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Lecture 1: Modular Forms and Singular Moduli

A weakly holomorphic modular form f(z) of weight k ∈ 2Z for Γ = SL(2,Z) is a holomor-
phic function on the upper half-plane H := {z ∈ C : Im(z) > 0} such that

(f |k γ)(z) := (cz + d)−kf

(
az + b

cz + d

)
= f(z)

for all γ = ( a bc d ) ∈ Γ and

f(z) =
∑
n≥n0

a(n)qn, q = e(z) = e2πiz

with n0 = ord∞f . Let M !
k denote the C vector space of all such forms. Any f ∈M !

k satisfies
the valence formula

(1)
k

12
= ord∞f +

∑
z∈F

ordzf

wz
,

where F is the fundamental domain and wz is the order of the subgroup of Γ/{± ( 1
1 )}

stabilizing z and given by

(2) wz =


2, z = i,

3, z = ρ,

1, otherwise.
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−1 1

i

ρ

0

F

This is obtained by integrating F (z) := f ′(z)
f(z)
− ik

2y
around ∂F and applying Green’s Theorem.

Write k = 12` + k′ with ` ∈ Z, k′ ∈ {0, 4, 6, 8, 10, 14}. Then equation (1) implies that
f(z) = 0 whenever ord∞f > `. Let Sk ⊂ Mk ⊂ M !

k be the subspaces of cusp forms and
modular forms, i.e. f ∈ Sk, resp. f ∈Mk, if ord∞f > 0, resp. ord∞f ≥ 0.

To construct modular forms, one can start with Eisenstein series. For k ≥ 4 even, let

(3) Ek(z) :=
1

2

∑
(c,d)∈Z2

gcd(c,d)=1

1

(cz + d)k
= 1 +

2

ζ(1− k)

∑
n≥1

σk−1(n)qn ∈Mk,

where ζ(s) is the Riemann zeta function and σk−1(n) :=
∑

d|n d
k−1 is the divisor sum function.

The Fourier expansion of Ek(z) can be derived from the following trigonometric identity

(4)
1

z
+
∞∑
d=1

(
1

z − d
+

1

z + d

)
= π cot(πz) = πi− 2πi

∞∑
m=0

qm.

When k = 4 and 6, we have

E4(z) = 1 + 240q +O(q2),

E6(z) = 1− 504q −O(q2),

ordρE4 = ordiE6 = 1.

Define the modular discriminant function ∆(z) ∈M12 and modular j-invariant j(z) by

∆(z) :=
E3

4(z)− E2
6(z)

1728
= q − 24q2 + 252q3 − 1472q4 + . . . ,

j(z) :=
E3

4(z)

∆(z)
= q−1 + 744 +

∑
n≥1

c(n)qn.

Since ord∞∆(z) = 1, equation (1) implies that ∆(z) has no zeros in H and j(z) ∈M !
0.

For each m ≥ 0, there is a unique jm ∈M !
0 such that

jm(z) = q−m +O(q) = Fm(j(z))
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with Fm(x) ∈ Z[x] a monic polynomial. The existence is easily shown by induction, e.g.

F0(x) = 1, F1(x) = x− 744, F2(x) = x2 − 1488x+ 159768.

The Fm(x)’s are called Faber polynomials. Their uniqueness follows from equation (1) and
that {jm}m≥0 is a basis for M !

0. So any f(z) =
∑
a(n)qn ∈ M !

0 having a(n) ∈ Z can be
expressed uniquely as f(z) = P (j(z)) with P (x) ∈ Z[x]. This is called the “q-expansion
principle”. The generating function of jm(z) is given by

(5)
−j′(z)

j(z)− j(τ)
=
∑
m≥0

jm(τ)qm =
∑
m≥0

Fm(j(τ))qm,

which comes from integrating jm(z)j′(z)
j(z)−j(τ)

around ∂FY , the boundary of the closure of the

truncated fundamental domain FY .

−1 1

iY

i

ρ

0

FY

Letting τ = i and ρ yields the q-expansion of various modular forms∑
m≥0

jm(i)qm =
−j′(z)

j(z)− 1728
=
E2

4(z)E6(z)

∆(z)
· ∆(z)

E2
6(z)

=
E2

4(z)

E6(z)
,

∑
m≥0

jm(ρ)qm =
−j′(z)

j(z)
=
E2

4(z)E6(z)

∆(z)
· ∆(z)

E3
4(z)

=
E6(z)

E4(z)
.

Remark 1. The generating function generalizes to other nonzero weight k as well.

A CM point is τ ∈ H such that Aτ 2 +Bτ +C = 0, A,B,C ∈ Z, A > 0. Thus, τ = −B+
√
D

2A

with D = B2 − 4AC ≡ 0, 1 (mod 4) negative and |D| not a square.

Theorem 2. If τ is a CM point, then j(τ) is an algebraic integer.

Example 3. If D is even, then τ =
√
D
2

, otherwise τ = 1+
√
D

2
.

