$2^{\text {ND }}$ EU/US SUMMER SCHOOL ON AUTOMORPHIC FORMS SINGULAR MODULI AND MODULAR FORMS - EXERCISE SHEET 2

LECTURERS: WILLIAM DUKE, PAUL JENKINS
ASSISTANT: YINGKUN LI

Exercise 1. In this exercise, we will explore the connection between CM points and CM elliptic curves. For a fixed $\tau \in \mathcal{H}$, one could associate a lattice, or a \mathbb{Z}-module of rank 2,

$$
L_{\tau}=\{u+v \tau: u, v \in \mathbb{Z}\} .
$$

The complex torus \mathbb{C} / L_{τ} is the \mathbb{C} points of an elliptic curve, denoted by E_{τ}. Let $\wp\left(z, L_{\tau}\right)$ be the Weiestrass \wp-function defined by

$$
\begin{equation*}
\wp\left(z, L_{\tau}\right):=\frac{1}{z^{2}}+\sum_{\substack{\ell \in L_{\tau} \\ \ell \neq 0}}\left(\frac{1}{(z+\ell)^{2}}-\frac{1}{\ell^{2}}\right) . \tag{1}
\end{equation*}
$$

(1) By considering the derivative $\wp^{\prime}\left(z, L_{\tau}\right)$ in z, show that $\wp\left(z, L_{\tau}\right)$ is a doubly periodic function, i.e. $\wp\left(z+\tau, L_{\tau}\right)=\wp\left(z+1, L_{\tau}\right)=\wp\left(z, L_{\tau}\right)$.
(2) Prove that $\wp\left(z, L_{\tau}\right)$ and its derivative $\wp^{\prime}\left(z, L_{\tau}\right)$ in z satisfy the equation

$$
\wp^{\prime}\left(z, L_{\tau}\right)^{2}=f_{\tau}\left(\wp\left(z, L_{\tau}\right)\right)
$$

where $f_{\tau}(x)$ is a cubic polynomial in x given by

$$
\begin{aligned}
f_{\tau}(x) & =4 x^{3}-g_{2}(\tau) x-g_{3}(\tau)=4\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right), \\
g_{2}(\tau) & =60 \cdot 2 \zeta(4) \cdot E_{4}(\tau), g_{3}(\tau)=140 \cdot 2 \zeta(6) \cdot E_{6}(\tau), \\
e_{1} & =\wp\left(1 / 2, L_{\tau}\right), e_{2}=\wp\left(\tau / 2, L_{\tau}\right), e_{3}=\wp\left((1+\tau) / 2, L_{\tau}\right) .
\end{aligned}
$$

Thus, the following map gives an embedding of the torus \mathbb{C} / L_{τ} into projective space

$$
\begin{aligned}
\mathbb{C} / L_{\tau} & \longrightarrow \mathbb{P}_{\mathbb{C}}^{2} \\
z & \mapsto\left(\wp\left(z, L_{\tau}\right), \wp^{\prime}\left(z, L_{\tau}\right), 1\right) \\
0 & \mapsto(0,1,0) .
\end{aligned}
$$

(Hint: Show that the difference between the two sides is a bounded, entire function in $z \in \mathbb{C}$, which must be constant.).
(3) Recall the discriminant of a polynomial $f(x)=a_{0} x^{n}+\cdots+a_{n-1} x+a_{n}=a_{0}(x-$ $\left.e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{n}\right)$ is given by

$$
\Delta_{f}:=a_{0}^{2 n-2} \prod_{i<j}\left(e_{i}-e_{j}\right)^{2}
$$

which is nonzero precisely when $f(x)$ has distinct roots. Furthermore, Δ_{f} can be written in terms of a_{k} for $0 \leq k \leq n$. Calculate the discriminant of $f_{\tau}(x)=4 x^{3}-$ $g_{2}(\tau) x-g_{3}(\tau)$ in terms of the Eisenstein series E_{4} and E_{6}.
(4) Show that $j(\tau)$ gives a bijection between $\Gamma \backslash \mathcal{H}$ and the $\mathbb{P}_{\mathbb{C}}^{1} \backslash\{$ point $\}$.
(5) Use the previous part to show that for any $A, B \in \mathbb{C}$ satisfying $A^{3} \neq 27 B^{2}$, there exists $\lambda \in \mathbb{C}$ and $\tau \in \mathcal{H}$ such that

$$
\lambda^{-4} g_{2}\left(L_{\tau}\right)=A, \lambda^{-6} g_{3}\left(L_{\tau}\right)=B .
$$

