on L2

0(ω). Then we have

A0(ω) ⊆ A∞0 (ω) ⊆ L2
0(ω) ⊆ L2(ω).
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It is a consequence of the generalization of Theorem 2 that the subspace of smooth
vectors in L2

0(ω) is the space A∞0 (ω), and thus the subspace of K-finite vectors in
L2

0(ω) is A0(ω). (Here we omit some details related to Frechet topologies.)

We have the fundamental decomposition theorem for L2 cusp forms due to Gelfand
and Piatetski-Shapiro with respect to the right action of G(A).

Theorem 3. The space L2
0(ω) decomposes into a discrete Hilbert space direct sum of

irreducible unitary sub-representations

(2.2) L2
0(ω) = ⊕m(π)Vπ

with the multiplicities m(π) finite.

Taking the subspaces of smooth (resp. K-finite) vectors in the decomposition (2.2)
we arrive at decompositions

A∞0 (ω) = ⊕m(π)V ∞π , A0(ω) = ⊕m(π)(Vπ)K .

The irreducible constituents are called the unitary smooth (resp. K-finite) cuspidal
representations of G(A).

Suppose one starts with a classical cusp form f(z) (either holomorphic or a Maass
form) for a congruence subgroup of SL2(Z). Then the closure of the span of the right
action of GL2(A) on the associated adelic function φ gives a subspace Vf of the space
of cuspidal automorphic form on GL2(A). In general, it is not irreducible. However,
if f is a Hecke eigenform then in fact Vf is irreducible.

2.2. Unramified Principal Series. Suppose that f is a classical cusp form which
is also a Hecke eigenform. Then all Fourier coefficients of f may be determined by
the coefficients of f at primes p. Our next task is to make an analogous statement for
automorphic representations, decomposing them in terms of representations of G(Fv)
as v runs over the places of F . We shall focus on what happens at the nonarchimedean
places, suppressing some technicalities at the archimedean places.

For convenience, in this subsection we take F to be a nonarchimedean local field
with ring of integers O and local uniformizer $ (dropping the subscript v). We
show how to construct a family of representations that will turn out to be the local
constituents of an automorphic representation at primes not dividing the level. For
simplicity we restrict to the groups GLn(F ), n > 1, but the ideas work more generally.

Let T be the subgroup of GLn(F ) consisting of diagonal matrices. Recall that a
character χ : F× → C× is called unramified if it is trivial on the subgroup of units
O×. Such a character is determined by its value on $, so that in general χ(a) = |a|c
for some complex constant c. If χ1, · · · , χn are unramified quasicharacters, let χ be
the character of T given by

χ(diag(t1, . . . , tn)) = χ1(t1) . . . χn(tn).
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Let B denote the (standard Borel) subgroup of GLn(F ) consisting of upper triangular
matrices, and let U denote the subgroup of B consisting of unipotent matrices (that
is, upper triangular matrices whose diagonal entries are all 1). Note that B = TU .
Let δB be the modular function of the Borel subgroup of GLn, that is the quotient of
right Haar measuer by left Haar measure on B, given explicitly by the formula

δB(t1, . . . , tn) = |t1|n−1|t2|n−3 . . . |tn|1−n.

Let I(χ) denote the space of locally constant functions ϕ : GLn(F )→ C such that

ϕ(tug) = δB(t)1/2χ(t)ϕ(g) for all t ∈ T, u ∈ U.

(Incorporating the δ
1/2
B into the definition turns out to be convenient, and is standard.)

Then GLn(F ) acts on I(χ) by the right regular representation. The module I(χ) is
called the unramified principal series.

Fix K = G(O). Then it can be shown that K is a maximal compact subgroup of
GLn(F ) (called the hyperspecial maximal compact).

Definition . Suppose F is non-archimedean. An (irreducible) representation (π, V )
of GLn(F ) is class one if V K 6= 0. It is admissible if the subgroup of GLn(F ) fixing
any vector v ∈ V is open and the subspace of vectors fixed by any compact open
subgroup of GLn(F ) is finite dimensional.