D −3 −4 −7 −8 −11 −12 −15

τ0 ρ i 1+
√

7i
2

√
2i 1+

√
11i

2

√
3i 1+

√
15i

2

j(τ0) 0 1728 −3375 8000 −32768 54000 −191025−85995
√

3
2
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As preparation for the proof of Theorem 2, consider the following polynomial in x for
m ≥ 1 ∏

ad=m
1≤b≤d

(
x− j

(
az + b

d

))
=

σ(m)∑
r=0

fr(z)xr.

Now the set {( a b0 d ) : ad = m, 1 ≤ b ≤ d} is a complete set of representatives for Γ\Γm, where

Γm :=

{(
a b
c d

)
∈M(2,Z) : ad− bc = m

}
.

Each fr(z) is a symmetric function in {j(γz) : γ ∈ Γ\Γm}. Since γ′Γm(γ′)−1 = Γm for any
fixed γ′ ∈ Γ and that fr(z) has at most exponential growth at ∞, we know that fr(z) ∈M !

0

for each 0 ≤ r ≤ σ(m).
For fixed a, d, consider∏

1≤b≤d

(
x− j

(
az + b

d

))
= (−1)d

∏
1≤b≤d

(
e
(−b
d

)
q−

a
d + (744− x) +

∑
n≥1

c(n)e
(
bn
d

)
q
na
d

)
(6)

= (−1)dq−a +
∑

n≥−d+1

An(x)q
na
d ,

where An(x) ∈ R[x], R = Z[e
(

1
d

)
]. From equation (6), we see that An(x) is left invariant

under all Galois automorphisms of Q(e2πi/d), which implies that An(x) ∈ Z[x]. Also An(x)
vanishes unless d | n since the left hand side of equation (6) is invariant under z 7→ z + 1.
Thus, we could write∏

1≤b≤d

(
x− j

(
az + b

d

))
= (−1)dqa +

∑
n≥0

And(x)qna.

It follows that fr(z) =
∑

n ar(n)qn with ar(n) ∈ Z and that there exists Pr(x) ∈ Z[x]
satisfying

fr(z) = Pr(j(z))

by the q-expansion principle. In particular, Pσ(m)(x) = 1 and

−Pσ(m)−1(j(z)) =
∑
ad=m
1≤b≤d

j

(
az + b

d

)
= 744σ(m) +

∑
ad=m
1≤b≤d

j1

(
az + b

d

)
= 744σ(m) + jm(z).

(7)

For example when m = 2, σ(m) = 3 and(
x− j

(z
2

))(
x− j

(
z + 1

2

))
(x− j(2z)) = x3 + P2(j(z))x2 + P1(j(z))x+ P0(j(z)),
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where

−P2(j(z)) = j
(z

2

)
+ j

(
z + 1

2

)
+ j(2z)

=
(
q−

1
2 + 744 +O(q)

)
+
(
−q−

1
2 + 744 +O(q)

)
+ (q−2 + 744 +O(q))

= q−2 + 3 · 744 +O(q)

= j(z)2 − 1488j(z) + 162000.

Similarly, we have

P1(j(z)) = 1488j(z)2 + 40773375j(z) + 8748000000,

P0(j(z)) = j(z)3 − 162000j(z)2 + 8748000000j(z)− 157464000000000.

We thus have ∏
ad=m
1≤b≤d

(
x− j

(
az + b

d

))
= Ψm(x, j(z)),

where Ψm(x, y) ∈ Z[x, y] has degree σ(m) in x. For example, the calculations above tells us
that

Ψ2(x, y) = − x2y2 + x3 + y3 + 1488(x2y + xy2)− 162000(x2 + y2) + 40773375xy

+ 8748000000(x+ y)− 157464000000000.

Remark 4. It turns out that Ψm(x, y) = Ψm(y, x). Since CM points are fixed points of
transformations in Γm, we will consider Ψm(x, x).

Lemma 5. For m not a square, the polynomial ±Ψm(x, x) is monic of degree

(8) G(m) :=
∑
d|m

max
(
d, m

d

)
.

Remark 6. When m = 2, we have

Ψ2(x, x) = −(x+ 3375)2(x− 1728)(x− 8000),

which has degree G(2) = 4.

Proof. By definition, we have

Ψm(j(z), j(z)) =
∏
ad=m

∏
1≤b≤d

(
j(z)− j

(
az + b

d

))
=
∏
ad=m

∏
1≤b≤d

(
q−1 − e

(−b
d

)
q−

a
d +O(1)

)
.
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Using the fact that
∏

1≤b≤d
(
x− e

(−b
d

)
y
)

= xd − yd, we obtain

Ψm(j(z), j(z)) =
∏
ad=m

(
q−d − q−a + lower order terms

)
,

which implies the lemma. Note that q−d−q−a is nonzero since m is not a perfect square. �

Turning now to the proof of Theorem 2, let τ be a CM point with

Aτ 2 +Bτ + C = 0, D = B2 − 4AC < 0.

