Problem 1

Let K be the quadratic field $\mathbb{Q}(i)$.

1. Describe how primes of \mathbb{Q} decompose in K / \mathbb{Q}.
2. Use this to write down the Dedekind ζ-function $\zeta_{K}(s)$.
3. Find a Dirichlet character χ such that

$$
\zeta_{K}(s)=\zeta_{\mathbb{Q}}(s) L(\chi, s)
$$

Use this to describe the functional equation for $L(\chi, s)$.
4. Let ρ_{K} be the Galois representation associated to K / \mathbb{Q}, coming from the action of $G_{\mathbb{Q}}$ on embeddings $K \hookrightarrow \mathbb{C}$. Prove that it is the same as the regular representation of $\operatorname{Gal}(K / \mathbb{Q})$ (viewed as a representation of $\left.G_{\mathbb{Q}}\right)$, and that it decomposes as $\mathbf{1} \oplus \rho_{\chi}$.

Problem 2

Let E be the elliptic curve $y^{2}=x^{3}-5^{2}$ over \mathbb{Q}_{5}, of discriminant $\Delta=-2^{4} \cdot 3^{3} \cdot 5^{4}$. The aim is to give a complete description of $V_{2} E$ as a $G_{\mathbb{Q}_{5}}$-module.

1. Prove that $K=\mathbb{Q}_{5}(E[2])$ is a Galois extension of \mathbb{Q}_{5} with $\operatorname{Gal}\left(K / \mathbb{Q}_{5}\right) \cong S_{3}$.
2. Consider the action of $\operatorname{Gal}\left(K / \mathbb{Q}_{5}\right) \cong S_{3}$ on $E[2]$ as a representation

$$
\operatorname{Gal}\left(K / \mathbb{Q}_{5}\right) \longrightarrow \operatorname{Aut} E[2] \cong \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)
$$

Show that in some basis of $E[2]$ it is given by

$$
\text { elt of order } 3 \longmapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), \quad \text { elt of order } 2 \longmapsto\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text {. }
$$

3. Show that E has additive reduction over \mathbb{Q}_{5}.
4. Show that E has good reduction over $\mathbb{Q}_{5}(\sqrt[3]{5})$. What is the reduced curve $\tilde{E} / \mathbb{F}_{5}$ over that field? What is $\# \tilde{E}\left(\mathbb{F}_{5}\right)$?
5. Prove that $\mathbb{Q}_{5}\left(E\left[2^{n}\right]\right)$ has ramification degree 3 over \mathbb{Q}_{5}, for every $n \geq 1$.
6. Let $F=K^{n r}=\mathbb{Q}_{5}^{n r}(\sqrt[3]{5})$. Show that $G_{\mathbb{Q}_{5}}$ acts on $T_{2}(E)$ through its quotient $\operatorname{Gal}\left(F / \mathbb{Q}_{5}\right)$, and inertia $I \triangleleft G_{\mathbb{Q}_{5}}$ through $\operatorname{Gal}\left(F / \mathbb{Q}_{5}^{n r}\right) \cong C_{3}$.
[Draw the picture how $\mathbb{Q}_{5}, \mathbb{Q}_{5}^{n r}, K$ and F fit together - it should help.]
7. Let σ be a generator of $\operatorname{Gal}\left(F / \mathbb{Q}_{5}^{n r}\right) \cong C_{3}$. Find its eigenvalues on $V_{2} E$. (Note that you know the determinant.) Deduce that $V_{2} E$ and $V_{2} E^{*}$ have trivial inertia invariants, and so E / \mathbb{Q}_{5} has trivial Euler factor $F_{5}(T)=1$.
7^{*}. An ambitious version of (7) is to prove that every elliptic curve over \mathbb{Q}_{p} with additive reduction has $F_{p}(T)=1$. (It might help to consider potentially good and potentially multiplicative reduction separately - for the former the argument is as in (7).)
8. Let Φ be the Frobenius element of $F / \mathbb{Q}_{5}(\sqrt[3]{5})$. Explain why σ and Φ generate $\operatorname{Gal}\left(F / \mathbb{Q}_{5}\right)$, and $\Phi \sigma \Phi^{-1}=\sigma^{-1}$. What is the characteristic polynomial of Φ on $V_{2} E$? Use this to find the action of $\operatorname{Gal}\left(F / \mathbb{Q}_{5}\right)$, and therefore of $G_{\mathbb{Q}_{5}}$, on $V_{2} E$ in some basis.