Exercise 6. (1) Show that I(χ) is class one, and moreover that the space of K-
fixed vectors of I(χ) is exactly one-dimensional. (We call the unique vector φ
in I(χ) such that φ(e) = 1 the normalized spherical vector.)

(2) Show that I(χ) is admissible.
(3) (Whittaker function on GL2(F )) For i = 1, 2, let χi(a) = |a|zi, where zi are

complex numbers, and let φ be the normalized spherical vector in I(χ). Let ψ
be an additive character on F that is trivial on O but non-trivial on $−1O.
Show that the p-adic integral

W (g) =

∫
F

φ

((
0 1
1 0

)(
1 x
0 1

)
g

)
ψ(x) dx

converges absolutely for <(z1− z2) > 0. Compute W (diag(y, 1)). Hint: Break
the integral up into pieces. For example, in the case |y| = 1, break the integral
over F into the pieces x ∈ O and x ∈ $−mO× with m ≥ 1.

If w ∈ GLn(F ) normalizes T then one can define a new character χw by χw(t) =
χ(wtw−1). Of course, if w ∈ T , then wtw−1 = t for all t ∈ T , and so χw = χ. A
character χ is said to be in general position if χ 6= χw for all w which normalize T
such that w 6∈ T . Then one has the following general theorem [1].

Theorem 4. Suppose that χ is in general position. Then I(χ) is irreducible.
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2.3. Tensor Product Theorem. We return to the global situation. We are familiar
with the tensor product of a finite number of representations. To adopt this notion to
an infinite number of representations, given a collection of class one representations
(πv, Vv) for v in an (infinite) set S of places of F let ξv ∈ V Kv

v be a nonzero vector.
Then one may form the restricted tensor product V := ⊗′v∈SVv relative to the vectors
{ξv}, consisting of the vector space spanned by tensors ⊗v∈Sxv where xv ∈ Vv for all
v ∈ S and xv = ξv for almost all v. The restricted product

∏′
v∈S G(Fv) acts on V

since by definiton if (gv)v∈S is in this product, then gv ∈ Kv for almost all v and so
gv fixes ξv for almost all v. We write π = ⊗v∈Sπv for the resulting representation.

In the next theorem we explain that an irreducible smooth automorphic represen-
tation of GLn(A) has such a structure.

Theorem 5. Let (π, Vπ) be an irreducible smooth automorphic representation of
GLn(A). Then there exist irreducible admissible smooth representations (πv, Vv) of
GLn(Fv) for all places v such that πv is (a component of) an unramified principal
series representation for GLn(Fv) for almost all v and such that π is the restricted
tensor product π = ⊗′πv. (Here we take ξv to be the normalized spherical vector.)

When we decompose an automorphic representation corresponding to a newform
f into local constituents, the places v for which the representation πv is unramified
principal series are exactly the places v corresponding to primes pv that do not divide
the level of f . The character χv at such a place v is determined by the Hecke eigenvalue
at pv.

3. Lecture 3: Automorphic Forms and L-Functions on GLn

Dirichlet invented the L-functions that bear his name in the course of proving his
theorem on primes in arithmetic progressions. Since an idele class character is an
automorphic form on GL1, the theory of Dirichlet and, more generally, Hecke L-
functions is tantamount to a theory of L-functions attached to an automorphic form
on GL1. We begin by briefly summarizing aspects of this theory.