To realize τ as a fixed point of M = ( a bc d ) ∈ Γm, observe that

M · τ = τ ⇔ cτ 2 + (d− a)τ − b = 0.

This happens if

M =

(
1
2

(t−Bu) −Cu
Au 1

2
(t+Bu)

)
for m = t2−Du2

4
, t = TrM,u ∈ Z nonzero and t ≡ Du (mod 2). For a fixed D, choose some

t, u such that t ≡ Du (mod 2) and t2 − Du2 > 0 is not a square. Since j(Mτ) = j(τ), we

have Ψm(j(τ), j(τ)) = 0, where m = t2−Du2
4

. Since ±Ψm(x, x) is monic integral, we see that
j(τ) is an algebraic integer.

For any D < 0, D ≡ 0, 1 (mod 4), let

QD := {Q(x, y) = Ax2 +Bxy + Cy2 : A > 0, B2 − 4AC = D, gcd(A,B,C) = 1}.

The set QD is acted on by γ = ( a bc d ) ∈ Γ via (γ ·Q)(x, y) = A′x2 +B′xy + C ′y2 such that

Q(x′, y′) = A′x2 +B′xy + C ′y2,(
x′

y′

)
:=

(
a b
c d

)(
x

y

)
.

This translates into linear fractional action on the associated CM point

τQ =
−B +

√
D

2A
∈ H.

The number of equivalence classes is denoted by h(D) and is finite. We may choose the
representatives in F . The class polynomial is defined by

(9) HD(x) :=
∏

Q∈Γ\QD

(x− j(τQ)).

The following result is proven using the theory of CM elliptic curves.

Theorem 7. The polynomial HD(x) ∈ Z[x] is monic and irreducible.
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As a consequence, j(τQ) has degree h(D) over Q with conjugates j(τQ′), Q
′ 6∼ Q. A

deeper fact is that the field H := Q(
√
D, j(τQ)) is abelian over K = Q(

√
D). If D is

fundamental, then H is the Hilbert class field of K, i.e. its maximal unramified abelian
extension. Furthermore, the Galois group Gal(H/K) is isomorphic to the class group Γ\QD.
For complete proofs see [6] or [16].

Lecture 2: Borcherds products

Recall that for any integer D < 0 such that D ≡ 0, 1 (mod 4), we have the set

QD = {Q(x, y) = Ax2 +Bxy + Cy2 : A > 0, B2 − 4AC = D, (A,B,C) = 1},
and that the quadratic form Q ∈ QD has root τQ ∈ H. We have the class polynomial

HD(x) =
∏

Q∈Γ\QD

(x− j(τQ)) = xh(D) −

 ∑
Q∈Γ\QD

j(τQ)

xh(D)−1 + · · · .

We modify these definitions slightly now: let QD be the set of all positive definite binary
quadratic forms of discriminant D, not just the primitive forms, and let ωQ = 2 if the form
Q ∼ ax2 + ay2, ωQ = 3 if Q ∼ ax2 + axy + ay2, and ωQ = 1 otherwise. Modify the class
polynomial to get

HD(x) =
∏

Q∈Γ\QD

(x− j(τQ))1/ωQ .

This is still a polynomial unless −D/3 is a square (in which case it is a polynomial multiplied
by x1/3) or −D is a square (in which case it is a polynomial multiplied by (x − 1728)1/2).
The class number h(D) now becomes the Hurwitz class number H(D) =

∑
Q∈Γ\QD

1
ωQ

, where

H(0) = − 1
12

.
Borcherds [3] proved the following theorem.

Theorem 8. We have HD(j(z)) = q−H(D)
∏∞

n=1(1−qn)a1/2(−D,n2), where a1/2(−D,n2) is the

Fourier coefficient of qn
2

of the unique weakly holomorphic modular form of weight 1/2 and
level 4 in the Kohnen plus space with Fourier expansion beginning qD +O(q).

A more general version of the theorem is as follows. Let f(z) =
∑
c(n)qn be a weakly

holomorphic modular form with integer coefficients of weight 1/2 and level 4 in the Kohnen
plus space M !

1/2(4). Let h be the constant term of the product f(z)
(∑

n≥0H(−n)qn
)
. Then

F (z) = q−h
∏
n>0

(1− qn)c(n
2)

is a meromorphic modular form for some character of SL2(Z) of weight c(0); additionally,
F (z) has integer coefficients, and all of its zeros and poles are at cusps or imaginary quadratic
irrationals. Specifically, if τ ∈ H has discriminant D < 0, then ordτ (F ) =

∑
d>0 c(Dd

2).
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This mapping is an isomorphism between the additive group of weakly holomorphic modular
forms with integer coefficients in the Kohnen plus space M !

1/2(4) and the multiplicative group
of meromorphic modular forms with integer coefficients, leading coefficient 1, and Heegner
divisor.
Example. The Jacobi theta function θ(z) =

∑
n∈Z q

n2
= 1+2q+2q4 + . . . is a modular form

in M1/2(4). We look at 12θ(z) = 12 + 24q + 24q4 + 24q9 + . . . and see that the isomorphism
gives h = −1 and

F (z) = q
∏
n≥1

(1− qn)24 = ∆(z).

