
2ND EU/US SUMMER SCHOOL ON AUTOMORPHIC FORMS
SINGULAR MODULI AND MODULAR FORMS – EXERCISE SHEET 2

LECTURERS: WILLIAM DUKE, PAUL JENKINS
ASSISTANT: YINGKUN LI

Exercise 1. In this exercise, we will explore the connection between CM points and CM
elliptic curves. For a fixed τ ∈ H, one could associate a lattice, or a Z-module of rank 2,

Lτ = {u+ vτ : u, v ∈ Z}.

The complex torus C/Lτ is the C points of an elliptic curve, denoted by Eτ . Let ℘(z, Lτ ) be
the Weiestrass ℘-function defined by

(1) ℘(z, Lτ ) :=
1

z2
+
∑
`∈Lτ
`6=0

(
1

(z + `)2
− 1

`2

)
.

(1) By considering the derivative ℘′(z, Lτ ) in z, show that ℘(z, Lτ ) is a doubly periodic
function, i.e. ℘(z + τ, Lτ ) = ℘(z + 1, Lτ ) = ℘(z, Lτ ).

(2) Prove that ℘(z, Lτ ) and its derivative ℘′(z, Lτ ) in z satisfy the equation

℘′(z, Lτ )
2 = fτ (℘(z, Lτ ))

where fτ (x) is a cubic polynomial in x given by

fτ (x) = 4x3 − g2(τ)x− g3(τ) = 4(x− e1)(x− e2)(x− e3),
g2(τ) = 60 · 2ζ(4) · E4(τ), g3(τ) = 140 · 2ζ(6) · E6(τ),

e1 = ℘(1/2, Lτ ), e2 = ℘(τ/2, Lτ ), e3 = ℘((1 + τ)/2, Lτ ).

Thus, the following map gives an embedding of the torus C/Lτ into projective space

C/Lτ −→ P2
C

z 7→ (℘(z, Lτ ), ℘
′(z, Lτ ), 1)

0 7→ (0, 1, 0).

(Hint: Show that the difference between the two sides is a bounded, entire function in
z ∈ C, which must be constant.).
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(3) Recall the discriminant of a polynomial f(x) = a0x
n + · · · + an−1x + an = a0(x −

e1)(x− e2) . . . (x− en) is given by

∆f := a2n−20

∏
i<j

(ei − ej)2,

which is nonzero precisely when f(x) has distinct roots. Furthermore, ∆f can be
written in terms of ak for 0 ≤ k ≤ n. Calculate the discriminant of fτ (x) = 4x3 −
g2(τ)x− g3(τ) in terms of the Eisenstein series E4 and E6.

(4) Show that j(τ) gives a bijection between Γ\H and the P1
C\{point}.

(5) Use the previous part to show that for any A,B ∈ C satisfying A3 6= 27B2, there
exists λ ∈ C and τ ∈ H such that

λ−4g2(Lτ ) = A, λ−6g3(Lτ ) = B.

(6) An endomorphism ϕ : C/Lτ −→ C/Lτ lifts to a homomorphism ϕ̃ : C −→ C, which
is given by multiplication by α := ϕ̃(1)Lτ . Clearly, the endomorphisms of an elliptic
curve contains Z. Prove that there is extra endomorphism if and only if τ is a CM
point.

Exercise 2. For any f : C −→ C and γ = ( a bc d ) ∈ GL(2,R), define the slash operator f |k γ
of integral weight k by

(f |k γ)(z) :=
det(γ)k/2

(cz + d)k
f

(
az + b

cz + d

)
.

For a prime p and integer k, define the operators Up, Vp, Tp on f(z) by

Up(f)(z) := pk/2−1
p−1∑
λ=0

(
f |k

(
1 λ
0 p

))
(z),

Vp(f)(z) := p−k/2(f |k
(
p 0
0 1

)
)(z),

Tp(f)(z) := Up(f)(z) + pk−1Vp(f)(z).

The Tp operator is called the Hecke operator.

(1) Check that (f |k (γ1γ2))(z) = ((f |k γ1) |k γ2)(z).
(2) If f(z) has the Fourier expansion f(z) =

∑
n∈Z a(n, y)e(nx), write out the Fourier

expansion of Up(f)(z) and Vp(f)(z).
(3) Show that if (f |k γ)(z) = f(z) for all γ ∈ Γ0(N), then Tp(f) has the same property

for all p - N .
(4) Prove that E(z) :=

∑∞
n=0 σ(2n+ 1)q2n+1 satisfies

(E |2 γ)(z) = E(z)

for all γ ∈ Γ0(4).
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(5) Let k ∈ {4, 6, 8, 10, 14} and fk,m(z) =
∑

n≥−m ak(m,n)qn = q−m +O(q) ∈M !
k. Write

Tpfk,m(z) as a sum of basis elements fk,m′(z). Compare Fourier coefficients to show
that if p - n, then the Fourier coefficient ak(m,np) is divisible by pk−1. Is a similar
statement true for k = 0 or for other weights? What about in half integral weight?