(6) An endomorphism $\varphi: \mathbb{C} / L_{\tau} \longrightarrow \mathbb{C} / L_{\tau}$ lifts to a homomorphism $\tilde{\varphi}: \mathbb{C} \longrightarrow \mathbb{C}$, which is given by multiplication by $\alpha:=\tilde{\varphi}(1) L_{\tau}$. Clearly, the endomorphisms of an elliptic curve contains \mathbb{Z}. Prove that there is extra endomorphism if and only if τ is a CM point.
Exercise 2. For any $f: \mathbb{C} \longrightarrow \mathbb{C}$ and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{R})$, define the slash operator $\left.f\right|_{k} \gamma$ of integral weight k by

$$
\left(\left.f\right|_{k} \gamma\right)(z):=\frac{\operatorname{det}(\gamma)^{k / 2}}{(c z+d)^{k}} f\left(\frac{a z+b}{c z+d}\right)
$$

For a prime p and integer k, define the operators U_{p}, V_{p}, T_{p} on $f(z)$ by

$$
\begin{aligned}
U_{p}(f)(z) & :=p^{k / 2-1} \sum_{\lambda=0}^{p-1}\left(\left.f\right|_{k}\left(\begin{array}{ll}
1 & \lambda \\
0 & p
\end{array}\right)\right)(z), \\
V_{p}(f)(z) & :=p^{-k / 2}\left(\left.f\right|_{k}\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right)\right)(z), \\
T_{p}(f)(z) & :=U_{p}(f)(z)+p^{k-1} V_{p}(f)(z) .
\end{aligned}
$$

The T_{p} operator is called the Hecke operator.
(1) Check that $\left(\left.f\right|_{k}\left(\gamma_{1} \gamma_{2}\right)\right)(z)=\left(\left.\left(\left.f\right|_{k} \gamma_{1}\right)\right|_{k} \gamma_{2}\right)(z)$.
(2) If $f(z)$ has the Fourier expansion $f(z)=\sum_{n \in \mathbb{Z}} a(n, y) e(n x)$, write out the Fourier expansion of $U_{p}(f)(z)$ and $V_{p}(f)(z)$.
(3) Show that if $\left(\left.f\right|_{k} \gamma\right)(z)=f(z)$ for all $\gamma \in \Gamma_{0}(N)$, then $T_{p}(f)$ has the same property for all $p \nmid N$.
(4) Prove that $E(z):=\sum_{n=0}^{\infty} \sigma(2 n+1) q^{2 n+1}$ satisfies

$$
\left(\left.E\right|_{2} \gamma\right)(z)=E(z)
$$

for all $\gamma \in \Gamma_{0}(4)$.
(5) Let $k \in\{4,6,8,10,14\}$ and $f_{k, m}(z)=\sum_{n>-m} a_{k}(m, n) q^{n}=q^{-m}+O(q) \in M_{k}^{!}$. Write $T_{p} f_{k, m}(z)$ as a sum of basis elements $f_{k, m^{\prime}}(z)$. Compare Fourier coefficients to show that if $p \nmid n$, then the Fourier coefficient $a_{k}(m, n p)$ is divisible by p^{k-1}. Is a similar statement true for $k=0$ or for other weights? What about in half integral weight?
Exercise 3. For each even integer weight k, write $k=12 \ell+k^{\prime}$, where $k^{\prime}, \ell \in \mathbb{Z}$ and $k^{\prime} \in$ $\{0,4,6,8,10,14\}$. For each integer $m \geq-\ell$, there is a unique modular form $f_{k, m}(z) \in M_{k}^{!}$ with a Fourier expansion of the form