Example. The Eisenstein series E4(z) has a zero at ρ = −1+i
√

3
2

and has integer coefficients
and leading coefficient 1. Expanding its Fourier series as an infinite product, we get

E4(z) = 1 + 240q + 2160q2 + 6720q3 + . . . = (1− q)−240(1− q2)26760(1− q3)−4096240 · · · .
Sure enough, there is a modular form of weight 1/2 with Fourier expansion

q−3 + 4− 240q + 26760q4 − 85995q5 + 1707264q8 − 4096240q9 + . . . .

This can also be done for E6(z), E8(z), E10(z), E14(z), and j(z), among others, since we
know exactly where their zeros and poles are in the fundamental domain. Note that the
product HD(j(z)) =

∏
(j(z)− j(τQ)) satisfies the conditions of the more general theorem.

Explicit bases for spaces of modular forms. To better understand this theorem, we
now look at explicit bases for spaces of modular forms of integral and half integral weight.

For each even integer weight k, write k = 12`+k′, where k′, ` ∈ Z and k′ ∈ {0, 4, 6, 8, 10, 14}.
For each integer m ≥ −`, there is a unique modular form fk,m(z) ∈ M !

k with a Fourier ex-
pansion of the form

fk,m(z) = q−m +O(q`+1).

We can construct such a form explicitly using ∆, j, and Ek′ , where E0 = 1; specifically, we
have fk,m = ∆`Ek′F (j), where F (x) is a monic polynomial in x of degree `+m with integer
coefficients. We write fk,m(z) = q−m+

∑
n>` ak(m,n)qn, so that all of the Fourier coefficients

ak(m,n) of these basis elements are integers.
In SAGE, this is the Victor Miller basis for spaces of holomorphic modular forms; see also

[9]. A generating function for these basis elements is given by∑
m≥−`

fk,m(τ)qm =
fk,−`(τ)f2−k,−1−`(z)

j(z)− j(τ)
.

For half integral weight modular forms for Γ0(4), there is a similar canonical basis. For any
integer s we let M !

s+1/2(4) be the vector space of holomorphic functions on H that transform

like θ2s+1 under Γ0(4), may have poles at the cusps, and satisfy the Kohnen plus-space
condition that their q-expansion is supported on integers n with (−1)sn ≡ 0, 1 (mod 4). (
The automorphy factor for θ is

(
c
d

)
ε−1
d

√
cz + d for a matrix ( a bc d ).)
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Recall that the Shimura correspondence gives an isomorphism between spaces of modular
forms of integral and half integral weight; specifically, for positive integers s, the space of
cusp forms of weight s+ 1/2 and level 4 in the Kohnen plus space is isomorphic to the space
of cuspforms of weight 2s and level 1.

From this, we compute dimensions of spaces of cusp forms of half integral weight and
level 4 in the Kohnen plus space. In level 4, the space of holomorphic modular forms (not
necessarily in the plus space) can be constructed explicitly as products of powers of θ(z) and
the weight 2, level 4 Eisenstein series given by

E(z) =
∞∑
n=0

σ(2n+ 1)q2n+1.

Once we have a set of holomorphic forms spanning the space, we take linear combinations to
get into the plus space, and construct weakly holomorphic modular forms by multiplying by
powers of j(4z). To construct forms of negative weight, we can divide holomorphic forms of
positive weight by powers of ∆(4z) ∈M12(4). It turns out that for every integer s, there is a
canonical basis {fs+1/2,m(z)} for M !

s+1/2(4) where the basis elements have integral coefficients
and a Fourier expansion of the form

q−m +
∑

as+1/2(m,n)qn,

with the maximum possible gap in the Fourier expansion after the q−m term. This is all
constructed in [10].

For example, to get the form of weight 1/2 that corresponds to E4(z) under the Borcherds
isomorphism, we begin with weight 25/2 and find the two forms f25/2,−4 = E4θ9− 16E5θ5 =
q4 +O(q5) and f25/2,−1 = Eθ21 − 42E2θ17 + 584E3θ13 − 2808E4θ9 + 1792E5θ5 + 2048E6θ =
q + O(q5). Divide both by ∆(4z) to get forms in the plus space of weight 1/2 beginning
q−3 +O(1) and 1 +O(q), and take the appropriate linear combination to get q−3 + 4 +O(q),
which must be the correct form by dimension considerations.

Just as in the integral weight case, there is a generating function for these basis elements.
It is given by

∑
fk,m(τ)qm =

fk(τ)f ∗2−k(z) + f ∗k (τ)f2−k(z)

j(4z)− j(4τ)
;

here, fk and f ∗k are the first two basis elements of weight k. Zagier gave this generating
function for k = 1/2, 3/2 in [20], and the generalization can be found in [10].
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Examples. The first few coefficients of the first basis elements of weight 1/2 are

f1/2,0(z) = 1 + 2q + 2q4 + 0q5 + 0q8 + · · · ,
f1/2,3(z) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 + · · · ,
f1/2,4(z) = q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 + · · · ,
f1/2,7(z) = q−7 − 4119q + 8288256q4 − 52756480q5 + 5734772736q8 + · · · .