Tate showed how to use adelic and p-adic integrals to establish (and better un-
derstand) the properties of the Hecke L-functions L(s, ω) attached to an idele class
character ω =

∏
v ωv of F . A key aspect of Tate’s approach is the passage between

global and local: Tate’s global (adelic) integral representing L(s, ω) may be expressed
in terms of integrals over the p-adic groups F×v where v runs over the places of F . An
important consequence is that the global epsilon factor that appears in the functional
equation

L(s, ω) = ε(s, ω)L(1− s, ω−1)

is seen to factor as a product of local epsilon factors attached to the local characters
ωv. This factorization is not quite canonical but depends on a choice of global additive
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character ψ of F\A. Write ψ =
∏

v ψv. Then Tate shows that

ε(s, ω) =
∏
v

εv(s, ωv, ψv),

where the product is finite since if ωv is unramified and the conductor of ψv is Ov

then ε(s, ωv, ψv) = 1.

The theory of L-functions attached to classical modular forms goes back to Ra-
manujan and Hecke. Recall that the L-function may be given as a Mellin transform
and its analytic properties obtained from this expression and modularity. This can
be extended to other classes of automorphic forms on GL2 over an arbitrary number
field F . However, the relation to Tate’s work on GL1 is not immediately apparent.

Jacquet and Langlands were the first to systematically address the theory of auto-
morphic forms over GL2(A) in the style of Tate, using the tensor product theorem,
Theorem 5. If π = ⊗′πv then they attach L-factors to each πv such that the global
L-function L(s, π) =

∏
v L(s, πv) has analytic continuation and functional equation.

The local L-factors are easiest when πv is unramified principal series. Once again,
the epsilon factor also is seen to be a product of local epsilon factors. This theory
was generalized to GLn by Jacquet, Piatetski-Shapiro and Shalika. In this lecture, we
recap the generalization of the theory of L-functions attached to automorphic forms
on GLn.

3.1. The Partial L-function. Let π be an irreducible cuspidal smooth automorphic
representation of GLn(A). Then there is a finite set S of places of F containing all
archimedean places such that for all v 6∈ S, πv is the unramified principal series I(χv).
For convenience we shall always assume that I(χv) is irreducible.

Choose a local uniformizer $v for Fv, and let qv be the cardinality of Ov/$vOv.
Suppose that on the torus T ,

χv(diag(t1, . . . , tn)) =
n∏
i=1

χi,v(ti),

where the χi are unramified quasicharacters, that is homomorphisms F×v → C× which
are trivial on O×v . Then we define the local L-factor

L(s, πv) =
n∏
i=1

(
1− χi($v)q

−s
v

)−1
.

Note that since χi is unramified, this is well-defined. (In fact, the character χ is itself
determined only up to a permutation of the χi but the product is independent of this
choice as well.) Then the partial global L-function for π is given by

LS(s, π) =
∏
v 6∈S

L(s, πv).
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This product may be seen to converge for <(s) sufficiently large.

Exercise 7. (1) Suppose that (π, V ) is as above and ω is an idele class character.
Define the twist of π by ω to be the representation whose functions are given
by g 7→ φ(g)ω(det(g)) for φ ∈ V . Show that the twist is again a smooth
automorphic representation. How is the partial L-function of the twist of π by
ω related to the partial L-function for π?

(2) Suppose that (π, V ) is as above. For φ in V , let φ̃ denote the function

g 7→ φ(Tg−1) where T denotes the transpose. Let Ṽ denote the space of func-

tions φ̃ for φ ∈ V . Show that Ṽ is a space of automorphic forms. The associ-
ated automorphic representation is written π̃ and is called the contragredient
automorphic representation. How is the partial L-function for π̃ related to the
partial L-function for π?

3.2. Rankin-Selberg L-functions. Classically, given two modular cusp forms f1

and f2, the Rankin-Selberg method attaches an L-function that is of degree 4 in
p−s at almost all places. In fact, this L-function may be obtained by integrating
f1(z)f2(z) against the Eisenstein series E(z, s) described in Lecture 1. The analytic
continuation and functional equation of the resulting Dirichlet series then follows
from Corollary 1.2. The decomposition into local L-factors is accomplished by Hecke
theory.

