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Exercise 1. Define the Eisenstein series of weight 2 by

G2(z) :=
∑
m∈Z

∑
n∈Z′

m

1

(mz + n)2
= 2ζ(2) +

∑
m 6=0

∑
n∈Z

1

(mz + n)2
,

where Z′m = Z\{0} if m = 0 and Z otherwise. Note that the order of the summation
matters here since the sum does not converge absolutely. The Fourier expansion of E2(z) :=

1
2ζ(2)

G2(z) is analogous to those of E4(z) and E6(z) and given by

E2(z) = 1− 24
∞∑
n=1

σ(n)qn.

(1) Show that

1

z2
G2(−1/z) =

∑
n∈Z

∑
m∈Z′

n

1

(mz + n)2
= 2ζ(2) +

∑
n∈Z

∑
m 6=0

1

(mz + n)2
.

(2) Show that ∑
m6=0

∑
d∈Z

1

(mz + d)(mz + d+ 1)
= 0

and subtract it from G2(z) to show that G2(z) has the absolutely convergent expres-
sion

G2(z) = 2ζ(2) +
∑
m6=0
n∈Z

1

(mz + d)2(mz + d+ 1)
.
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(3) Show that

G2(z)− 1

z2
G2(−1/z) = −

∑
n∈Z

∑
m6=0

1

(mz + d)
− 1

(mz + d+ 1)

= − lim
N→∞

N−1∑
n=−N

∑
m 6=0

1

(mz + d)
− 1

(mz + d+ 1)

= −2

z
lim
N→∞

∞∑
m=1

1

(−N/z +m)
+

1

(−N/z −m)
.

(4) Prove the identity

(1)
1

z
+
∞∑
d=1

(
1

z − d
+

1

z + d

)
= π cot(πz) = πi− 2πi

∞∑
m=0

qm.

and use it to deduce that

(2) E2(z)− 1

z2
E2(−1/z) = − 12

2πiz
.

(5) Show that Ê(z) := E(z)− 3
πIm(z)

satisfies the transformation(
Ê2 |2 γ

)
(z) = Ê2(z)

for all γ ∈ Γ.

Exercise 2. Define the function ∆̃ : H −→ C by

(3) ∆̃(z) := q
∞∏
n=1

(1− qn)24 .

(1) Prove that

1

2πi

d

dz
log ∆̃(z) = 1− 24

∞∑
m=1

σ(m)e2πimz = E2(z).

(2) Using equation (2), show that

1

2πi

d

dz
log

(
∆̃ (−1/z)

z12∆̃(z)

)
= 0.

(3) Use the previous part and the valence formula to show that ∆̃(z) = ∆(z) =
E3

4(z)−E2
6(z)

1728
∈

S12.
(4) Suppose that f(z) ∈ M !

k has integral Fourier coefficients and leading coefficient 1.
Prove that if f(z0) = 0 for some z0 ∈ H, then j(z0) is an algebraic integer.
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Exercise 3. The polynomial Ψm(x, y) is reducible when m is not squarefree. Instead, one
could consider

Φm(x, j(z)) :=
∏

γ∈Γ\∆m

(x− j(γz)),

∆m :=

{(
a b
c d

)
∈ Γm : gcd(a, b, c, d) = 1

}
.

(4)

(1) Show the following subset of ∆m consists of coset representatives of Γ\∆m{(
a b
0 d

)
∈ ∆m : gcd(a, b, d) = 1, 0 ≤ b ≤ d− 1

}
and that it has size

ψ(m) := m
∏

p|m prime

(
1 +

1

p

)
.

(2) Prove that

Ψm(x, y) =
∏
d2|m

Φm/d2(x, y).

In particular, Ψm(x, y) = Φm(x, y) when m is squarefree. Furthermore, one has

σ(m) =
∑
d2|m

ψ
(m
d2

)
,

ζ(s)ζ(s− 1)

ζ(2s)
=
∑
m≥1

ψ(m)

ms

when Re(s) is large enough.
(3) Show that as a polynomial in x, the coefficients Φm(x, j(z)) are modular functions in

M !
0 with integral Fourier coefficients. From this, deduce that Φm(x, y) ∈ Z[x, y].