The first few basis elements of weight 3/2 are

f3/2,1(z) = q−1 − 2 + 248q3 − 492q4 + 4119q7 − · · · ,
f3/2,4(z) = q−4 − 2− 26752q3 − 143376q4 − 8288256q7 − · · · ,
f3/2,5(z) = q−5 + 0 + 85995q3 − 565760q4 + 52756480q7 − · · · ,
f3/2,8(z) = q−8 + 0− 1707264q3 − 18473000q4 − 5734772736q7 − · · · .

Looking at these Fourier expansions, we see that the coefficients of one basis element f1/2,m(z)
appear as the negatives of the coefficients of a particular power of q in each of the f3/2. This
theorem is true more generally; in fact, for all integers m,n and any integral or half integral
weight k we have the Zagier duality [20]

ak(m,n) = −a2−k(n,m).

This duality theorem can be proved from the generating function (replace k with 2 − k
and switch τ and z), or by noting that the product fk,m(z)f2−k,n(z) has constant term equal
to ak(m,n) + a2−k(n,m), and that this product (hit with the U4 operator if the weight is
half integral) is of weight 2 for SL2(Z), and every such form is the derivative of a polynomial
in j and thus has a constant term of 0.

Lecture 3: A modular form proof of Borcherds’s theorem

Borcherds proved his theorem (of which even the more general theorem above is a special
case) as a consequence of work on denominator formulas of infinite dimensional Lie algebras,
but asked whether a proof of the isomorphism existed that used only modular forms for
SL2(Z) and not automorphic forms on larger groups. Work of Zagier [20] answered this
question in the affirmative. The proof has two parts: first, showing that traces of singular
moduli are coefficients of weight 3/2 modular forms for Γ0(4), and then using the duality
theorem above.

We define traces of singular moduli of discriminant D for a SL2(Z)-invariant function F (z)
by

TrD(F ) =
∑

Q∈Γ\QD

F (τQ)

ωQ
.
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It is convenient to use the basis elements f0,m(z); for instance, if F = f0,0(z) = 1, then
TrD(F ) = H(D), and if F = f0,1(z) = j(z) − 744, then we get the algebraic trace of
j(τQ)− 744. For instance, we have the following traces of f0,1(z) = j(z)− 744:

D -3 -4 -7 -8 -11 -12 -15
H(D) 1/3 1/2 1 1 1 4/3 2
TrD(j − 744) -248 492 -4119 7256 -33512 53008 -192513

Given a discriminant D, then, the class polynomial HD(j(z)) can be written as

HD(j(z)) =
∏

Q∈Γ\QD

(j(z)− j(τQ))1/ωQ

=
∏

Q∈Γ\QD

(q−1 − f0,1(τQ) +O(q))1/ωQ = q−H(D)(1− TrD(f0,1)q +O(q2)).

In fact, it turns out that the identity

(10) HD(j(z)) = q−H(D) exp

(
−
∞∑
m=1

TrD(f0,m)
qm

m

)
holds for all D.

Zagier showed that these traces appear as coefficients of half integral weight modular
forms. Specifically, he showed that if the basis element f3/2,m(z) is hit with the weight 3/2
Hecke operator T` to give a modular form T`f3/2,m(z) =

∑
a3/2,`(m,n)qn, then the trace

TrD(f0,`) is equal to the coefficient −a3/2,`(1,−D). (Recall that the half integral weight
Hecke operators T`, for a prime ` not dividing the level, act on a form f(z) =

∑
a(n)qn of

weight s+ 1/2 to give

T`f(z) =
∑(

a(`2n) +

(
n

`

)
`s−1a(n) + `2s−1a(n/`2)

)
qn.

The image is a modular form of the same weight and level.)
As an example, the traces of f0,1(z) = j(z)−744 appear as Fourier coefficients of the form

f3/2,1(z) = q−1−2+248q3−492q4 +4119q7−7256q8 +33512q11−53008q12 +192513q15−· · · .

A straightforward calculation using explicit formulas for the action of the Hecke operators
shows that if T`f1/2,m(z) =

∑
a1/2,`(m,n)qn, then the stronger duality

(11) a1/2,`(m,n) = −a3/2,`(n,m)

holds for positive m,n. (Similar results will hold for pairs of weights k and 2 − k for k =
5/2, 7/2, 9/2, 11/2, and 15/2, but not for higher weights where there are nonzero cuspforms
of weight 2k − 1.) Taking ` = m, m = −D, and n = 1, we see from the Hecke operator
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formulas that
a1/2,m(−D, 1) =

∑
n|m

na1/2(−D,n2).

