# $2^{\text {ND }}$ EU/US SUMMER SCHOOL ON AUTOMORPHIC FORMS SINGULAR MODULI AND MODULAR FORMS - EXERCISE SHEET 1 

LECTURERS: WILLIAM DUKE, PAUL JENKINS<br>ASSISTANT: YINGKUN LI

Exercise 1. Define the Eisenstein series of weight 2 by

$$
G_{2}(z):=\sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}_{m}^{\prime}} \frac{1}{(m z+n)^{2}}=2 \zeta(2)+\sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \frac{1}{(m z+n)^{2}},
$$

where $\mathbb{Z}_{m}^{\prime}=\mathbb{Z} \backslash\{0\}$ if $m=0$ and $\mathbb{Z}$ otherwise. Note that the order of the summation matters here since the sum does not converge absolutely. The Fourier expansion of $E_{2}(z):=$ $\frac{1}{2 \zeta(2)} G_{2}(z)$ is analogous to those of $E_{4}(z)$ and $E_{6}(z)$ and given by

$$
E_{2}(z)=1-24 \sum_{n=1}^{\infty} \sigma(n) q^{n} .
$$

(1) Show that

$$
\frac{1}{z^{2}} G_{2}(-1 / z)=\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}_{n}^{\prime}} \frac{1}{(m z+n)^{2}}=2 \zeta(2)+\sum_{n \in \mathbb{Z}} \sum_{m \neq 0} \frac{1}{(m z+n)^{2}}
$$

(2) Show that

$$
\sum_{m \neq 0} \sum_{d \in \mathbb{Z}} \frac{1}{(m z+d)(m z+d+1)}=0
$$

and subtract it from $G_{2}(z)$ to show that $G_{2}(z)$ has the absolutely convergent expression

$$
\begin{gathered}
G_{2}(z)=2 \zeta(2)+\sum_{\substack{m \neq 0 \\
n \in \mathbb{Z}}} \frac{1}{(m z+d)^{2}(m z+d+1)} .
\end{gathered}
$$

(3) Show that

$$
\begin{aligned}
G_{2}(z)-\frac{1}{z^{2}} G_{2}(-1 / z) & =-\sum_{n \in \mathbb{Z}} \sum_{m \neq 0} \frac{1}{(m z+d)}-\frac{1}{(m z+d+1)} \\
& =-\lim _{N \rightarrow \infty} \sum_{n=-N}^{N-1} \sum_{m \neq 0} \frac{1}{(m z+d)}-\frac{1}{(m z+d+1)} \\
& =-\frac{2}{z} \lim _{N \rightarrow \infty} \sum_{m=1}^{\infty} \frac{1}{(-N / z+m)}+\frac{1}{(-N / z-m)} .
\end{aligned}
$$

(4) Prove the identity

$$
\begin{equation*}
\frac{1}{z}+\sum_{d=1}^{\infty}\left(\frac{1}{z-d}+\frac{1}{z+d}\right)=\pi \cot (\pi z)=\pi i-2 \pi i \sum_{m=0}^{\infty} q^{m} \tag{1}
\end{equation*}
$$

and use it to deduce that

$$
\begin{equation*}
E_{2}(z)-\frac{1}{z^{2}} E_{2}(-1 / z)=-\frac{12}{2 \pi i z} \tag{2}
\end{equation*}
$$

(5) Show that $\hat{E}(z):=E(z)-\frac{3}{\pi \operatorname{Im}(z)}$ satisfies the transformation

$$
\left(\left.\hat{E}_{2}\right|_{2} \gamma\right)(z)=\hat{E}_{2}(z)
$$

for all $\gamma \in \Gamma$.
Exercise 2. Define the function $\tilde{\Delta}: \mathcal{H} \longrightarrow \mathbb{C}$ by

$$
\begin{equation*}
\tilde{\Delta}(z):=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} . \tag{3}
\end{equation*}
$$

(1) Prove that

$$
\frac{1}{2 \pi i} \frac{d}{d z} \log \tilde{\Delta}(z)=1-24 \sum_{m=1}^{\infty} \sigma(m) e^{2 \pi i m z}=E_{2}(z)
$$

(2) Using equation (2), show that

$$
\frac{1}{2 \pi i} \frac{d}{d z} \log \left(\frac{\tilde{\Delta}(-1 / z)}{z^{12} \tilde{\Delta}(z)}\right)=0
$$

(3) Use the previous part and the valence formula to show that $\tilde{\Delta}(z)=\Delta(z)=\frac{E_{4}^{3}(z)-E_{6}^{2}(z)}{1728} \in$ $S_{12}$.
(4) Suppose that $f(z) \in M_{k}^{!}$has integral Fourier coefficients and leading coefficient 1. Prove that if $f\left(z_{0}\right)=0$ for some $z_{0} \in \mathcal{H}$, then $j\left(z_{0}\right)$ is an algebraic integer.