Similarly, given two cuspidal automorphic representations π and π′ on GLn(A) and
GLm(A), resp., let S be a set of places as above such that if v 6∈ S, then both πv and
π′v are unramified principal series: πv = I(χv), π

′
v = I(χ′v). Here χv is as above and

χ′v is obtained from quasicharacters χ′j,v, 1 ≤ j ≤ m. Then one defines the local and
partial Rankin-Selberg L-functions by

L(s, πv, π
′
v) =

n∏
i=1

m∏
j=1

(
1− χi,v($v)χ

′
j,v($v)q

−s
v

)−1

and
LS(s, π, π′) =

∏
v 6∈S

L(s, πv, π
′
v).

Once again the partial L-function converges for <(s) sufficiently large.

A helpful way to view these expressions is as follows. If πv = I(χv) as above,
let Aπv be the semisimple conjugacy class in GLn(C) containing the diagonal matrix
diag(χ1,v($v), . . . , χn,v($v)). Similarly define the conjugacy class Aπ′v in GLm(C).
Then

L(s, πv) =
(
det(In − Aπvq−sv )

)−1
, L(s, πv, π

′
v) =

(
det(Inm − Aπv ⊗ Aπ′vq

−s
v )
)−1

.

Here the local factors are realized as (the reciprocals of) characteristic polynomials
attached to the semisimple conjugacy classes Aπv (resp. Aπv ⊗ Aπ′v), evaluated at
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q−sv . For unramified local representations πv of more general types of groups G, the
semisimple conjugacy class attached to πv sits in the Langlands dual group of G,
rather than the complex points of G. This theme will be taken up further in the
second day of this course.

Exercise 8. Let F be a non-archimedean local field and let W (g) be the Whittaker
function on GL2(F ) defined in Exercise 6. Compute the Mellin transform∫

F×
W

((
y 0
0 1

))
|y|s−1 dy

in terms of the local L-function for I(χ).

3.3. Ramified L-factors. To get a satisfactory theory, one would like to define
L(s, πv) or L(s, πv, π

′
v) at the remaining places. We will not have time to do this

in any detail. Instead we describe the main steps without details. We focus on the
theory for finite but ramified places. For archimedean places, see the discussion in
[5], Ch. 8. At those places the local factors may be expressed in terms of Gamma
functions.

First, generalizing the integrals of Hecke and Rankin-Selberg, one defines a family
of global integrals I(s, φ, φ′) as φ runs over the space of V and φ′ runs over the space
of V ′. (One proceeds analogously for L(s, π).) From the integral expression the
integrals giving I(s, φ, φ′) may be shown to be absolutely convergent for all complex
s and satisfy the functional equation

I(s, φ, φ′) = Ĩ(1− s, φ̃, φ̃′),

where Ĩ is another family of global integrals. Next, if φ and φ′ are pure tensors (in the
classical language, this means that they are both Hecke eigenforms) then the integrals
I(s, φ, φ′) are seen to factor into local integrals. In this way one arrives at a family

of local integrals attached to πv and π′v. (One could handle the family Ĩ(s, φ̃, φ̃′) in
a similar way, but we focus on the first family of integrals for the moment.) The
local integrals depend on a local additive character ψv but we suppress this from the
notation.

One proceeds to analyze the space of local integrals. Suppose that v is a finite place
of F . One shows that each local integral is a rational function in qsv, and moreover
that the space of local integrals is a C[qsv, q

−s
v ]-fractional ideal in C(q−sv ) containing

the constant 1. Now the ring C[qsv, q
−s
v ] is a principal ideal domain, so this fractional

ideal has a generator. Since it contains 1, we may choose the generator to be of the
form 1/Pv(q

−s) where Pv(x) ∈ C[x] has constant term 1. We then define the local
L-factor L(s, πv, π

′
v) to be Pv(q

−s
v ). This works for π′v on GL1(Fv) in particular. If

we choose π′v to be the trivial character we obtain, by definition, L(s, πv). It can be
shown (this takes some work) that if πv, π

′
v are unramified principal series and the
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local additive character has conductor Ov then this local factor matches the definition
given in the previous subsection.