Thus, we have the following computations, proving Borcherds’s theorem:

HD(j(z)) = q−H(D) exp

(
−
∞∑
m=1

TrD(f0,m)
qm

m

)

= q−H(D) exp

(
∞∑
m=1

a3/2,m(1,−D)
qm

m

)
(by modularity)

= q−H(D) exp

(
−
∞∑
m=1

a1/2,m(−D, 1)
qm

m

)
(by duality)

= q−H(D) exp

− ∞∑
m=1

(
∑
n|m

na1/2(−D,n2))
qm

m


= q−H(D) exp

(∑
n≥1

a1/2(−D,n2)

(
−
∞∑
m=1

qmn

m

))
= q−H(D)

∏
n≥1

exp(a1/2(−D,n2) log(1− qn))

= q−H(D)

∞∏
n=1

(1− qn)a1/2(−D,n2).

The more general isomorphism between spaces of modular forms can be built from this
along with product formulas for ∆(z) and Ek′(z); note that meromorphic modular forms
satisfying the appropriate conditions can be built as a product of a power of ∆, an Eisen-
stein series, and an appropriate rational function in j (which will be a quotient of class
polynomials).

The idea behind Zagier’s proof of “modularity” is to show that the coefficients a3/2(1,−D)
satisfy certain recursions, and then to show that the traces satisfy the same recursions; it is
a generalization of Kronecker’s class number relations (see exercises). However, this proof
does not generalize so well.

A different proof is given by Duke [7] and Bruinier-Jenkins-Ono [5]. The ideas of the
proofs generalize better to broader situations and is as follows:

• (BJO) Construct Poincaré series of weight 3/2 for Γ0(4) with a pole of order m at
∞; explicit formulas for the Fourier coefficients
• Project to the Kohnen plus space to get a Maass form F+

m(z) with slightly different
coefficients, with a pole of order m at all cusps
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• Compare the nonholomorphic part of F+
m(z) to the nonholomorphic part of Zagier’s

Eisenstein series G(z) =
∑
H(n)qn +NH of weight 3/2

• Make the nonholomorphic parts cancel, and we’ve constructed f3/2,m(z)
• Explicit formulas for coefficients a3/2(m,n) in terms of Bessel functions and Kloost-

erman sums

K(m,n; c) =
∑

a (mod c)

(a,c)=1

(
c

a

)
ε−1
a e

(
ma+ na

c

)

• (D) Traces can be written in terms of Bessel functions and Salie sums

Sd(m, c) =
∑

x2≡−d (mod c)

e

(
2mx

c

)
• Use an identity between Kloosterman and Salie sums to complete the proof

Applications of traces of singular moduli. The coefficients of the class polynomial
HD(x) =

∏
(x − j(τQ)) are symmetric polynomials in the singular moduli j(τQ), and the

coefficient of xh(D)−1 is the trace TrD(j − 744) = TrD(f0,1). It turns out that knowing the
values of TrD(f0,m) for 0 ≤ m ≤ H(D) is enough to compute HD(x). To do this, first note
that f0,m(z) is a polynomial in j(z); for instance,

f0,2(z) = j(z)2 − 1488j(z) + 159768.

Let z = τQ and sum over all Q ∈ Γ\QD to see that

TrD(f0,2) =
∑

j(τQ)2 − 1488TrD(f0,1) + 159768;

this lets us find
∑
j(τQ)2. Similar computations allow us to recursively compute

∑
j(τQ)m.

The Newton-Girard formulas may then be used to change power sums into symmetric poly-
nomials, allowing us to compute all coefficients of HD(x) if we know enough coefficients of
f3/2,1(z).

Another interesting application is the fact that

eπ
√

163 = 262537412640768743.9999999999992....

We know that Q(
√
−163) has class number 1, and the quadratic form x2 + xy + 41y2 has a

root τ = −1+i
√

163
2

in the fundamental domain. The trace of j(τ) − 744 has only one term
but must still be an integer; approximating j(τ) with just the q−1 term and noting that the
tail of the series is small gives − exp(π

√
163) ∼ (integer).
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Generalizations. So far, we have interpreted the coefficients a3/2,m(1,−D) as traces of
singular moduli; there are many more coefficients to these modular forms. Zagier showed that
all of the coefficients a3/2,`(m,n) can be interpreted as twisted traces of modular functions
by multiplying by a genus character ψ(Q) (coming from ψd for some discriminant d which
is a factor of D) in the sum over quadratic forms.

To take traces of a function F over Γ\QD, the function F must be invariant under SL2(Z),
so taking traces of functions of nonzero weight doesn’t seem to make sense. However, it
turns out that for modular forms of nonpositive weight, such a trace can be defined. If f is
a modular form of integer weight k, the nonholomorphic differentiation operator

q
d

dq
− k

4πy

of weight k (here z = x + iy) raises the weight of f by 2 and preserves modularity but not
holomorphicity. If k = 2 − 2s is nonpositive, applying this operator a total of s − 1 times
gives a weak Maass form of weight 0, and traces can be taken. This was done by Zagier
for small negative weights and by [10] for all negative weights; in fact, it turns out that
the map (the Zagier lift) given by differentiating to weight 0, taking traces, and adding an
appropriate principal part takes modular forms of weight 2− 2s with integer coefficients to
modular forms of weight s+ 1/2 or 3/2− s with integer coefficients, and is compatible with
Hecke operators of integral and half integral weight. It is a negative weight analogue of the
classical Shintani lift, summing over traces instead of integrating over geodesics.