Exercise 3. For each even integer weight k, write k = 12` + k′, where k′, ` ∈ Z and k′ ∈
{0, 4, 6, 8, 10, 14}. For each integer m ≥ −`, there is a unique modular form fk,m(z) ∈ M !

k

with a Fourier expansion of the form

fk,m(z) = q−m +O(q`+1).

We write fk,m(z) = q−m +
∑

n>` ak(m,n)qn, so that all of the Fourier coefficients ak(m,n) of
these basis elements are integers.

(1) Express fk,m(z) in terms of ∆(z), j(z) and Ek′(z) with k′ ∈ {0, 4, 6, 8, 10, 14} for
(k,m) = (16, 3), (24, 2), (30, 1).

(2) Prove the generating functions∑
m≥−`

fk,m(τ)qm =
fk,−`(τ)f2−k,−1−`(z)

j(z)− j(τ)
,

Specialize to k = 0 to obtain

−j′(z)

j(z)− j(τ)
=
∑
m≥0

jm(τ)qm =
∑
m≥0

Fm(j(τ))qm.

(3) Prove the identity

HD(j(z)) = q−H(D) exp

(
−
∞∑
m=1

TrD(f0,m)
qm

m

)
holds for all D.

Exercise 4.

(1) Find the image of E6 in M !
1/2(4) under Borcherds’s isomorphism.

(2) Use E(z), θ(z) and ∆(4z) to construct f3/2,1(z). Then apply the Hecke operators
T2, T3 to this form and compute the class polynomials of discriminantsD = −15,−20,−23.

(3) Using the class polynomial for D = −23 to show that

H+ := Q
(
j
(

1+
√
−23
2

))
∼= Q[X]/(X3 −X − 1).

Show that H+ is not Galois over Q and the Galois closure of H+ is given by

H := H+(
√
−23).
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Exercise 5. For two points z1, z2 ∈ H, the hyperbolic cosine of the hyperbolic distance
between them is defined by

cosh d(z1, z2) := 1 +
|z1 − z2|2

2y1y2
,

where yj = Im(zj).

(1) Show that for any z1, z2 ∈ H and γ ∈ SL(2,R)

cosh d(γz1, γz2) = cosh d(z1, z2).

(2) For discriminants D1, D2 < 0 and Qj = (Aj, Bj, Cj) ∈ QDj , let τQj ∈ H be the
corresponding CM points for j = 1, 2. Show that cosh d(τQ1 , τQ2) is given by

cosh d(τQ1 , τQ2) :=
2A1C2 + 2C1A2 −B1B2√

D1D2

.

(3) We say that a quadratic form (A,B,C) ∈ QD is primitive if gcd(A,B,C) = 1.
Prove that every primitive quadratic form Q ∈ QD is equivalent to a quadratic form
(A,B,AC) ∈ QD with gcd(A,B) = 1. Using the definition of composition to show
that Q2 is equivalent to (A2, B, C).

(4) For a positive definite quadratic form Q ∈ QD, k ≥ 0 an integer and D′ < 0 a
discriminant, define the sets

SQ(k,D′) :=

{
Q′ = (A′, B′, C ′) ∈ QD′ : cosh d(τQ, τQ′) =

k√
DD′

}
,

TQ(m) := {(x, y) ∈ Z2 : Q(x, y) = m}.

Suppose Q = (A,B,AC) ∈ QD. Show that for any Q′ = (A′, B′, C ′) ∈ QD′

(C ′ − CA′, BA′ − AB′) ∈ TQ2

(
k2−DD′

4

)
.

(5) When D = −p such that p ≡ 3 (mod 4) is a prime. Show that the map

SQ(m,D′) −→ TQ2

(
k2−pD′

4

)
(A′, B′, C ′) 7→ (C ′ − CA′, BA′ − AB′)

is a bijection when p - k.
(6) Let ρQ(k,D′) := #SQ(k,D′) and rQ(m) := 1

2
#TQ(m) for any Q ∈ Q−p. Prove that

ρQ(k,D′) = rQ2

(
k2 − pD′

4

)
δp(k),

where δp(k) = 2 if p | k and 1 otherwise.
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Exercise 6. Recall that the differential operator ξk is defined by

ξk := 2iyk
∂

∂z
.

for any integer k ∈ Z.

(1) Show that

ξ2−k ◦ ξk = ∆k := y2
(
∂2

∂x2
+

∂2

∂y2

)
− iky

(
∂

∂x
+ i

∂

∂y

)
,

ξk (f |k γ) = (ξkf) |2−k γ.
for any differentiable function f : C −→ C and γ ∈ SL(2,R).

(2) Prove that for any z ∈ H and n > 0

βk(n, y)q−n = O(e−2πny).

(3) Let f : H −→ C be a real-analytic function defined by the Fourier series

f(z) :=
∑
n≥0

a(n)βk(n)q−n.

Calculate ξk(f) as a Fourier series.

(4) Calculate ξ2(Ê2(z)), where Ê2(z) = − 3
πIm(z)

+ 1− 24
∑

n≥1 σ(n)qn.