(4) Show that Φm(x, y) is irreducible as a polynomial in x over the field C(y).

(5) Prove that Φm(x, y) = Φm(y, x).

Exercise 4. Let D < 0 be a discriminant. In this exercise, we will prove the finiteness of
the size of Γ\QD. For convenience, we will use (A,B,C) to denote a binary quadratic form
Ax2 + Bxy + Cy2 ∈ QD and ∼ to represent equivalence under the action of Γ. We say a
form (A,B,C) is reduced if

|B| ≤ A ≤ C.
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(1) For any reduced form (A,B,C) of a fixed discriminant D, prove that |B| <
√
|D|/3.

From this, deduce that the number of reduced forms of a fixed discriminant D < 0
is finite.

(2) Let γ = ( a bc d ) ∈ Γ and calculate γ · (A,B,C). What is the result when a = 0?
(3) If (A,B,C), (A′, B′, C ′) ∈ QD are equivalent, prove that

{Ax2 +Bxy + Cy2 : x, y ∈ Z} = {A′x2 +B′xy + C ′y2 : x, y ∈ Z}.

(4) Prove that two forms (A1, B1, C1) and (A2, B2, C2) of the same discriminant are
equivalent if and only if there exist a, c ∈ Z such that

A1a
2 +B1ac+ C1c

2 = A2,

2A1a+ (B1 +B2)c ≡ 0 (mod 2A2),

(B1 −B2)a+ 2C1c ≡ 0 (mod 2A2).

(5) Find all pairs of distinct reduced forms that are equivalent to each other.
(6) Show that every binary quadratic form (A,B,C) ∈ QD is equivalent to a reduced

form and prove that h(D) is finite.
(7) Show that every quadratic form (A,B,C) ∈ Q−163 is equivalent to (1, 1, 41) and that

the size of Γ\Q−23 is 3.

Exercise 5. For a fixed fundamental discriminant D < 0, let C(D) denote the set of coset
representatives of Γ\QD. We will define the composition law after Dirichlet in this exercise.
Two forms Qj = (Aj, Bj, Cj) ∈ QD, j = 1, 2 are called united if gcd(A1, A2, (B1 +B2)/2) = 1.

(1) If Q1, Q2 ∈ QD are united forms, show that there exists b, c ∈ Z such that Q1 ∼
(A1, b, A2c) and Q2 ∼ (A2, b, A1c). In this way, we define the composition of Q1 and
Q2 to be

Q1 ◦Q2 := (A1A2, b, c) ∈ QD.
(2) Prove that the composition respects the equivalence relation ∼, i.e. if Q1, Q2 ∈ QD

and Q′1, Q
′
2 ∈ QD are two pairs of united forms such that Qj ∼ Q′j for j = 1, 2, then

Q1 ◦Q2 ∼ Q′1 ◦Q′2.

This then defines a composition law on C(D).
(3) Deduce that

(1, B, C) ◦ (A′, B′, C ′) ∼ (A′, B′, C ′),

(A,B,C) ◦ (A,−B,C) ∼ (A,B,C) ◦ (C,B,A) ∼ (AC,B, 1),

and conclude that C(D) is an abelian group under composition.
(4) Show that h(D) is even if D < 0 is the product of a positive and a negative discrim-

inant.
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Exercise 6. For a discriminant D < 0, define the Hurwitz class number H(D) by

H(D) :=
∑

Q∈Γ\QD

1

wQ
.

It is the “degree” of the “modified class polynomial” HD(x) :=
∏

Q∈Γ\QD
(x− j(τQ))1/wQ .

(1) When m is not a perfect square, prove that

Ψm(x, x) = ±
∏

|t|<2
√
m

Ht2−4m(x).

(2) When m is a perfect square, prove that

Ψm(x, y)

Ψ1(x, y)

∣∣∣∣
x=y

= ±
√
m
Ht2−4m(x)

Ht2−4(x)
.

(3) Set H(0) := − 1
12

and prove the following result due to Hurwitz

(5)
∑
d|m

max
(
d, m

d

)
=

∑
t∈Z

|t|≤2
√
m

H(t2 − 4m).

(4) Make a table of the Hurwitz class numbers H(D) up to |D| ≤ 24.