Zagier touches on this question of higher level at the end of his paper [20], and proves
some results for small levels N where Γ∗0(N) has genus zero (so that there is still a nice
explicit basis). Miller and Pixton [18] defined the Zagier lift for any weakly holomorphic
modular form of nonpositive weight and general level N that has poles only at the cusp at
∞. Bruinier and Funke [4] obtained results giving such a lift for arbitrary genus. See also
the more recent work of Alfes and Ehlen [2]. The integrality-preserving property is extended
to small prime level by Green [13], and denominators for all levels are bounded in work of
Alfes [1].

If the discriminant D > 0, the problem changes; rather than summing over values of
functions at points of discriminant D, the appropriate thing to do is to integrate over a
geodesic. Cycle integrals of the j-function appear in Fourier coefficients of certain mock
modular forms. See the work of Duke-Imamoḡlu-Tóth [8].

Lecture 4: Harmonic Maass Forms of Weight One

In this lecture, we will consider the product∏
Q1∈Γ\QD1

∏
Q2∈Γ\QD2

(j(τQ1)− j(τQ2))
4/(wQ1

wQ2
)
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for discriminants D1, D2 < 0. By the theory of complex multiplication, this product of
algebraic integers is in fact a rational integer when D1, D2 < −4 are fundamental. Gross
and Zagier studied these integers in [14] and gave an explicit factorization.

Let k ∈ 1
2
Z be a half integer. For a positive integer N , let Γ0(N) ⊂ SL(2,Z) be the

congruence subgroup defined by

Γ0(N) := {( a bc d ) ∈ SL(2,Z) : N | c} .

We say that f(z) has weight k and level N if it transforms like θ2k(z) with respect to Γ0(N),
i.e.

f(γz)

f(z)
=
θ2k(γz)

θ2k(z)

for all γ ∈ Γ0(N).
Define the weight k Laplacian ∆k by

∆k := ξ2−k ◦ ξk

where ξk := 2iyk ∂
∂z

. The operator ξk has the property that it commutes the slash operator
by changing the weight from k to 2−k. We are interested in studying real-analytic functions
F : H −→ C annihilated by the differential operator ∆k. Such function has a Fourier
expansion of the form

F (z) =
∑
n≥n0

c+(n)qn −
∑
n≥0

c(n)βk(n, y)q−n,

where

βk(n, y) :=


∫∞
y
e−4πntt−kdt n > 0,

y1−k

k−1
n = 0, k 6= 1,

− log y n = 0, k = 1.

In this form, one has (ξkF )(z) =
∑

n≥0 c(n)qn. The Fourier expansion
∑

n≥n0
c+(n)qn is

called the holomorphic part of F (z).

When k = 2, the non-holomorphic Eisenstein series Ê2(z) := − 3
πIm(z)

+1−24
∑

n≥1 σ(n)qn

is a harmonic Maass form. When k = 3/2, there is an Eisenstein series Ê3/2(z) studied by

Hirzebruch and Zagier where ξ3/2(Ê3/2) is the Jacobi theta function of weight 1/2. When
k = 1/2, examples are Ramanujan’s mock theta functions.

When k = 1, Deligne and Serre attached irreducible, odd, 2-dimensional complex Galois
representations to newforms g(z), whose L-functions are then Artin L-functions. These were
already studied by Hecke in the dihedral setting, i.e. the Galois representation is induced from
a character of the absolute Galois group of a quadratic field. Let Q ∈ QD for a fundamental
discriminant D < 0. Define the quantity

rQ(n) = #{±(x, y) ∈ Z2 : Q(x, y) = n}.
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The theta function

ϑQ(z) :=
∑
n≥0

rQ(n)qn

is a modular form of weight one on Γ0(|D|) with character
(
D
·

)
. One could obtain an

eigenform gψ(z) by summing together [Q] ∈ Γ\QD with a class group character ψ

gψ(z) :=
∑

[Q]∈Γ\QD

ψ(Q)ϑQ(z).

When ψ is a genus character, gψ(z) is an Eisenstein series. Otherwise, gψ(z) is a dihedral
cusp form.

We are interested in studying harmonic Maass forms ĝ(z) whose image under ξ1 is gψ(z).
When D = −p < −3 with p ≡ 3 (mod 4) and ψ a trivial character, the modular form gψ(z)
is the Eisenstein series given by

Ep(z) :=
∑

[Q]∈Γ\Q−p

ϑQ(z) =
h(−p)

2
+
∑
n≥1

Rp(n)qn.