Exercise 3. The polynomial $\Psi_{m}(x, y)$ is reducible when $m$ is not squarefree. Instead, one could consider

$$
\begin{align*}
\Phi_{m}(x, j(z)) & :=\prod_{\gamma \in \Gamma \backslash \Delta_{m}}(x-j(\gamma z)), \\
\Delta_{m} & :=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{m}: \operatorname{gcd}(a, b, c, d)=1\right\} . \tag{4}
\end{align*}
$$

(1) Show the following subset of $\Delta_{m}$ consists of coset representatives of $\Gamma \backslash \Delta_{m}$

$$
\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in \Delta_{m}: \operatorname{gcd}(a, b, d)=1,0 \leq b \leq d-1\right\}
$$

and that it has size

$$
\psi(m):=m \prod_{p \mid m \text { prime }}\left(1+\frac{1}{p}\right) .
$$

(2) Prove that

$$
\Psi_{m}(x, y)=\prod_{d^{2} \mid m} \Phi_{m / d^{2}}(x, y)
$$

In particular, $\Psi_{m}(x, y)=\Phi_{m}(x, y)$ when $m$ is squarefree. Furthermore, one has

$$
\begin{aligned}
\sigma(m) & =\sum_{d^{2} \mid m} \psi\left(\frac{m}{d^{2}}\right) \\
\frac{\zeta(s) \zeta(s-1)}{\zeta(2 s)} & =\sum_{m \geq 1} \frac{\psi(m)}{m^{s}}
\end{aligned}
$$

when $\operatorname{Re}(s)$ is large enough.
(3) Show that as a polynomial in $x$, the coefficients $\Phi_{m}(x, j(z))$ are modular functions in $M_{0}^{!}$with integral Fourier coefficients. From this, deduce that $\Phi_{m}(x, y) \in \mathbb{Z}[x, y]$.
(4) Show that $\Phi_{m}(x, y)$ is irreducible as a polynomial in $x$ over the field $\mathbb{C}(y)$.
(5) Prove that $\Phi_{m}(x, y)=\Phi_{m}(y, x)$.

Exercise 4. Let $D<0$ be a discriminant. In this exercise, we will prove the finiteness of the size of $\Gamma \backslash \mathcal{Q}_{D}$. For convenience, we will use $(A, B, C)$ to denote a binary quadratic form $A x^{2}+B x y+C y^{2} \in \mathcal{Q}_{D}$ and $\sim$ to represent equivalence under the action of $\Gamma$. We say a form $(A, B, C)$ is reduced if

$$
|B| \leq A \leq C
$$

(1) For any reduced form $(A, B, C)$ of a fixed discriminant $D$, prove that $|B|<\sqrt{|D| / 3}$. From this, deduce that the number of reduced forms of a fixed discriminant $D<0$ is finite.
(2) Let $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$ and calculate $\gamma \cdot(A, B, C)$. What is the result when $a=0$ ?
(3) If $(A, B, C),\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \in \mathcal{Q}_{D}$ are equivalent, prove that

$$
\left\{A x^{2}+B x y+C y^{2}: x, y \in \mathbb{Z}\right\}=\left\{A^{\prime} x^{2}+B^{\prime} x y+C^{\prime} y^{2}: x, y \in \mathbb{Z}\right\} .
$$

(4) Prove that two forms $\left(A_{1}, B_{1}, C_{1}\right)$ and $\left(A_{2}, B_{2}, C_{2}\right)$ of the same discriminant are equivalent if and only if there exist $a, c \in \mathbb{Z}$ such that

$$
\begin{aligned}
A_{1} a^{2}+B_{1} a c+C_{1} c^{2} & =A_{2} \\
2 A_{1} a+\left(B_{1}+B_{2}\right) c & \equiv 0 \quad\left(\bmod 2 A_{2}\right) \\
\left(B_{1}-B_{2}\right) a+2 C_{1} c & \equiv 0 \quad\left(\bmod 2 A_{2}\right)
\end{aligned}
$$