$$
f_{k, m}(z)=q^{-m}+O\left(q^{\ell+1}\right)
$$

We write $f_{k, m}(z)=q^{-m}+\sum_{n>\ell} a_{k}(m, n) q^{n}$, so that all of the Fourier coefficients $a_{k}(m, n)$ of these basis elements are integers.
(1) Express $f_{k, m}(z)$ in terms of $\Delta(z), j(z)$ and $E_{k^{\prime}}(z)$ with $k^{\prime} \in\{0,4,6,8,10,14\}$ for $(k, m)=(16,3),(24,2),(30,1)$.
(2) Prove the generating functions

$$
\sum_{m \geq-\ell} f_{k, m}(\tau) q^{m}=\frac{f_{k,-\ell}(\tau) f_{2-k,-1-\ell}(z)}{j(z)-j(\tau)}
$$

Specialize to $k=0$ to obtain

$$
\frac{-j^{\prime}(z)}{j(z)-j(\tau)}=\sum_{m \geq 0} j_{m}(\tau) q^{m}=\sum_{m \geq 0} F_{m}(j(\tau)) q^{m}
$$

(3) Prove the identity

$$
\mathcal{H}_{D}(j(z))=q^{-H(D)} \exp \left(-\sum_{m=1}^{\infty} \operatorname{Tr}_{D}\left(f_{0, m}\right) \frac{q^{m}}{m}\right)
$$

holds for all D.

Exercise 4.

(1) Find the image of E_{6} in $M_{1 / 2}^{!}(4)$ under Borcherds's isomorphism.
(2) Use $E(z), \theta(z)$ and $\Delta(4 z)$ to construct $f_{3 / 2,1}(z)$. Then apply the Hecke operators T_{2}, T_{3} to this form and compute the class polynomials of discriminants $D=-15,-20,-23$.
(3) Using the class polynomial for $D=-23$ to show that

$$
H^{+}:=\mathbb{Q}\left(j\left(\frac{1+\sqrt{-23}}{2}\right)\right) \cong \mathbb{Q}[X] /\left(X^{3}-X-1\right) .
$$

Show that H^{+}is not Galois over \mathbb{Q} and the Galois closure of H^{+}is given by

$$
H:=H^{+}(\sqrt{-23}) .
$$

Exercise 5. For two points $z_{1}, z_{2} \in \mathcal{H}$, the hyperbolic cosine of the hyperbolic distance between them is defined by

$$
\cosh d\left(z_{1}, z_{2}\right):=1+\frac{\left|z_{1}-z_{2}\right|^{2}}{2 y_{1} y_{2}}
$$

where $y_{j}=\operatorname{Im}\left(z_{j}\right)$.
(1) Show that for any $z_{1}, z_{2} \in \mathcal{H}$ and $\gamma \in \operatorname{SL}(2, \mathbb{R})$

$$
\cosh d\left(\gamma z_{1}, \gamma z_{2}\right)=\cosh d\left(z_{1}, z_{2}\right)
$$

(2) For discriminants $D_{1}, D_{2}<0$ and $Q_{j}=\left(A_{j}, B_{j}, C_{j}\right) \in \mathcal{Q}_{D_{j}}$, let $\tau_{Q_{j}} \in \mathcal{H}$ be the corresponding CM points for $j=1,2$. Show that $\cosh d\left(\tau_{Q_{1}}, \tau_{Q_{2}}\right)$ is given by

$$
\cosh d\left(\tau_{Q_{1}}, \tau_{Q_{2}}\right):=\frac{2 A_{1} C_{2}+2 C_{1} A_{2}-B_{1} B_{2}}{\sqrt{D_{1} D_{2}}} .
$$