The harmonic Maass form Êp(z) was constructed by Kudla-Rapoport-Yang in [15] by taking

a derivative in s of the real-analytic Eisenstein series E1(z, s). It satisfies ξ1(Êp(z)) = Ep(z)
and its holomorphic part is given by

∑
n≥0R

+
p (n)qn where

R+
p (`) = −2 log `

for all ` satisfying
(
`
p

)
= −1. These coefficients R+

p (n) has the arithmetic interpretation as

the degrees of certain special cycles on an arithmetic curve parametrizing CM elliptic curves.
Zagier noticed that his result with Gross on the factorization of differences of singular moduli
can be written as

(12)
∑

Q∈Γ\Q−p

log

∣∣∣∣∣∣
∏

Q′∈Γ\QD

(j(τQ)− j(τQ′))2/wQ′

∣∣∣∣∣∣ = −1

2

∑
m∈Z

δp(m)R+
p

(
−Dp−m2

4

)
,

where D < 0 is any discriminant relatively prime to p and δp(m) is 2 if p | m and 1 otherwise.
For the newform gψ(z), there also exists harmonic Maass forms ĝψ(z) with holomorphic

part ∑
n≥−p+1

24

r+
ψ (n)qn



SINGULAR MODULI 17

such that ξ1(ĝψ(z)) = gψ(z). Furthermore, one could use these coefficients give an analogue
of equation (12) [11]

(13)
∑

Q∈Γ\Q−p

ψ2(Q) log

∣∣∣∣∣∣
∏

Q′∈Γ\QD

(j(τQ)− j(τQ′))2/wQ′

∣∣∣∣∣∣ = −1

2

∑
m∈Z

δp(m)r+
ψ

(
−Dp−m2

4

)
.

Notice that the sum is finite and even though −Dp−m
2

4
could be negative. Similar result holds

with −p replaced by a fundamental discriminant [12].
One way to prove equation (13) is to construct modular functions by Green’s function.

Then its special value at CM points can be expressed as an infinite sum involving the following
counting function

ρQ(k,−p) := #

{
Q′ ∈ QD : cosh d(τQ, τQ′) =

k√
|pD|

}
,

for k ∈ N and Q ∈ Q−p. Here for z1, z2 ∈ H , cosh d(z1, z2) is the hyperbolic cosine of the
hyperbolic distance between two points defined by

cosh d(z1, z2) := 1 +
|z1 − z2|2

2y1y2

,

where yj = Im(zj). An elementary argument using quadratic forms relates this to the Fourier
coefficient of ϑQ2 by

ρQ(k,−p) = rQ2

(
k2 + pD

4

)
.

The details are outlined in the exercise.
To give an example of the individual coefficients r+

ψ (n), let p = 23 and ψ is a non-trivial

character of the class group of K := Q(
√
−23), the newform gψ(z) has the Fourier expansion

gψ(z) = q
∞∏
n=1

(1− qn)
∞∏
n=1

(1− q23n).

Let H := K[X]/(X3 − X − 1) be the Hilbert class field of K and α > 1 the real root of
X3 − X − 1. Then there exists a harmonic Maass form ĝψ(z) with ξ1(ĝψ(z)) = gψ(z) and
holomorphic part ∑

n≥−1

( n23)6=1

r+
ψ (n)qn
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and r+
ψ (−1) = −3r+

ψ (−1) = 3 log(α). It turns out that this harmonic Maass form is unique

and the Fourier coefficients r+
ψ (n) has the shape

r+
ψ (n) = −2

∑
[Q]∈Γ\Q−23

ψ2(Q) log |u(n, [Q])|

with u(n, [Q]) ∈ H having compatible action under Gal(H/K) ∼= C(−p). When [Q] = [Q0]
is the principal class, we give some numerical values of the coefficients u(n, [Q0]) here.

n 5 7 10 11
u(n,Q0) $5 := 2α2 − α− 1 $7 := α2 + α− 2 5α−6$−1

5 $11 := 2α2 − α
n 14 15 17 19

u(n,Q0) 7α−4$−1
7 5α$−1

5 $17 := 2α2 + 3α + 3 $19 := 3α2 + α

n 20 21 22 23

u(n,Q0) 5α−7 7α−10$−1
7 11α5$−1

11 $23 := 10α2+8α+1√
−23

Notice that for all prime ` satisfying
(
`

23

)
= −1, the table shows that Nm($`) = `2. This

and more general results about the individual coefficient r+
ψ (n) has been obtained in [12, 19]

using the technique of theta-lifting. Furthermore, the valuations of the algebraic numbers
u(n,Q0) have the arithmetic interpretation as the degrees of special cycles on arithmetic
curves [12].

Beyond this, there are a lot of unknowns about the Fourier coefficients of weight one
harmonic Maass forms ĝ(z) when ξ1(ĝ) is a holomorphic newform associated to non-dihedral
complex Galois representations. In [11], there is a numerical example of the octahedral case,
where the Fourier coefficients seem to be logarithms of algebraic numbers in the number field
determined by the adjoint of the associated Galois representation. We expect these Fourier
coefficients to be related to special values of automorphic forms, as well as to have arithmetic
interpretations.
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