We may now define the complete L-functions L(s, π) and L(s, π, π′) to be the
product of the local L-functions over all places of F .

As preparation for the global functional equation, one proves a local functional
equation. This involves a local epsilon factor ε(s, πv, π

′
v, ψv) that is shown to be of the

form avq
−fvs
v for some constants av and non-negative integers fv. The local epsilon

factor is the constant 1 when all data is unramified.

3.4. Global Properties. The global L-functions have analytic continuation and
functional equation. Suppose π = ⊗′πv, π′ = ⊗′π′v are cuspidal automorphic rep-
resentations of GLn(A), GLm(A) resp., and let ψ =

∏
v ψv be an additive character

on F\A. Define the global epsilon factor

ε(s, π, π′) =
∏
v

ε(s, πv, π
′
v, ψv).

Since almost all factors in this product are 1, the product makes sense. It may be seen
that the product is independent of the choice of ψ. In fact from the local analysis, it
follows that the global epsilon factor is of the form WN1/2−s where W is a complex
number of absolute value 1 and N is a positive integer. Then one has

Theorem 6. The L-function L(s, π, π′), defined by a convergent Euler product for
<(s) sufficiently large, has meromorphic continuation to all complex s and satisfies
the functional equation

L(s, π, π′) = ε(s, π, π′)L(1− s, π̃, π̃′).
Moreover, L(s, π, π′) is entire if m 6= n, while if m = n then L(s, π, π′) is entire
except for two possible simple poles, which occur if and only if there exists σ ∈ R such
that π̃ ∼= π′ ⊗ | det |σ. In that case the simple poles are at s = iσ and s = 1 − iσ.
Moreover, the function L(s, π, π′) is bounded in vertical strips of finite width away
from its poles.

In the special case m = 1, we get

Corollary 3.1. The L-function L(s, π), which is defined by an Euler product (with
almost all Euler factors of degree n in q−sv ) that is absolutely convergent for <(s)
sufficiently large, has analytic continuation to an entire function of s, and satisfies
the functional equation

L(s, π) = ε(s, π)L(1− s, π̃).

Remark 3.1. Corollary 3.1 is due to Godement and Jacquet, who showed that the L-
function L(s, π) could be represented by another integral, based on matrix coefficients,
that is a close generalization of Tate’s thesis. A key step is a Poisson summation
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formula. An account of the Godement-Jacquet theory may be found in [7], Vol. II.
Theorem 6 and Corollary 3.1 hold for all number fields F .

Remark 3.2. (Another approach to L-functions.) It is also possible to establish
the properties of the L-functions treated here by a different method, the Langlands-
Shahidi method. In this method, one use π and π′ to construct a family of Eisen-
stein series E(s, φ, φ′) on the group GLn+m(A). This series is realized as a sum over
Pn,m(F )\GLn+m(F ), where Pn,m(F ) is the subgroup

Pn,m =

{(
A B
0 D

)
| A ∈ GLn(F ), B ∈ Matn×m(F ), D ∈ GLm(F )

}
.

Here one takes advantage of the automorphicity of φ ∈ Vπ and φ′ ∈ Vπ′ to build them
into the Eisenstein series. On the one hand, one may continue this series by a subtle
argument involving spectral theory. On the other, the Whittaker coefficients of this
series may be seen to involve the L-functions L(s, π, π′). The desired properties follow.
The local factors in this case are obtained by the study of intertwining operators and
make use of the local uniqueness of the Whittaker model.

To conclude this lecture, let us return to Artin’s Conjecture. If ρ is an n-dimensional
irreducible Galois representation (and in particular one that does not contain the
trivial representation) then Langlands conjectures that the Artin L-function L(s, ρ) is
an automorphic L-function L(s, π) attached to a cuspidal automorphic representation
π of GLn(A), where A is the adeles of the base field F . If this is known, then Artin’s
Conjecture that L(s, ρ) is entire follows from Corollary 3.1.
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