(3) We say that a quadratic form $(A, B, C) \in \mathcal{Q}_{D}$ is primitive if $\operatorname{gcd}(A, B, C)=1$. Prove that every primitive quadratic form $Q \in \mathcal{Q}_{D}$ is equivalent to a quadratic form $(A, B, A C) \in \mathcal{Q}_{D}$ with $\operatorname{gcd}(A, B)=1$. Using the definition of composition to show that Q^{2} is equivalent to $\left(A^{2}, B, C\right)$.
(4) For a positive definite quadratic form $Q \in \mathcal{Q}_{D}, k \geq 0$ an integer and $D^{\prime}<0$ a discriminant, define the sets

$$
\begin{aligned}
S_{Q}\left(k, D^{\prime}\right) & :=\left\{Q^{\prime}=\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \in \mathcal{Q}_{D^{\prime}}: \cosh d\left(\tau_{Q}, \tau_{Q^{\prime}}\right)=\frac{k}{\sqrt{D D^{\prime}}}\right\} \\
T_{Q}(m) & :=\left\{(x, y) \in \mathbb{Z}^{2}: Q(x, y)=m\right\}
\end{aligned}
$$

Suppose $Q=(A, B, A C) \in \mathcal{Q}_{D}$. Show that for any $Q^{\prime}=\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \in \mathcal{Q}_{D^{\prime}}$

$$
\left(C^{\prime}-C A^{\prime}, B A^{\prime}-A B^{\prime}\right) \in T_{Q^{2}}\left(\frac{k^{2}-D D^{\prime}}{4}\right)
$$

(5) When $D=-p$ such that $p \equiv 3(\bmod 4)$ is a prime. Show that the map

$$
\begin{aligned}
& S_{Q}\left(m, D^{\prime}\right) \longrightarrow T_{Q^{2}}\left(\frac{k^{2}-p D^{\prime}}{4}\right) \\
&\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \mapsto\left(C^{\prime}-C A^{\prime}, B A^{\prime}-A B^{\prime}\right)
\end{aligned}
$$

is a bijection when $p \nmid k$.
(6) Let $\rho_{Q}\left(k, D^{\prime}\right):=\# S_{Q}\left(k, D^{\prime}\right)$ and $r_{Q}(m):=\frac{1}{2} \# T_{Q}(m)$ for any $Q \in \mathcal{Q}_{-p}$. Prove that

$$
\rho_{Q}\left(k, D^{\prime}\right)=r_{Q^{2}}\left(\frac{k^{2}-p D^{\prime}}{4}\right) \delta_{p}(k),
$$

where $\delta_{p}(k)=2$ if $p \mid k$ and 1 otherwise.

Exercise 6. Recall that the differential operator ξ_{k} is defined by

$$
\xi_{k}:=2 i y^{k} \frac{\bar{\partial}}{\partial \bar{z}}
$$

for any integer $k \in \mathbb{Z}$.
(1) Show that

$$
\begin{aligned}
\xi_{2-k} \circ \xi_{k} & =\Delta_{k}:=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)-i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right), \\
\xi_{k}\left(\left.f\right|_{k} \gamma\right) & =\left.\left(\xi_{k} f\right)\right|_{2-k} \gamma
\end{aligned}
$$

for any differentiable function $f: \mathbb{C} \longrightarrow \mathbb{C}$ and $\gamma \in \operatorname{SL}(2, \mathbb{R})$.
(2) Prove that for any $z \in \mathcal{H}$ and $n>0$

$$
\beta_{k}(n, y) q^{-n}=O\left(e^{-2 \pi n y}\right) .
$$

(3) Let $f: \mathcal{H} \longrightarrow \mathbb{C}$ be a real-analytic function defined by the Fourier series

$$
f(z):=\sum_{n \geq 0} a(n) \beta_{k}(n) q^{-n} .
$$

Calculate $\xi_{k}(f)$ as a Fourier series.
(4) Calculate $\xi_{2}\left(\hat{E}_{2}(z)\right)$, where $\hat{E}_{2}(z)=-\frac{3}{\pi \operatorname{Im}(z)}+1-24 \sum_{n \geq 1} \sigma(n) q^{n}$.

