2ND EU/US SUMMER SCHOOL ON AUTOMORPHIC FORMS
SINGULAR MODULI AND MODULAR FORMS - EXERCISE SHEET 2

LECTURERS: WILLIAM DUKE, PAUL JENKINS
ASSISTANT: YINGKUN LI

Exercise 1. In this exercise, we will explore the connection between CM points and CM
elliptic curves. For a fixed 7 € H, one could associate a lattice, or a Z-module of rank 2,

L, ={u+vr:uveZ}

The complex torus C/L, is the C points of an elliptic curve, denoted by E,. Let p(z, L,) be
the Weiestrass p-function defined by

() oet)=5+ Y (o)

teL,
0

(1) By considering the derivative ¢'(z, L) in z, show that p(z, L;) is a doubly periodic
function, i.e. p(z +7,L;) = p(z + 1, L;) = p(z, L,).
(2) Prove that p(z, L,) and its derivative ¢'(z, L) in z satisfy the equation

¢'(2 Lr)* = fr(p(z, L))

where f,(z) is a cubic polynomial in z given by

fr(x) = 42° — gao(T)x — g3(7) = 4z — e1)(z — e2)(z — e3),
92(7) = 60 - 2¢(4) - E4(7), g3(7) = 140 - 2¢(6) - Es(7),
er=p(1/2,L;), ea = (7/2,L;), e3 = p((1+7)/2, L;).

Thus, the following map gives an embedding of the torus C/L, into projective space
C/L, — P&
2 (p(2, L), ¢ (2,L,),1)
0~ (0,1,0).

(Hint: Show that the difference between the two sides is a bounded, entire function in

z € C, which must be constant.).
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(3) Recall the discriminant of a polynomial f(x) = apz™ 4+« + ap_17 + a, = ag(r —
e1)(x —ey)...(x —e,) is given by

Af = agnﬁ H(el — 6]')2,
i<j
which is nonzero precisely when f(x) has distinct roots. Furthermore, A, can be
written in terms of a; for 0 < k& < n. Calculate the discriminant of f,(z) = 42 —
g2(7)x — g3(7) in terms of the Eisenstein series E, and Fg.
(4) Show that j(7) gives a bijection between I'\'H and the P{\{point}.
(5) Use the previous part to show that for any A, B € C satisfying A% # 27B?, there
exists A € C and 7 € ‘H such that

AN go(Ly) = A, X %gs(L,) = B.

(6) An endomorphism ¢ : C/L, — C/L, lifts to a homomorphism ¢ : C — C, which
is given by multiplication by « := ¢(1)L,. Clearly, the endomorphisms of an elliptic
curve contains Z. Prove that there is extra endomorphism if and only if 7 is a CM
point.

Exercise 2. For any f: C — Cand v = (¢}) € GL(2,R), define the slash operator f |; v
of integral weight k by

det(v)*?  [az +b
(bt = b (220,
For a prime p and integer k, define the operators U,, V,,, T, on f(z) by
p—1
Up(f)(2) =p">7> (F 1k (87)) (2),
A=0

Vo(H) (=) = p7"2(F e (59))(2),
T,()(2) := Up(f)(2) + 07V (f)(2).
The T, operator is called the Hecke operator.

(1) Check that (f [ (172))(2) = ((f |x 1) [k 72) (2)-
(2) If f(2) has the Fourier expansion f(z) = > ., a(n,y)e(nz), write out the Fourier

expansion of U,(f)(z) and V,(f)(2).

(3) Show that if (f |x v)(2) = f(2) for all v € I'y(NV), then T,(f) has the same property
for all pt N.

(4) Prove that E(z) :== > o(2n + 1)¢* ! satisfies

(E ]2 7)(2) = E(2)
for all v € T'y(4).
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(5) Let k € {4,6,8,10,14} and frm(2) =, -, ar(m,n)g" = ¢™ + O(q) € M}. Write
T, fe.m(2) as a sum of basis elements fy ,v(2). Compare Fourier coefficients to show
that if p f n, then the Fourier coefficient ay(m,np) is divisible by p*~!. Is a similar
statement true for k = 0 or for other weights? What about in half integral weight?