(5) Find all pairs of distinct reduced forms that are equivalent to each other.
(6) Show that every binary quadratic form $(A, B, C) \in \mathcal{Q}_{D}$ is equivalent to a reduced form and prove that $h(D)$ is finite.
(7) Show that every quadratic form $(A, B, C) \in \mathcal{Q}_{-163}$ is equivalent to $(1,1,41)$ and that the size of $\Gamma \backslash \mathcal{Q}_{-23}$ is 3 .

Exercise 5. For a fixed fundamental discriminant $D<0$, let $C(D)$ denote the set of coset representatives of $\Gamma \backslash \mathcal{Q}_{D}$. We will define the composition law after Dirichlet in this exercise. Two forms $Q_{j}=\left(A_{j}, B_{j}, C_{j}\right) \in \mathcal{Q}_{D}, j=1,2$ are called united if $\operatorname{gcd}\left(A_{1}, A_{2},\left(B_{1}+B_{2}\right) / 2\right)=1$.
(1) If $Q_{1}, Q_{2} \in \mathcal{Q}_{D}$ are united forms, show that there exists $b, c \in \mathbb{Z}$ such that $Q_{1} \sim$ $\left(A_{1}, b, A_{2} c\right)$ and $Q_{2} \sim\left(A_{2}, b, A_{1} c\right)$. In this way, we define the composition of $Q_{1}$ and $Q_{2}$ to be

$$
Q_{1} \circ Q_{2}:=\left(A_{1} A_{2}, b, c\right) \in \mathcal{Q}_{D} .
$$

(2) Prove that the composition respects the equivalence relation $\sim$, i.e. if $Q_{1}, Q_{2} \in \mathcal{Q}_{D}$ and $Q_{1}^{\prime}, Q_{2}^{\prime} \in \mathcal{Q}_{D}$ are two pairs of united forms such that $Q_{j} \sim Q_{j}^{\prime}$ for $j=1,2$, then

$$
Q_{1} \circ Q_{2} \sim Q_{1}^{\prime} \circ Q_{2}^{\prime}
$$

This then defines a composition law on $C(D)$.
(3) Deduce that

$$
\begin{aligned}
(1, B, C) \circ\left(A^{\prime}, B^{\prime}, C^{\prime}\right) & \sim\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \\
(A, B, C) \circ(A,-B, C) & \sim(A, B, C) \circ(C, B, A) \sim(A C, B, 1)
\end{aligned}
$$

and conclude that $C(D)$ is an abelian group under composition.
(4) Show that $h(D)$ is even if $D<0$ is the product of a positive and a negative discriminant.

Exercise 6. For a discriminant $D<0$, define the Hurwitz class number $H(D)$ by

$$
H(D):=\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} \frac{1}{w_{Q}}
$$

It is the "degree" of the "modified class polynomial" $\mathcal{H}_{D}(x):=\prod_{Q \in \Gamma \backslash \mathcal{Q}_{D}}\left(x-j\left(\tau_{Q}\right)\right)^{1 / w_{Q}}$.
(1) When $m$ is not a perfect square, prove that

$$
\Psi_{m}(x, x)= \pm \prod_{|t|<2 \sqrt{m}} \mathcal{H}_{t^{2}-4 m}(x)
$$

(2) When $m$ is a perfect square, prove that

$$
\left.\frac{\Psi_{m}(x, y)}{\Psi_{1}(x, y)}\right|_{x=y}= \pm \sqrt{m} \frac{\mathcal{H}_{t^{2}-4 m}(x)}{\mathcal{H}_{t^{2}-4}(x)} .
$$

(3) Set $H(0):=-\frac{1}{12}$ and prove the following result due to Hurwitz

$$
\begin{equation*}
\sum_{d \mid m} \max \left(d, \frac{m}{d}\right)=\sum_{\substack{t \in \mathbb{Z} \\|t| \leq 2 \sqrt{m}}} H\left(t^{2}-4 m\right) \tag{5}
\end{equation*}
$$

(4) Make a table of the Hurwitz class numbers $H(D)$ up to $|D| \leq 24$.