Exercise 3. For each even integer weight k, write k = 12¢ + k’, where k', ¢ € Z and k' €

{0,4,6,8,10,14}. For each integer m > —/, there is a unique modular form f;,,(2) € M}
with a Fourier expansion of the form

Sem(2) ="+ O(¢").

We write fim(2) = ¢ ™+ ,-,ax(m,n)q", so that all of the Fourier coeflicients a,(m, n) of
these basis elements are integers.

(1) Express frm(z) in terms of A(z),j(z) and Ey(z) with &' € {0,4,6,8,10,14} for
(k. m) = (16,3), (24,2), (30, 1).
(2) Prove the generating functions

m fk,—Z(T)fQ—k,—l—Z(Z)
L Bl =T T

Specialize to k = 0 to obtain
—Jj'(2) : :
== ju(N)q" =D Fuli(r)g™
G- 2 2

(3) Prove the identity

Hp(j(2)) = ¢ P exp (— > TrD<fo,m>%>

holds for all D.
Exercise 4.

(1) Find the image of Eg in M /2(4) under Borcherds’s isomorphism.

(2) Use E(z),0(z) and A(4z) to construct f3,5:(z). Then apply the Hecke operators
T5, T3 to this form and compute the class polynomials of discriminants D = —15, —20, —23.
(3) Using the class polynomial for D = —23 to show that

H = Q5 (2F2)) 2 QlX)/(x* - X - 1).
Show that H™ is not Galois over Q and the Galois closure of H™ is given by

H := H"(v/-23).
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Exercise 5. For two points z1,2o € H, the hyperbolic cosine of the hyperbolic distance
between them is defined by

|21 — Zz|2

coshd(zy,29) =1+
(21, 22) 21y

where y; = Im(z;).

(1) Show that for any z1, 20 € H and v € SL(2,R)
cosh d(yz1,722) = coshd(z1, 22).

(2) For discriminants Dy, Dy < 0 and Q; = (4;,B;,C;) € Qp,, let 7o, € H be the
corresponding CM points for j = 1,2. Show that coshd(7g,, 7g,) is given by

2A102 + 201_/42 — B1B2
cosh d(rg,,1g,) := 7DD, :

(3) We say that a quadratic form (A, B,C) € Qp is primitive if ged(A, B,C) = 1.
Prove that every primitive quadratic form () € Qp is equivalent to a quadratic form
(A, B, AC) € Qp with ged(A, B) = 1. Using the definition of composition to show
that @? is equivalent to (A2, B, C).

(4) For a positive definite quadratic form @ € Qp, k > 0 an integer and D' < 0 a
discriminant, define the sets

SQ(]{‘, D/) = {Q/ = (A/,B/,Cl) € QD/ : COShd(TQ,TQ!) = \/%} s
To(m) = {(r,9) € 22 : Q(a,y) = m}.
Suppose @ = (A, B, AC) € Qp. Show that for any Q' = (A', B',C") € Qp»
(C'— CA', BA' ~ AB') € Toa (P2

(5) When D = —p such that p =3 (mod 4) is a prime. Show that the map

SQ(m, D/) — TQz <k2;pD/>
(A, B',C") = (C' — CA', BA' — AB))

is a bijection when p t k.
(6) Let po(k, D') := #Sg(k,D’) and rq(m) := 1#T5(m) for any Q € Q_,. Prove that

, k* — pD’
palk, D) = ren (522 ) 6,0,

where d,(k) =2 if p | k and 1 otherwise.
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Exercise 6. Recall that the differential operator &, is defined by

0
= 2y~ —.
§ 1= 21y 5
for any integer k € Z.
(1) Show that

0? 0? 0 0
AL g2 , .
§o-k o0&k =0 i=y (@*Fa—yQ) —iky <%+28_y> ;
e (f [k ) = (&kf) |21 7.
for any differentiable function f: C — C and v € SL(2,R).
(2) Prove that for any z € H and n > 0
Br(n,y)g™" = O(e™>™).
(3) Let f:H — C be a real-analytic function defined by the Fourier series
f(z) = a(n)B(n)g™.
n>0
Calculate & (f) as a Fourier series.

(4) Calculate &(Esy(2)), where Fy(z) = — =2~ +1—24 Y ns10(n)g"

" 7lm(z)



